B TERFEHFIRE
$29%  PHEE

213

On the Consideration of the Generalized Short Time DFT
and its Application to the Hilbert Transformer
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ABSTRACT It is newly proposed in this paper based on the generalized Short Time DFT(
ST gDFT ) that an ideal Hilbert transformer is realized with employing phase shifting by
—z/2radian (o > 0) and /2 radian (w <0). The ST gDFT'is able to adjust its sub -channel al -
location by an apriort value along to the frequency axis in order to perform frequency do -
main Hilbert transform precisely via avoiding zero frequency crossing in the preserved sub
-channel. The phase shifting function of a ST gDFT Hilbert transformer is as accurate as
detecting no error with 10~° degree order, and its amplitude is as flat as swinging within 0.01

dB over subjective domain.

1. INTRODUCTION

Instantaneous spectrum concept is a promis -
ing solution to effectively developing key de-
vices for economical communication systems.
An exact realization of the Hilbert trans-
former has been previously discussed with
employing new concept of instantaneous spec -
trum defined by ST DFT!'~*. The Hilbert
transformer used in SSB or RZ SSB modulator
provides with indispensable function for elim -
inating one sideband from output signals to ef -
ficiently reduce occupied spectrum over radio
channels® ©.

A new class of signal processing is intro-
duced by generalized short time DFT, in
which sub - channels are arbitrary adjusted on

the objective frequency domain. Another im -
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plementation of the noble Hilbert transformer
is discussed with employing this ST gDFT.
Restricting the ST gDFT within causality,
phase shifting error of implemented Hilbert
transformer is examined to be so accurate as
detecting no error by micro degree order.
Simultaneously, its amplitude error is shown
to be less than 0.01dB.

2. PRINCIPLE OF THE HILBERT TRANS-
FORMER

A real signal 7(¢t)is defined at almost all ¢by
inverse Fourier transform from Fourier trans -
form F(w)of arbitrary signal f(¢t)whose real
or imaginary part is exchanged with each oth -
er. This real signal 7(¢)is Hilbert transform
of f(t). Thatis,
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Where the real part R(w)is even function given

as
1
R() =5 (F(w) + F(- )},
the imaginary X(w)is odd function given as
1
X(w) =5 {Flo) = F(=w)},

7(t) is therefore given as follows.

-,

T0) =+ [5|5 (F@) + Feapen—e)

+ 1 F(0) - F(- @)} + e} ] do
= % [ (= iF(w)e™ + jF(— w)e ™} dw
= o 7~ sign(®) F(w) ¢ do.

The Hilbert transform on the phase plane is

described as
F(w) = —jsign(w) F(w). @)

On the phase plane, Hilbert transform is in -
terpreted as filtering by —jsign(w) . Equation
2 shows that the ideal Hilbert transform is ob -
tained from shifting the phase by —90° (w > 0)

‘and by 90° (w <0)during signal processing
based on the instantaneous spectrum of the ST

gDFT.

Imag

Real

Fig.1 Frequency response of the ideal Hilbert transform
in the discrete processing systems.

Figure 1 shows frequency response of the
Hilbert transform as filtering in the discrete
signal processing system. The unit sample re -

sponse i (n) of this system is given by

i(n) = %{flzv_je’%wn + f?'-—je’%wn}dw
1 —jany __ mn __
—%{(l—el ) — (& 1)} (3)
1
—E(l—cosnn).

This unit sample response i(n) is exactly
same to that of Rabiner’s minimax Hilbert

transformer {,(n)" ®.

-2
2 sin'()
i) ={zn o Yrisedd oy

0, if nis even.

The existing DFT is impossible to be applied
to the Hilbert transformer immediately be-
cause of O¢th sub - channel existing on the fre -
quency domain (—% %) acrossing zero as
shown in fig.2.

New signal processing is discussed in the fol -
lowing to solve this problem of (¢4 sub - chan-
nel merely by shifting channel allocation along
to the frequency axis based on generalized
short Time DFT, which is also newly propos -
ing here to coincide the fringe of (th sub-

channel to zero.

