FMIERETRES
215 B FH44E

- 207
i S

Using Relaxation Techniques
to Evaluate Queries in Deductive Databases
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ABSTRACT  Relazation method is a general framework used to improve the efficiency
of answering a query g(a,x) given to a deductive database P. It first solves problem
(¢'(a’,x"), PREX) where PRLX s q relazation of the original database P and ¢'(a’,x') is
the modified query to PRLX, to derive a set PREL of predicate occurrences that is known
to contain the answer set ANS in P, and construct database PMPF by aqugmenting P
with the restriction that solution space is constrained to PREL, and finally solves prob-
lem (q(a, x), PMPF) to get the desired answer set ANS. If the relazation PELX is prop-
erly defined, (¢'(a’,x'), PRLX) can be efficiently solved since PRLX is simpler than P, and
(q(a, x), PMPFY can also be eﬁficiently solved as the solution space is restricted. Several meth-
ods are proposed to construct such relazations. It is also argued that the original form of
magic set method [2] can be described in the contest of the relazation method.

1 Introduction

Given a query ¢(a, x), where a is a vector of con-
stants and x is a vector of variables, in a deduc-
tive database P = (R, F), specified by a set of
Horn rules R and a set of facts F', we consider to
derive the set of all answers ANS to the query.
It is assumed that each rule in R is range re-
stricted (i.e. every variable in the head of a rule
appears in its body) and includes no negation,
and every argument of each predicate is not a
function. Let N(P)(= {p, q,7,...}) be the set of
all predicate names in P, C(P)(= {a,b,c,...})
the set of all constants in P, PO(N(P),C(P))
(= {p(a"")a)’p(a)"'7b))'")q(a"")a))
g(a,...,b),...}) the set of all forms obtained by
substituting constants to the arguments of predi-
cates. We call each element in PO(N(P), C(P))
a predicate occurrence (abbreviated to po).

T BRILEARY: HEEEETER (BET)
T RERE THEH BETER (RE)

Note that a po p(a) may not be a fact of an ex-
tensional predicate defined in F. A form p(c,y)
, where c is a constant vector and y is a variable
vector, is also called po, and stands for all po
p(c,a),p(c,b),... obtained by substituting con-
stant vectors for y.

From now on, unless otherwise specified, con-
stants are denoted by a,b,c,..., constant vec-
tors by a,b,c,..., variables by z,y, z,..., vari-
able vectors by x,y,z,..., EDB predicates(i.e.
extensional database predicates used in F') by
A, B,C, ..., and IDB predicates(i.e. intensional
database predicates not in F') by p,q,r,.... Let
IMP(P)( C PO(N(P),C(P)) ) denote the set
of all predicate occurrences that can be deduced
from P. Then the answer to a query g(a,x) is
the set:

ANS = {q(a,%) | g(a,x) € IMP(P)}.

Many methods have been proposed for efficient
evaluation of queries in deductive databases [2] -
[8], [10] - [14]. To reduce the number of intermedi-
ate predicate occurrences in M P(P) generated



208 FHTERPUREE, 8275 B, P 4 4, Vol.27-B, Mar.1992

to answer a query is an important idea to improve
efficiency.

Definition: If some derivation tree that de-
rives a po s(d) € IMP(P) includes a po p(z)
as one of its nodes, p(z) is said to be relevant
to s(d) (expressed as (p(z), P) — =s(d)). If
p(z) is relevant to some answer g(a,b)(€ ANS)
to a query g(a,x), p(z) is relevant to query
g(a,x). The set of relevant po’s to a query
q(a,x), REL(q(a,x), P)(C IMP(P)), is there-
fore defined by

REL(q(a’ X),P) = {p(Z) | (p(Z),P) - * Q(a’ x)}

Set REL(gq(a,x), P) is usually referred to as the
relevant set. O

In other words, the relevant set consists of all
predicate occurrences that can be used to derive
answers, among those deducible from P. There-
fore, if we can know set REL(g(a,x), P) in ad-
vance, we can restrict the search of answers only
within the relevant set, thereby improving the ef-
ficiency of the answering process. However, as
obvious from definition, computing the relevant
set is equivalent to giving the exact answer set
AN S, and therefore we try to generate sets of po,
PREL, which is a relaxation of REL(q(a, x), P),

i.e., satisfies

relaxation condition: PREL D REL(gq(a,x), P).

