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Application of the Generalized Short Time DFT
to the Hilbert Transformer and Its Characteristics
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ABSTRACT Instantaneous spectrum concept is a promising solution to effectively develop -
ing key devices for economical communication systems. An exact realization of the Hilbert
transformer has been previously discussed with employing new concept of instantaneous
spectrum defined by ST DFT. The Hilbert transformer used in SSB or RZ SSB modulator
provides with indispensable function for eliminating one sideband from output signals to
efficiently reduce occupied spectrum over radio channels. A new class of signal processing
is introduced by generalized short time DFT, in which sub - channels are arbitrary adjust -
ed on the objective frequency domain. Another implementation of the noble Hilbert trans -
former is discussed with employing this ST gDFT. Restricting the ST gDFT within causal -
ity, phase shifting error of implemented Hilbert transformer is examined to be so accurate
as detecting no error by micro degree order. Simultaneously, its amplitude error is shown
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to be less than 0.01dB.

1. INTRODUCTION

Narrowing frequency bandwidth occupied over
radio channel is a promising solution to effec -
SSB has

been considered to be defective in vehicular

tive usage of finite radio resource.

communication systems via such speech quali -
ty degradation as fading on the multi-pass
propagation, although SSB is the most effi-
cient in narrowing frequency bandwidth occu -
pancy of modulated signals. However, RZ SSB
which has equal frequency utilization efficien -
cy to the existing SSB has been pushed on the
stage of developing new modulation technique
which guarantees equal speech quality to the
existing PM modulation over fading poor ra-

dio channels.!' 2 As known well, the noble
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Hilbert transformer plays the important value
of making the frequency utilization efficiency
so high with generating analytic signals
through modulation.® -® Hilbert transformed
signal 7(¢)is exactly generating from inverse
Fourier transform of {— jsign(w) F (w)}, here
F(w) is the Fourier transform of f(t) . This
relationship has suggested previously that
Hilbert transformer is executed on the phase
plane. Once the instantaneous spectrum are
given, Hilbert transformer is precisely carried
out on the phase plane via merely exchanging
real or imaginary part of these spectrum with
each other.® Hilbert transformed signals are,
therefore, synthesized from these exchanged
spectrums as shown in session 3. A new class
of analysis and synthesis named by general -
ized ST gDFT is proposed with emphasis on
generalizing the sub - channel allocation on the
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phase plane. ST gDFT promises a precise
signal processing for implementation of noble
Hilbert transformer because of the character -
istics, evenness of real function R(w) = R(— )
and oddness of imaginary function
X(w) =-X(w). Noble Hilbert transformer,
which is called by ST gDFT Hilbert trans-
former, is newly proposed in this paper on the
newly proposing signal processing concept of
the ST gDF'T.

Circuit configuration of this ST gDFT Hilbert
transformer is discussed in brief and verified
its characteristics through computer simula -

tions.
2. HILBERT TRANSFORMER

A real signal (t)is defined at almost all t by
inverse Fourier transform from Fourier trans -
form F(w)of arbitrary signal f(t)whose real
or imaginary part is exchanged with each oth -
er. This real signal 7(t)is Hilbert transform
of  f(¢) Thatis,

7)) = % [7(R(w)sin ot

+ X (w) cos wt}dw.

1

Where the real part R(w)is even function given

as
R(w) = 5 [F() + F(- o)},

the imaginary X(w)is odd function given as

Imag

7

Real

Fig.1 Frequency Response of the ideal Hilbert
transform in the discrete signal processing
systems.
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X (o) =2ij{F<w) ~F(-w)},

7 (¢)is therefore given as follows.

70 = i F@  F-w)

{ejwt _e—jwt}
1 (F(0) - F(- )
{eia)t_._e—jmt}] dw

= o [T F(w)e
+ jF(~ w)e ™} dw
1 pe ..

= gf_;]szgn(w)
F(w) & dw.

The Hilbert transform on the phase plane is

described as

F(w) = —jsign(w) F(w) (2)

On the phase plane, Hilbert transform is in -
terpreted as filtering by —jsign(w). Equation
2 shows that the ideal Hilbert transform is ob -
tained from shifting the phase by —90° (w > 0)
and by 90° (w <0)during signal processing
based on the instantaneous spectrum of the ST
gDFT.