3. GENERALIZED SHORT TIME HILBERT
TRANSFORMER

3.1 Definition of the ST gDFT
We define ST gDFT and ST gIFT as follows® .

Amplitude

0 T

N N
Fig.2the 0, ychannel allocation of the existing DF'T.



On the Consideration of the Generalized Short Time DFT and its Application to the Hilbert Transformer 215

3 2(r)h(n - r)W*7(5)

r=—0c0

STQIFT : y(n) =5 niers)
gIFT : y(n) = 77 2, ¢(r)Wy (6)

ST gDFT : ¢(n) =

Here, g is positive real number, 0 £<1 ,
z(r) is an input data at sampling time r
h(n—r) is the same window functions as de-
fine in ST DFT,

1L, yp=0
h(p) = { _ _ M

0, if p=Nu, uisnon zerointeger.

This satisfies physical existence and stands
on causality to exist complex conjugate struc-
ture with symmetric axis at # radian among
spectrum components, if £is 1, as shown in

fig. 3.

3.2 Unit Sample Response of ST gDFT Hilbert
transfomer

Hilbert transform is exactly performed in ex -
changing complex components of the instan -
‘taneous spectrum on the frequency domain as
previously discussed. Let real part be Ry(n)
and imaginary part be X (n) of instantaneous
spectrum ¢y (n) . Hilbert transformed signal
7 (t) is given as follow.

-1

T = %Tz [Rk<n) sin{ 3 (k + o)

+ Xi(n) cos{F (k+ E)nH

_ Tiﬁk)‘;:[jwmn ~r)atr) cos{ -+ £}
. sin{zz (k+ E)n}
+ r=2_.»h(n —r)z(r) sm{— (k+ E)"}
. cos{—N— (k+ E)n}]
1 Nl

Z 3 h(n—r)x(r) sin{%z— (k+E)(n— r)}. (8)

k=0 r=—c0

Restricting £into %, there exists complex con -

jugate relationship between $i(n) and
B () , or between W™ and Wi ", eq.

8 1s modified as follows.

10
1 =1 ~ (k+E)n.
p {Bumwgrom s By Wi ")

=}

(9)

T [Buomty o T

K=

Lo

2|N z|~ 2|

Tz Reaz{gsk(n)w“‘*f)”} QED.

A Vector ¢ k(n) , which is spanned by complex
components mutually exchanged, is precisely
coincident with the k,, component of Hilbert
transformed instantaneous spectrum.

The unit sample response i,(n) of the ST
gDFT Hilbert transformer is deduced from
eq.9 by substituting unit sample §(0) =1,

1 2
iy(n) = (WM s
0, if n is even.

if n is odd 0

It is easy to understand that i,(n) converges
onto unit sample response of the ideal Hilbert
transform if A(n)is an infinite frame number
h(n) = sin(nz/N)/(nz/N)
being substituted into eq.10, i,(n) gives ideal

Nyquist. In fact,

response as follows.

. i, for odd n
ig(n) ={nz oy
0, for even n
Attention must be paid on that the frame
length N does not effect the unit sample re-
sponse, where the ideal Hilbert transformer
response is defined by that of ST gDFT Hilbert
transformer as shown eq.10’. If the infinite
Nyquist window is used, the ideal Hilbert
transform is easy to realize but be fatal in im -

plementation owing to output signal being de -

—_

£=5 ST gDFT

:r-'st'o(n ' \(n)'a(n)fd's(n) 8" (n)g's(n)|@'s(n)f"+(n

Bo(n)d1(n)da(n)ds(n)da(n)ds(n)pe(n)id+(n) DFT

1 A : L I L L

0 4 o
Normalized Angular Frequency,

Fig.3 Comparison of sub - channel allocation between ex -
isting DFT and STgDFT,N=38.
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layed by infinite duration. Fortunately, ST
gDFT Hilbert transform is defined with pro-
cessing input signals on the frequency domain.
Therefore, it becomes to possible in the
ST gDFT to employ finite frame number A(n)
in order to get eq.2 by shifting the phase by 7/2
radian precisely.
Consider the Kaiser smoothing function to
truncate infinite Nyquist by finite frame num -

ber'?,
h(n) =N(n)K(B, n) 1)

here, N(n) is infinite Nyquist

N(n) =221, ")
N

and K(B, n)is truncating function

I(B/1— -y
K(B, n) Z_(TO(B)——N—)’ 13

-mN =n<mN.