This set of predicate occurrences PREL is called
a potentially relevant set. The original database
P is then solved for the query g(a,x) under the
additional constraint that only those predicate
occurrences contained in PREL are generated
during its process of searching the set of answers
AN S. The notion of relevant facts was first in-
troduced in [7] and was explained in [3]. The
above definition of a potentially relevant set is
more general in the sense that not only facts but
also predicate occurrences are taken into account.
The efficiency of our method depends on the size
of its potentially relevant set PREL.

We propose in this paper a general frameworks
of relaxation method and give several methods to
derive PREL, as well as examples that show its
effectiveness. The well known magic set method
[2], which eliminates irrelevant predicate occur-
rences by adding a restriction derived from the
constants in a query to P, can also be discussed
within the framework of the relaxation method,
though there are some nontrivial differences in
the details of computation process. [4] showed

that a number of known methods could be defined
within the framework of the generalized magic set
method. Itis not difficult to see that most of such
methods can also be viewed as special cases of the
relaxation method. There are however some cases
of the relaxation method that are not regarded as
the generalized magic set method, and some cases
of the generalized magic set method that are not
regarded as the relaxation method.

2 An Example

We give an example of a deductive database and
a query, and derive its relevant set. This example
is used throughout this paper.

Example 1: Let a deductive database
P1 = (R1,F1) consist of a rule set Rl =
{r1,72,73,r4,r5}:

rl @ p(z1,72,y1,92) 1 —A(z1,91), B(za, 42).
r2 1 p(z1,T9,21,22) 1 —

(21,22, Y1,92), Ay, 21), B(y, 7).
r3 ¢ s(z1,32,¥1,%2) : —C(z1, 1), D(32, ¥2).
rd : s(z1,32,21,22) : —

s(z1, %2, 91, %2), C (91, Zl),D(yz,Zz)-
r5 1 q(z1,22,91,%2)  —

(21,22, 1, ¥2), (21, 22, Y1, Y2)-

and a fact set F'1:

F1 = {A(5,7) | j=1+1,51 <i< 100,
i : integer}
U {A(57) | 51 <1< 100,7 : integer}
U {BG,j)|j=i+1,1<i< 100,
i: integer}
{B(4,7) | 1 <1< 100,1 : integer}
U {CG,j)|j=i+1,1<i< 100,
i : integer}
{C(1,7) | 1 << 100,7 : integer}
U {DG,j)|j=1i+1,51<i< 100,
i : integer}
U {D(s,4) |51 <1< 100,3 : integer}.

C

C

A query to Plis
q(z1, T2, 75, 75).

This problem can be interpreted as follows. There
are two vehicles Vp and Vs on grids of dimension
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two with axes 1 and 2. A po A(z1,41)(C(21,%1))
means that the first coordinate z; of Vp(Vs)
can move directly to y;, and B(z4, y2)(D(z2,2))
means that the second coordinate z, of Vp(Vs)
can move to Y. Similarly, p(z1,z2,¥1,Y2)
(s(z1, z2, y1, y2)) means that the location (z1, 23)
of Vp(Vs) in two-dimensional grid can reach lo-
cation (y1,y2), and q(z1,72,v1,y2) means that
both Vp and Vs, starting from (z;, 2,), can reach
(y1,y2)- The query ¢(z1, 72, 75,75) therefore asks
to compute the set of all initial locations (z1, 22),
from which both Vp and Vs can reach (75, 75) :

ANST = {q(21,3,75,75) |
q(z1,22,75,75) € IMP(P1)}. O

Area in which Vs can move

f\- (75,75)

;20% AR2 AR3
7 %% ARS ARG

coordinate 2

" DN
N N\ N

coordinate 1

Area in which Vp can move

Fig.1 Two dimensional areas in which vehicles
Vp and Vs can move

Fig.1 shows the areas in which Vp and Vs can
move. Let AR1,..., AR9 be the areas as shown in
Fig.1, respectively. Then, Vp can move in AR2U
AR3UARSUAR6UARBUARY and Vsin AR1U
AR2UAR3UAR4UAR5UARSG. Tt is easy to see
that the answer set for this example is

AN S1 = {q(z1, 22, 75,75) | (z1,32) € AR5}.