Figure 1 shows frequency response of the
Hilbert transform as filtering in the discrete
signal processing system. The unit sample re -

sponse i (n) of this system is given by

-

Amplitude

> 0

r 0 £

N N

Fig.2 The 0,, sub-channel allocation of the
existing DFT
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i(n) = %{f‘i%,_je’%wn

+ f?— jef%wn}dw
®)
= (1=~ (- 1))

1
= — (11—
p (1—coszn)

This unit sample response ;(n) 1is exactly
same to that of Rabiner’s minmax Hilbert
transformer i,,(n)." ®
:_2/7n
2 sin (T) . .
im(n) _ ;——n——-‘, Lf n 1is Odd(4)

0, if n is even

The existing DFT is impossible to be applied
to the Hilbert transformer immediately be -
cause of (Oth sub-channel existing on the
frequency domain (—%-, %)accrossing zero
as shown in fig.2.

New signal processing is discussed in the fol -
lowings to solve this problem of (thsub-
channel merely by shifting channel allocation
by half along to the frequency axis based on
generalized short Time DFT, which is also
newly proposing here to coincide the fringe of

0th sub - channel to zero.

3. GENERALIZED SHORT TIME HILBERT
TRANSFORMER

1
F=5 ST gDFT

H“”"‘”’l‘”""”l"""flf’""‘"""(")

¢s(n)i¢ s(n)

#'s(n)

¢'»(n)l¢'1(n)l

Id’ n(ﬂ-)|¢ l(n)l¢ z(ﬂ)l¢ a(n)|¢ a(n) ¢1(")I DFT
0 27

I3
Normalized Angular Frequency,

Fig.3 Comparison of sub-chanel allocation
between existing DF'T and ST gDFT, N=8

3.1 Definition of the ST gDFT and Hilbert
Transformer Operator
We define ST gDFT and ST gIFT as follows.?

ST gDFT :
d(n) = Y 2(r)h(n—r)Wykr (5)
ST gIFT :
N-1
yn) =5 3, $u(m) W ®)
N =

Here, £ is positive real number, 0< £ <1 .
z(r) is aninput data at sampling time r .
h(n —r) is the same window functions as de -

fine in ST DF'T,

1, if p=0
h(p) = , (M
0, if p=DNu,

u is non zero integer

This satisfies physical existence and stands
on causality to exist complex conjugate struc-
ture with symmetric axis at # radian among
spectrum components, if £is %, as shown in
fig. 3.

Hilbert transform is executed by exchanging
complex components of x(n) with each other
on the frequency domain as discussed in the

previous session.

Accumulator Resct 7/
A
/

- e
- . 5
Instdntancous Spectrum Analyzer / / ST gIFT Synthesizer

via ST gDFT  Frequency Domain
Hilbert Transformer

Fig.4 Circuitry configuration of ST gDFT

Hilbert transformers
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Let complex real and imaginary part of
¢r(n) to be ai(n)and bi(n), respectively.
The transformed components @, (n) are given

as follows,

Bi(n) br(n) — jax(n)

(8)

—Hax(n) + jbr(n)}

As shown in eq.8, vector @,(n), which is
spanned by mutually exchanged complex
components, is precisely coincident with the k,,
component of Hilbert transformed instanta-
neous spectrum.

Both instantaneous spectrum analysis and
phase shifting being combined into one opera -
tor, the frequency domain Hilbert transform

-tk . .
operator W, is given as follows,

.2 .1
EIP{_]F(/C"‘E)T‘_]?},
if0sk< N
2
o N-1
Wy = k=T ©)
N is odd
4 .
exp{—]ﬁ(k+ E)r+]7},
if % k<N
Substituting ¢ x(n) into eq.6, ST gIFT

gives the corresponding Hilbert transformed

signal T (n) as follows.
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Fig.5 Frequency response of amplitude and
phase shift error of the ST gDFT Hilberttrans -
former, 2m=8 and B=9.0
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N
_ _o1 n(k+E)
g(n) = 5a k=0{¢k(n)WN

[ N—1—k(n)W;Jn(k+1_E)}

N _
= & (Butmmio
Nt (10)
+Futm i)
2 _}21__1 oy n(k+£)
= FkZ_.OReal{ﬁbk(n)WN }, QED
here £ =-;— .

