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On the Optimization of Decimation Filter
in the Short Time DFT Based on Remez Algorithm
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ABSTRACT Decimation filters of the ST gDFT Hilbert transformer are examined through
frequency response with employing Remez algorithm. Optimization is performed alternate -
ly on the frequency and time domain with restricting filter coefficients. This optimized re -
sponse of the Hilbert transformer also defines the optimized weighting function for the dec -
imation filters. In other words, the optimized Hilbert transformer response based on the
Remez algorithm deduces the optimizing weighting function of the significant decimation

filter inthe ST DF'T.

1. INTRODUCTION

The instantaneous spectrum in so important
concept that the previously reported short time
DFT(ST DFT) Hilbert transformer is realized
to be almost free from any error both in phase
shifting and amplitude owing to employing
shifting the phase on the phase plane *!. This
concept is provided with ST DFT to make
many applications being feasible in such radio
communication systems as high speed MO-
DEM, highly efficient CODEC, and distortion
free filters in addition to the Hilbert trans-
former. The significant functions in the
ST DFT are mainly characterized with the
decimation filters which a playa important
role during analyzing input signals [ .

In this paper, we discuss about optimization
of the decimation filters used in the general -
ized short time DFT (ST gDFT) Hilbert trans -

T ERIERE FHREEIER (BHE)

formers with employing Remez Algorithm 131,

Optimization is performed alternatively on the
frequency and time domains with adjusting
time domain response, i.e. unit sample re-
sponse. The unit sample response optimized in
frequency domain is transformed via inverse
ST gDFT (ST gIFT) to define the coefficients
of the decimation filters 1.

So long as this optimized Hilbert trans-
former is realized ideally, the optimized unit
sample response of the ST gDFT Hilbert
transformer also suggests the optimum
weighting function for the decimation filter in
a ST DFT, which is also universally adopted to
filter bank systems.

As discussed details in following session, the
ideal Hilbert transformer is realized with em -
ploying the relation G(w)=—jsignwG(w),
here ((w)is Hilbert transform of the Fourier
transform of the arbitrary function g(¢). The
ST gDFT guarantees the solver for avoiding

singularity around zero frequency.
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Therefore, the optimized ST gDFT Hilbert
transformer consequently gives the newly
proposing optimization algorithm for the sig -
nificant decimation filters in the analysis of

the instantaneous spectrum.
2. PRINCIPLE OF THE ST gDFT

The previously reported ST DFT Hilbert
transformer is provided with causality based
on restricting the 0, and %th sub - channels
being null 7. Nullification on these sub-
channel reduces the bandwidth over subjective
domain as shown in fig.1(b).

Fortunately, the ST gDFT is able to release
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Fig.l Comparison of the passband among ideal(a), ST
DFT(b) and ST gDFT Hilbert transformers(c).
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this restriction from causality. As shown in
fig.1(c), the ST gDFT is able to adjust its
channel allocation to avoid zero cross in the 0y,
sub - channel in order to coincide with that of
ideal Hilbert transformer shown in fig.1(a).

That is, the instantaneous spectrum g¢(n)is

given by ST gDFT as follows.

Hn) = 3 ha-n) Wy e
O0sk<N
where h(x) is an apriori decimation filter ;x(r)

is a sampled data at time r Wy**rare ST

gDFT operators,
Wy~ R 0r = o=ifF et g < g <1 2)

here, £is newly introduced parameter to ad -
just channel allocation of the existing ST DFT.

Where the parameter gis set to be %, the
channel allocation of the ST gDFT is moved up
by half of sub-channel width to coincide 0y,
lower fringe with zero frequency. Attentions
must be paid on this channel allocation to get
ideal Hilbert transformer based on the phase
place relation G (w) = —jsignwG(w) , and on
that bandwidth of realized Hilbert trans-
former will become to equal to that of ideal one
as shown in fig.2 because there exist no sub-
channel eliminations in the ST gDFT Hilbert
transformer.