Let IM P,(P1)(C IMP(P1)) be the set of pred-
icate occurrences with predicate name p, which
can be de-
duced from P1, and REL,(q(z1, z2,75,75), P1)
(C REL(q(z1,2,75,75), P1)) be the set of rel-
evant predicate occurrences with predicate name
p. IMP,(P1) in the above problem example is

given by

IMP,(P1) = {p(z1,22,¥1,%2) |

z1 < 41, 73 < Y, (21, 22), (41, ¥2)
€ AR2UAR3UAR5S5UAR6U AR8U AR9}.

In order to derive REL,, note that predicate
occurrences of P that can be used in rule r5
to derive some answer g(z1, 23, 75, 75)( € ANS1)
are p(z1, 22, 75, 75) satisfying (21, 22) € AR5, and
those that can be used in rule r1 or rule r2 to
derive its predicate occurrences p(zq, 22,75, 75) (
(21,22) € AR5 ) are p(z1,22,Y1,y2) satisfying
(z1,22), (y1,92) € AR5 and 21 < y1,23 < 4o
Therefore, we have

RELP(q(zlx 32)75) 75):P1) = {P($1,$2,y1,y2) I
T3 S Y1,Z2 S Y2, (.’221,:1)2), (yl;yZ) € AR’S}

3 Outline of Relaxation
Method

Now, we will explain the idea of the relaxation
method. The potentially relevant set PREL be-
comes smallest when it is precisely equal to the
relevant set REL. The relaxation method tries to
compute a potentially relevant set PREL that is
close to REL, without spending too much compu-
tation time, by solving (¢'(a’,x’), PELX) where
PRLX js a relaxation of P and ¢'(a’,x') is the
query ¢(a,x) modified to meet the relaxation of
P. Here a database P*X¥X is called a relaxation
of P, if there is a mapping f from the set of po’s
of P to the set of po’s in PEXX such that the
following relevancy condition holds:

Let ¢'(a',x') = f(g(a,x)). Then, for
any - p(y) €
REL(q(a,x), P), p'(¥')(= f(p(y))) be-
longs to REL(q'(a',x'), PRLX),

The relaxation method then proceeds as follow.
) Solve (d/(2', %), PRo¥)
to obtain REL(¢'(a',x'), PRLX). Let PREL =
[ (REL(g (2!, x'), PREX),

(2) Solve (g(a,x), P) by restricting the domain
of po’s for search to set PREL (i.e., ignoring all
po’s ¢ PREL generated in the computation ).
The database P restricted to PREL is denoted
by PMPF and called a modified database of P. In
other words, the answer set ANS of (¢(a,x), P)
can be obtained by solving (g(a, x), PMPF), say,
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] i

by the semi-naive metho

df1
ANS = {q(a,x)|q(ax) € IMP( )}
= {q(a,x) | q(a,x) € IMP(P)N PREL}
= {4(a,x) | g(ax) € IMP(PMPT)}

The relaxation method gives the correct answer
set AN S since relaxation condition

PREL 2 REL(q(a, x), P)

follows from the relevancy condition of f associ-
ated with relaxation P*XX. The computation of
the relaxation method is mostly spent on solving
the relaxation (¢'(a’, x'), PELX) and the modified
database (g(a, x), PMPF). Therefore, it is impor-
tant how to define relaxations P*¥ which are
easy to solve and yet are close approximations of
the original P. In the following, we present two
examples which are both based on the so-called
argument elimination strategy.