3.2 Circuitry Configuration and Its Unit Sam -
ple Response

The ST gDFT Hilbert transformer consists of
three major blocks as shown in fig.4. The first
plays a role of ST gDFT analyzer and consists
of % modules in which every component
¢r(n) of the instantaneous spectrum ®(n)is
yielded. The second block acts as a Hilbert
transformer on the frequency domain, which
exchanges real with imaginary part of ¢i(n) -
This block is dominant in function, however, it
is so simple in circuitry configuration as mere -
ly consisting of two crossing wires as shown in
fig.4. These blocks are practically combined
together in frequency index wise to get 7¢7k(n)
Wydur -
ing ST gDFT analyzing. The last is synthesiz -

directly by adopting WNinstead of

9 2
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N

(b) frame length, N

Fig.6 Amplitude error vs. frame number 2m
(a),and amplitude error vs. frame length N
(b) of the ST gDFT Hilbert transformer, 2mN
=64 and $=6.0
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er which employs ST gIFT to produce time
from Hilbert transformed spectrum ® (n)in
similar to the first blocks. The unit sample re -
ig(n)of the ST gDFT Hilbert trans -

former is given by eq.11.

sponse

1 2 o
—hn) ==, U nisodd
ig(n) =1 siny- (11)
0, if nis even
It is easy to understand that i (n)converges

onto unit sample response of the ideal Hilbert
transform if A(n) is an infinite frame number
Nyquist. In fact,

h(n) = sin 2%/ 2% being substituted into eq.11,

ig(n) gives ideal response as follows.

i(n) = 727[—, if n s odd
,(n) =

0, if n is even

(11)’

Attention must be paid on that the frame
length N does not effect the unit sample re-
sponse, where the ideal Hilbert transformer
response is defined by that of ST gDFT Hilbert
transformer as shown eq.11’. If the infinite
Nyquist window is used, the ideal Hilbert
transform is easy to realize but be fatal in im -
plementation owing to output signal being de -
layed by infinite duration. Fortunately, ST
gDFT Hilbert transform is defined with pro-

Q02
< 0.02 T T T 7]
N - -
o
s ~ —
L -
5 K\_
3 0.01 C .
3 - .
£ 000l 1 | | 1]
< 2 4 8 16
delay, msec

Fig.7 Amplitude error vs. delay mN of the ST
gDFT Hilbert transformer, 8 =6.0 and sam -
pling rate is 8kHz

cessing input signals on the frequency domain.
Therefore, it becomes to possible in the ST
gDFT to employ finite frame number A(n) in
order to shift the phase by 90° exactly.
Consider the Kaiser smoothing function to
truncate infinite Nyquist by finite frame num -

ber, ! °
h(n) = N(n)K(B, n) (12)
here, N(n)is infinite Nyquist

sin &%
N(n) =—7—
N

and K(A, n)is truncating function

Io (/1)

K(B, n) = ———F%—+,

I (B) (13)
—mN sn<mN.
Where, I)(x)is the modified 0, order first

kind Bessel function, B is arbitrary value to
adjust width and energy of the mainlobe.

It will be shown in the next session that the
truncated window  A(x) is approximately ad -
justed to coincide with the infinite Nyquist
with selecting A by apriori values. Function
N(n)K(B, n) is especially called by Nyquist-

Kaiser in the followings.

4. RESULT OF COMPUTER SIMULATIONS

The amplitude frequency response is shown in
fig.5 for unit sample response of the ST gDFT
Hilbert transformer in which the frame num -
ber 2mis set to be 8 and S of Nyquist - Kaiser
is taken as 9. As shown in flatness over subjec -
tive domain, the optimized approximation is
easily given by adjusting the value of B. It is
also mentioned that there exists any phase
shift error in accuracy of micro degree order.

Figure 6 (a) shows the amplitude response of
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the ST gDFT Hilbert transformer as the frame
number 2mbeing taken as a parameter when
2mN is
set to be 64 and B is 6. Under the same condi-

the Nyquist - Kaiser window length

tions in the above, figure 6 (b) shows the ampli -
tude response as the frame length N being
taken as a parameter. As shown in these fig-
ures, the Hilbert transformer is low in sensi-
tivity to cause no changes in amplitude charac-
teristics if the parameter 2m or N changes.
Even if it gives good characteristics when in -
finite Nyquist being employed, it is not practi-
cable because of being large in processing de -
lay. It is easy to understand that only the sin -
gle function of the Hilbert transformer is also
realized with transversal filters when the unit
sample response i,(n)of the ST gDFT Hilbert
transformer is exactly given. This means the
delay of ST gDFT Hilbert transformer is given
by mNt .
sampling frequency.