In fig.2, solid curve shows amplitude fre-

quency response of the ST gDFT Hilbert trans -
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Fig.2 Comparison of amplitude frequency response be -
tween ST gDFT and ST DFT Hilbert transformers(2m=
8, N=8).
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former and dotted curve shows that of the
ST DFT one. Wideness of the ST gDFT
Hilbert transformer is shown clearly in the
figure if both window length 2m = 8 and frame
length N =38.

3. DECIMATION FILTERS IN THE ST DFT
AND ST gDFT

3.1. Definition of the Decimation Filters
Necessary condition for the decimation filter
defined by A(#) in eq.1is deduced from specifi -

cation as an ideal low - pass filter,

f/ T
. 1, —<ws—
N(ei) = N N (3)
0, else.

Inverse Fourier transform for N(e/®) gives

impulse response of the decimation filter n(n)

so called Nyquist,
_ 1 & 0N o jon 4 — sin(nz/N)
n(n) Tf—ﬁH(e Yel o duw e (4)

As shown clearly in eq.4, infinite frame
number Nyquist behaves as an ideal decima -
tion filter with fatal victim of paying infinite
processing amount during convolution. When
the Nyquist function is truncated by finite
length, amplitude peak values both of main
and side lobes becomes to be greater, and the
sharpness of cut-off becomes to be vague to

show Gibbs’s phenomenon on the frequency

domain.
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Fig.3 Comparison of amplitude frequency response be -
tweeen Kaiser -weighted and non -weighted ST gDFT
Hilbert transformers (2m=8, N=8).

Let’s consider what effect will be introduced
by weighting the truncated Nyquist by Kaiser

function as follows.
h(n) =n(n)k(n), (5)

where,
Io(B 1- <#)2)
To(A) : (6)
—-mN<ns<mN

k(n) =

here Jy(*) is the modified 0, order Bessel of the
first kind, B is an arbitrary positive real
number to adjust the width and energy of 0y,
the mainlobe.

Solid curve in fig.3 shows the amplitude fre -
quency response of the ST gDFT Hilbert trans -
former adopted with Kaiser weighted Nyquist
of eq.5, here frame length N =8, and frame
number 2m =8, and g =6.3. Dotted curve in
fig.3 simultaneously shows the amplitude fre -
quency response of the ST gDFT Hilbert trans -
former in which the decimation filter A(x) is
adopted with Nyquist merely truncated by 2m
frame number. It is clearly shown that the
amplitude error over subjective domain (0, z)
is remarkably improved by employing Kaiser
weighting function given by eq.6.

Figure 4 shows that the maximum amplitude
error on the subjective domain of the ST gDFT
Hilbert transformer adopted Kaiser weighted
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Fig.4 Maximum amplitude error of the ST gDFT
Hilbert transformer with Kaiser -weighted Nyquist vs.
B (2m=8, N=8).
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Nyquist is monotonously improved as the pa-
rameter 8 goes large, and is improved to be
less than 0.01dB if g is greater than 6.3.

Contradictorily, the bandwidth of the trans-
former is slightly shrinked from increasing
the value of 8 as shown in fig.5. If 8 is set to
be 10, the bandwidth is shrinked by 4.5 point
by percent. Kaiser weighted Nyquist is conse -
quently recognized as a suitable decimation
filter in the meanings both of minimum ampli -
tude error and maximum bandwidth under re -
striction condition of B =6.3 as indicated in
figs.4 and 5.

4. OPTIMIZATION OF THE DECIMATION
FILTERS

4.1 Optimization of the ST gDFT Hilbert
Transformer

The frequency response of the ST gDFT
Hilbert transformer H(e/®) of length 2M +1 is

given as

. M .
H(e’®)= 3 h(n)e ™", M=mN. ()
n=—M
The causality is well known given by merely
adding delay by Msamples. H(e/) is also

modified from the symmetry of A(n) as fol-

lows.
. M
H(e#™) = h(0)+ Y 2h(n) cos(wn) 8
n=1
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Fig.5 Bandwidth of the ST gDFT Hilbert transformer
with Kaiser -weighted Nyquistvs. B (2m=8, N=8).