4 Relaxation Method
Based on Argument
Elimination Strategy

From now on, we denote relaxation j of database
P1 of Example 1 by P1#LXJ, the mapping from
the set of po’s of P1 to the set of po’s in P1#LXJ
by fj, the po set i~ (REL(q(a!,x'), PLREX1))
by PRELj and the modified database, which is
database P1 restricted to PRELj, by P1MPFs,

Example 2: A relaxation P18LX1 =
(R1RLX1 p1RLX1) s constructed from P1 of Ex-
ample 1 by considering coordinate 1 only. First,
the set of rules R1#5X is given by

6 : pi(z1,y1) 1 —A(zy, 1)

rT : pulz, 21) 2 —pa(z, yl);A(yl;z1)~

r8 ¢ si(z1,y1) 1 —Cz1, %)

r9 : s1(z1,21) 1 —s1(z1,91), Clys, 21).
r10 : gz, 1) : —p1(21,91), s1(21, 11).

The mapping f1 from the set of po’s of P1 to the
set of po’s in P18LX! is then defined by

1 p(z1, 22, 91,92) = pa(21, 1),
s(z1, 22, 91,92) = s1(21, y1),
q(z1, 23,91, ¥2) — qa(z1,91),
A(z1,91) = A(z1,91), B(za,32) — &,

C(mhyl) - C(zlyyl)) D(zZJyZ) — &

where ¢ means that P12LX1 does not have the
corresponding EDB predicate in it. The set of
facts in P1RLX1 ig similarly given by
F1RLXL = fA(i,5) | j =14 +1,51 <1< 100,

i : integer}

U {A(i,7) | 51 < ¢ < 100,74 : integer}
U {CG,4)|j=i+1,1<i< 100,

i : integer}
U {C(i4)|1<14<100,¢:integer}.

This relaxation P1#LXY describes a necessary
condition of P1 in the sense that it character-
izes the conditions concerned with the first co-
ordinates, even though the vehicles move in the
two dimensional plane. For example, if a po
(71,22, Y1, y2) can be deduced from P1, the cor-

responding po p1 (71, 91)(= f1(p(21, 72, v1,12))) is
also deduced from P1#LX1 ( though the converse
is not always true). Extracting only the first coor-
dinate of query q(z1, z5, 75, 75) for P1 gives query
q1(z1,75)(=  f1(q(z1,24,75,75))) for P1RLXL
The relevant sets REL, (g1(z1,75), P1RLXY)
REL,,(q:(z1,75), P1RLX1)]

REL, (q:1(z1,75), P1RLX1) become

REL, (q:(z1,75), P1*¥Y) =
{p1(z1,91) | 51 < 21 < y1 < 75}

REL, (q:(z4,75), P1REXY) =
{s1(z1,91) | 51 < 21 < 9y < 75}

RELy(q1(z1,75), P17XY) =
{q:1(z1,75) | 51 < 2, < 75}

Therefore this f1 satisfies the relevancy condi-
tion:

{F1r(y) | r € {p, 5,9},
r(y) € REL(q(z1, 72, 75,75), P1)}
C REL(ql(z,, 75), P1#EXY),

(REL,(q(z1, 22, 75,75), P1) is given in section 2.)
Let

PREL1 = f Y REL, (q:(z1,75), P1*X1))
f_l(REL-n (ql (1:1, 75)) PlRLXl))
f—l(REqu (‘h(mlw 75)) PlRLXl));

cC C

and the modified database, which is database P1
restricted to PREL1, be now given by P1MDF1 —
(R1MDFL p1MDF1)  where its Tule set R1MDPF! is
obtained by adding predicates representing the
derived constraints to rules 1 - 5:

ril P(ml,wz,yl;yz) : ‘—Pl(l‘l;yl),
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A(z1,91), B(23, y2)-
712 p(z1, 2o, 21, 22) : —p1(z1, 21),
p(21, 22, Y1, ¥2), A1, 21), B(Y2, 22)-
r13 : s(z1,%2,¥1,92) : —s1(z1,91),
C(z1,91), D(22,92)-
r14 : s(z1, 739, 21, 20) 1 —s1(21, 21),
s(21, 22, Y1, 92), C(91, 21), D(92, 22).
r15 ¢ q(z1,22,91,92) : —q1(z1, 1),
(21, 22, 91, ¥2), S($1,$2,y1;y2)~

and its fact set F1MPF1 j5 defined by

F1MPFL = p1 U REL,, (¢:1(z1,75), P17E4T)
U REL, (q(z1,75), P1#EX1)
U REqu(q1($1,75), PlRLXl).