Here, ris reciprocal number of

Figure 7 shows the amplitude response as de -
lay mN being taken as a parameter. The am -
plitude error of the ST gDFT Hilbert trans-
former is shown to be practicable from the
value observed in fig.7 to be below 0.01dB when
its processing delay is restricted within 16
msec in the case of 8 kHz sampling as stan-

dard in communication signal processing.
5. CONCLUSION

The generalized short time DFT abbreviated
as ST gDFT was successfully shown to be de-
duced from adjusting allocation of sub - chan -
nels with emphasis on realization of the noble
Hilbert transformer which is inevitable in im -
proving frequency utility efficient of commu -
nication systems. The unit sample response of
the ST gDFT Hilbert transformer which em -
ploys the infinite Nyquist window is precisely
coincide with that of ideal Hilbert transformer
with fatal demerit of astronomical delay.

However, the ST gDFT Hilbert transformer is
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executed with signal processing on the phase
plane through instantaneous spectrum analy -
sis and synthesis based on the ST gDFT to
avoid this fatal demerit and to be able to get
exactly Hilbert transformed signal within
practicable delay, mNz .

The Kaiser function introduced into the ST
gDFT is also able to speed up the signal pro-
cessing by truncating Nyquist function with -
out increasing both phase shifting and ampli-
tude errors. The ST gDFT Hilbert trans-
former is shown to be released from the re-
strict conditions of frame number 2mand
frame length IV and shown to be depend on on -
ly the product 2m x N which is propor -
tional to the delay amount. The frequency re -
sponses are verified through computer simula -
tions to be so accurate as less than micro de-
gree order in phase shifting and less than 0.01

dB in amplitude error.
6. REFERENCES

[1]B. F. Logan, Jr.,“Information in the Zero
Crossing of Bandpass Signals”,BSTJ, Vol.56,
No.4, PP.487-510, Apr. 1977

[2]k. Daikoku and K. Suwa,“RZ SSB
Transceiver with Enqual - Gain Combiner for
Speech and Data Transmission”, IEEE
GLOBECOM’88, Fort Lauderdale, FL. Proc.
PP.26.4.1-26.4.5, Nov. 1988

[3IM. Kishi,“A Proposal of Short Time DFT
Hilbert Transformers and its Configuration”,
Trans. IEICE, Vol. E71, No.5, PP.466-468,
May 1988

[4]M. Kishi, “The Properties and Configura -
tion of the Short Time DFT Hilbert Trans-
formers”, IEEE ICASSP 89, Glasgow, Scot -
land, Proc. Vol.2. No.D4.10, PP.1019-1022,
May 1989.

[5]M. Kishi,“Application of the Short Time
DFT to the Hilbert Transformer and Its
Characeristics”, Trans. IEICE B-1, Vol. J74-
B-1,No.8, PP.599-608,Aug. 1991



Application of the Generalized Short Time DFT to the Hilbert Transformer and Its Characteristics 207

[6]M. Kishi,“Fast Processing for the Short
Time DFT Hilbert Transformers”, IEEE
ICASSP 91, Toronto, Canada, Proc. Vol.3-D,
No.D12.1, PP.2225 - 2228, May 1991.

[7]L. R. Rabiner and R. W. Schafer,“On the
behavior of minimax FIR digital Hilbert
Transformers”, BSTJ, Vol.53,No.2, PP.363-
390, Feb. 1974.

[8]R. E. Crochiere and L. R. Rabiner,” Multi-
‘rate Digital Signal Processing”, Chap.7,

Printice - Hall, 1983
[9]M. Kishi and T. Yoshida, “On the Consid -
eration of the Generalized Short Time DFT
and its Application to the Hilbert Trans-
former”, ICSP’93, Oct. 1993 (to be presented)
[10]M. Kishi and H. Koga, “On the Optimiza -
tion of the Prototype Filter used in the Short
Tine DFT Hilbert Transformers”, IEEE VTC’
91, St.Louis, MO, Proc. No.6.4a, PP.161- 165
(%2 k643 A208)