Following to Rabiner’s discussion, the ap-
proximation error function is defined as fol-

lows.
E(w) = W(w)[Ha(e™) — H(e#)] (9)

where FE(w) is evaluated over both passband
and eliminating band of the desired filter
W(w) as a weighting function, and H(e’®) is
frequency response of the optimization target.
Optimizing response in the Chebycheff mean -
ings is estimated by the maximum absolute
value of FE(w) at M+2 peak frequency
{w;}, 1=0,1,2,---, M+1. These frequencies
should locate in the regions 0<w < w,and
we < w < 7, here, w,is cut - off frequency on the
passband and w, is cut-off frequency on the
eliminating band. Where the values of the
magnitude at these frequencies are given by

unique value by & .
M + 2order simultaneous equations are de -

rived from eq.9,

W(wi)|:Hd(ef“’) —h(0) — % 2h(0) cos(w;, n)] (10)

n=1

=—(-1)', i=0, 1, 2, -, M+1.

There exists M + 2unknowns for A(n)and &
in these simultaneous equations. Rabiner
suggested that § is efficient to solve more than
solving about A(n) in concerning with peaks.
In general, these peaks are given by searching
around the points of dividing passband and

eliminating band.
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Fig.6 Amplitude response of the optimized ST gDFT
Hilbert transformer, 2m=8, N=8 and & =1.0233.
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It is clearly shown in fig.6 that the amplitude
response of the optimized ST gDFT Hilbert
transformer is featured with equalripple with -
in the subjective domain, where frame number
2m =8, frame length N =8, and ¢ in eq.101is
set to be 0.1dB, i.e. §=1.0233. Figure 7 shows
the relationship between the amplitude error
6 and passband width of the optimized ST
gDFT Hilbert transformers. In similar to
Kaiser weighted Nyquist, the passband width
of the optimized transformer based on Remez
algorithm is slightly shrinked from improving

amplitude error.

4.2. Extraction of the Optimized Weighting
Function
As reported previously, the unit sample re-

sponse of the ST gDFT i,(n)is given as follow
141

2
iy(n) = | WsmGan/y M) for oddin

0, for even n
It is adequate that decimation function A(n)
described by

h(n) =n(n)w(n), 12

n(n) is infinite Nyquist function and w(n) is
such a weighting function as Kaiser, Black-
man, or the desired optimized weighting func-
tion. Substituting eq.12 into the unit sample

response of eq.11, it gives,

0.95x T T T T T T T

c o -

.9

k]

@

-

£

S

3

©

c

@

Q

&

©

a

0.85X 7 T NN T NN NN S S S |
©0.10 0.05 0.01

Amplitude Error, dB

Fig.7 Passband width vs. amplitude error of the opti -
mized ST gDFT Hilbert transformer.

. _ 2 sin(zn/N)
W) = NemGN) NP i
=%w(n), for odd n

As well known, the term 2/zn on the right
band of eq.13 means the unit sample response
of the infinite Hilbert transformer. Once the
unit sample response of the optimized ST
gDFT Hilbert transformer, the optimized dec -
imation function in the Chebycheff meanings
is given by eq.13. That is, the optimized deci-
mation filter, which is significant in the in-
stantaneous spectrum analysis both in the ex -
isting ST DFT and in the ST gDFT, is defined
by multiply the optimized response by the re-
ciprocal number zn/2. Figure 8 shows the op-
timized weighting function by solid curve over
8 frame durations. Kaiser weighting function
is also shown in the figure by dotted by curve

in comparison with the optimized one.
5. CONCLUSION

The optimization of the weighting function was
discussed through Remez algorithm with em -
phasis on reducing amplitude error both of
passband and eliminating band in the mean-
ings of Chebycheff. These optimized weight -
ing functions ensure that such concept of the
instantaneous spectrum as ST DFT, ST gDFT
and etc. are put on the stage of developing
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Fig.8 Amplitude response of the optimized weighted
function, 2m=8.
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Hilbert transformer, CODEC and MODEM op -
timized in the Chebycheff meanings.
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