(Though relevant predicate occurrences pi(x,y),
51(%,¥), q1(x,y) of P1RLXY are treated as facts
of P1MPF1 ipn this formulation, they can also
be defined by rules.)  Finally, the po set
IMP(P1MPF1) is generated by solving P1MPF1
in the bottom up manner (e.g.,by the semi-naive
method). Then, the following answer set ANS1
is derived.

AN S1 = {q(z1, 32, 75,75) | (z1,72) € AR5}.

In general, a pair (f, PPX) constructed by the
the argument elimination strategy satisfies the
relevancy condition, if the following conditions

hold:

1. Every rule r in PRLX is range restricted.

2. Let r be any rule of P and 7' the relaxed
rule in PELX corresponding to r. Then, for
any IDB predicate p(x) in rule r, rule r’ has
the corresponding IDB predicate p'(x')(=

F(p(x)))-

It is easy to show that (f1, P1#LX1) defined in
the above example satisfies these conditions.

To see the efficiency of the relaxation of Exam-
ple 2, note that set IMPP(PIMDFI), for example,
is given by

IMP,(P1MPF1) =

{p(z1, 22,91, 92) | 1 < y1, T2 < 92,
(z1,23), (¥1,%2) € AR2U AR5U ARS8},

which does not contain po’s corresponding to
the areas AR3,AR6 and AR9, even though
IMP,(P1) generated from P1 contains them.
Since the area of search is smaller, we may

say that this relaxation method solves problem
(¢(z1, %2, 75,75), P1) more efficiently.

Example 3: It is possible to define another
relaxation P1#LX2 by extracting the information
of the second coordinate from P1. The process is
similar to Example 2. Then we can combine these
two restrictions together to obtain yet another re-
laxation P1#LX%2  The computation of the an-
swer set in the modified database P1MPF12 from
P1RLX12 ig yestricted to the following po set:

PREL1-2=
{p(21, 22,91, 92) | 21 < 91,22 < Y2y
(z1, 22), (y1, y2) € AR5}
U {s(z1,22,91,92) | 21 < 41,22 <y,
(z1, z2), (1, y2) € AR5}
U {q(z1,22,91,%2) | £1 < 41,22 < 12,
(21, 22), (y1, =) € ARS5}.

It is easy to see that PREL1 - 2 is much smaller
than PREL1 or PREL?2, and the efficiency of the
relaxation method using P1#2%12 can be higher
than that using P172X1 or P1RLX2 glone. O

For a database P = (R, F'), denote the number
of different variables in a rule r by rule_deg(r)
and max,cp{rule_deg(r)} by db_deg(P) and the
number of different values of constants appeared
in F of P by cnum(P). The processing time
for P by the semi-naive method can be roughly
estimated as cnum(P)®-%9(P), The argument
elimination strategy used in Example 2 and 3
can be considered to reduce the size of a relax-
ation PRLX to a manageable level, by decreas-
ing db.deg(P). In Example 2, dbdeg(P1l) =
6, db.deg(P1RLX1) = 3 and cnum(Pl) =
cnum(P1RLX1) = 100.

5 Relaxation Methods
Based on Other
Strategies

There are various strategies of defining relax-
ations. We have investigated so far the following
strategies:

1. Argument elimination( as discussed in sec-
tion 4 ),

2. Predicate decomposition,

3. Rule decomposition,

4. Constant grouping.
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Though we omit detailed explanation, the ar-
gument elimination, the predicate decomposition
and the rule decomposition construct a relaxation
PRLX by decreasing db_deg(P), while the con-
stant grouping decreases cnum(P). We now give
an example below, in which another relaxation
P1RIX3 of database P1 of Example 1 is con-
structed by following the strategies of predicate
decomposition, rule decomposition and constant
grouping together.