Where, I, (x) is the modified 0y, order first kind
Bessel function, 8 is arbitrary value to adjust
width and energy of the mainlobe.

It will be shown in the next session that the
truncated window A(x) is approximately ad-
justed to coincide with the infinite Nyquist
with selecting B by apriori values. Function
N(n)K(B, n) is especially called by Nyquist -
Kaiser in the following.
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Fig.4 Frequency response of amplitude and phase shift
error of the STgDFT Hilbert transformaer,2m=38 and B
=9.0.

4. COMPUTER SIMULATIONS AND RE-
SULTS

The amplitude frequency response is shown in
fig.4 for unit sample response of the ST gDFT
Hilbert transformer, where the frame number
2m 1is set to be 8 and S of Nyquist - Kaiser is
taken as 9. As shown in flatness over subjec-
tive domain, the optimized approximation is
easily given by adjusting the value of 8. It is
also mentioned that there exists any phase
shift error in accuracy of micro degree order.

Figure 5 (a) shows the amplitude response of
the ST gDFT Hilbert transformer as the frame
number 2m being taken as a parameter when
the Nyquist - Kaiser window length 2mN is set
to be 64 and B is 6. Under the same conditions
in the above, figure 5 (b) shows the amplitude
response as the frame length V being taken as
a parameter. As shown in these figures, the
Hilbert transformer is low in sensitivity to
cause no changes in amplitude characteristics
if the parameter 2m or NV changes.

Even if it gives good characteristics when in -
finite Nyquist being employed, it is not practi -
cable because of being large in processing de -
lay. It is easy to understand that only the sin -
gle function of the Hilbert transformer is also
realized with transversal filters when the unit
sample response i,(n) of the ST gDFT Hilbert
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Fig.5 amplitude error vs. frame number 2m(a), and
amplitude error vs. frame length N(b) of the STgDFT
Hilbert transformer, 2mN=64 and B=6.0.
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transformer is exactly given. This means the
delay of ST gDFT Hilbert transformer is given
by mNz -
sampling frequency.

Figure 6 shows the amplitude response as de -
lay mN being taken as a parameter. The am -
plitude error of the ST gDFT Hilbert trans-

former is shown to be practicable from the

Here, ¢ is reciprocal number of

value observed in fig.6 to be below 0.01dB when
its processing delay is restricted within 16
msec. in the case of 8 kHz sampling as stan-

dard in communication signal processing.
5. CONCLUSION

The generalized short time DFT (ST gDFT)
was successfully shown to be deduced from ad -
justing allocation of sub -channels with em -
phasis on realization of the noble Hilbert
transformer which is inevitable in improving
frequency utility efficient of communication
systems. The unit sample response of the
ST gDFT Hilbert transformer which employs
the infinite Nyquist window is precisely coin -
cide with that of ideal Hilbert transformer
with fatal demerit of astronomical delay.
However, the ST gDFT Hilbert transformer is
executed with signal processing on the phase
plane through instantaneous spectrum analy -
sis and synthesis based on the ST gDFT to
avoid this fatal demerit and to be able to get
exactly Hilbert transformed signal within
practicable delay, mNt .

The Kaiser function introduced into the

ST gDFT is also able to speed up the signal
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Fig.6 Amplitude error vs. delay mN of the STgDFT
Hilbert transformer, 8=6.0and sampling rate is 8kHz.

processing by truncating Nyquist function
without increasing both phase shifting and
The ST gDFT Hilbert

transformer is shown to be released from the

amplitude errors.

restrict conditions of frame number 2m and
frame length N and shown to be depend on on -
ly the product 2m X N which is proportional to
the delay amount. The frequency responses
are verified through computer simulations to
be so accurate as less than micro degree order
in phase shifting and less than 0.01dB in am -

plitude error.
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