Example 4: Consider for database P1 of Ex-
ample 1 a mapping f3 = (f3;, f3.) that consists
of a mapping of predicates f3; and a mapping of
constants f3.:

f3t : P(ml, 25 Y1, yZ) -
p2(21, 91, ¥2) A ps(@2,91,92),
s(z1, 2, Y1, 42) —
$2(21,91, Y2) A $3(22, 91, 92),
q(z1, 22, 91, yz) - 4(731, 2,91, Y2),

A(z1, 1) — A(z1, 1),
B(mZ) yZ) - B(:I;Z) yZ))
C(zliyl) (wbyl))

D(ZZ’ yz) - D(mZ) y2)7
f3c + f3c(10(k = 1) +j) = I,
j=1,2...,10, k=1,2,...,10.

For example,

f3(p(z1, 22,31, %2)) =
Pa(f3c(21), f3:(v1), F3c(y2))
A pS(f3c(m2)’ F3e(y1), 3:(y2)),
13(p(55,5,75,65)) =
pa2(Is, Is, Ir) A ps(f1, Is, Ir).
Further, consider a relaxation PI1RLX3 =

(R1REX3 | F1RLX3) that consists of the following
rule set RI1FLX3;

r16 1 pa(21,v1,92) : —A(z1, 1), B(z2, 2).-
r17 : ps(z2,v1,92) ¢ —A(z1,11), B(z3, y2).
r18 1 pa(z1,71,20) : —p21(21, Y2, 21), B(y2, 22)-
r19 ¢ pal(21,92,21) : —pa(21, 91, 92), Ay, 21)-
r20 : ps(z2, 21, 22) : —Pa1(22, Y2, 21), B(Y2, 22)-
r21 1 px(22,¥2,21) —Ps(fﬂz, Y1, 92), Ay, 21).
722 ~ 727 : rules defined for s similarly to
rl6,...,r21
r28 ¢ q(z1,22,¥1,¥2) : —
p2(21, Y1, ¥2), P3(22, 91, 92),
32(101, Y1,92), Sa(zz,yl;yz)-

and the fact set F18LX3,

FIR = (B(x) | B(x) € F1,

Ei(xi) € f3(E(x))}

= {AUI,L)|j=i+16<i<10,
i : integer}

U {A(, L) | 6 <4< 10,4 : integer}

U {BU,L)|j=i+1,1<i< 10,
i : integer}

U {B(L,L)|1<1<10,::integer}

U {CILL)|j=i+1,1<i< 10,
i : integer}

U {C(L,L)|1<1<10,4:integer}

U {DU,IL)|j=i+16<i< 10,
i : integer}

U {D(I;,1;) | 6 <1< 10,4 : integer}.

Note that P1RIX3 contains restriction on both
coordinate 1 and coordinate 2 of P1, even though

db_deg(P17%3) = 4 < db_deg(P1) = 6. O

The notion of constructing a simplified
database P’ by the strategy of predicate decom-
position is also found in [9], where it is discussed
when P and P’ become equivalent.

6 Comparison with
the Magic Set Methods

The well known magic set methods construct the
restriction to be added to the original database P
by introducing the predicates that contain only
the arguments carrying the binding information
from the constant vector a in a query g(a,x)
[2, 4, 10, 11, 12]. The set of such rules is called
the magic rule set R™*9, and the resulting po.
set is the magic set M S. The relaxation method
using the argument elimination strategy, as ex-
emplified in section 4, is similar to the magic set
methods. In this section, the relaxation method
using the argument elimination strategy is com-
pared with the magic set methods. The origi-
nal magic set method was introduced in [2]. The
generalized magic set method [4] and the magic
templates method [10] are generalizations of the
original magic set method that can treat a wider
class of databases and can generate stronger re-
strictions. The Alexander method [11, 12] is also
based on the same idea as the generalized magic
set method.
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First, we show that, for a general database

= (R, F), the relaxation method can define a
modified database PAPY-MDF that generates the
same po set M P(PAPN-MDF) a5 [\ P(Pmesic)
generated by the original magic set method. For
a general database P = (R, F), the original
magic set method first constructs the adorned
rule set RAPY from R by replacing each predi-
cate p(z1,...,%,) in rule r € R with predicate,
e.g., pbbf . 'f(ml, <.+ Zm), adorned with some se-
quence of length m of b’s and f’s, where b(f)
means that the corresponding argument (does
not) carries the binding information from the con-
stant vector a in a query g(a, x). (Those rules not
carrying the binding information are not included
in RAPN)) For example, a rule for query g(a, z),

q(z,y) : —A(z,2"), B(y,¥"), ¢(¢', z),

gives an adorned rule:

v Pz, y) : —A(e, o), By, ), a0 o).

The original magic set method then constructs
the rule set R’ by replacing each rule r' of RAPY
by the rule r” that is obtained from 7’ by eliminat-
ing all arguments with adornment f. For example,
the above rule r'(€ R4PY) becomes

r': qbf(:c) 1 —A(z, m'),qu(m').

of R'. (If a rule r(¢ RAPY) has more than
one intensional predicate in its body, r’ is first
decomposed into rules r1’,r2,... so that each
rj' may contain only one intensional predicate
in its body, and then the arguments with f are
eliminated from each rj’.) The magic rule set
R™9 is then obtained from R’ by interchang-
ing the head predicate of each rule with the in-
tensional predicate in its body. The magic set
MS(= IMP((R™9, {qP(a)} U F))) is then de-
duced in the bottom up manner. Finally, P™e9
is the database PAPN = (RAPN F) argumented
with the restriction that solution space is con-
strained to M S (it is achieved by adding the pred-
icates of R™9'° to the rules of R4PY in certain
manner). It is known that P™9% is equivalent to
P with respect to query ¢(a,x) in the sense that
both have the same answer set AN S.

Now it is not difficult to observe that the rules
in the above R' can be regarded as those obtained
from RAPY by the argument elimination strategy
of Section 4, and PAPN-RLX = (R! F) is a relax-
ation of PAPY | The relaxation method, however,
does not construct R™9¢ but directly evaluate

PADN-RLX iy the bottom up ma.nner Then, to

obtain the relevant set REL(qP (a), PADN-RLXy
it again evaluates PAPN-RLX in the opposite di-
rection (i.e., in the top down manner) from qb(a)
under the added restriction of IM P(PAPN-RLX)
Finally, PAPN-MDF ig ohtained by adding restric-
tion REL to PAPY in the same way as adding
MS to PAPN | The following expression:

IMP(Pmugic) — I]V{P(PADN'MDF),
follows from the above definitions of MS and
REL, even though

MS 2 REL(qP(a), PAPN-RLX)

Although the complexity of computing M S and
REL is generally difficult to compare, the com-
putation time of the last phase, i.e., computa-
tion of IM P(P™9<) and M P(PAPN-MDF)_ g
much less than the computation of the original
IM P( PADN ) .

To illustrate the above approach, we consider
the original magic set method applied to Ex-
ample 1. (In this example, adorned database
PADN — (RAPN F) is not introduced.) It is
not difficult to show that the original magic set
method generates the following set of po’s:

IMP(P1m9%)
= IMP,(P1™9<) U IMP,(P1m9)
UIM P,(P1mesic)

= {p(z1,22,91,92) | ©1 < 1,22 < 93,
(z1, 22), (v1,92) € AR5 + ARS8}

U {s(z1,22,91,92) | 21 < y1,22 < o,
(21, 22), (y1, y2) € AR4+ AR5}

U {q(z1,22,91,%2) | 21 < 91,22 < 0,
(zly 32)) (ylx y2) € ARS})

where P1™%9' is the database obtained by adding
the magic set restriction MS1 to P1. If re-
laxation P17LX* is defined by eliminating the
first and second arguments from each predicate
p, $,qin P1, the modified database P1MPF* from
P1RLX gatisfies

IM P(P1MPFe) = [ M P(P1™me9),

Next, we give a case where the relaxation
method is more efficient than the original
magic set method. Comparing the above set
IM P(P1™9%) with IM P(P1MPf12) of Exam-
ple 3, where IM P(P1MPF12) = PREL1 -2, we
see that M P(P1MPF12) is a proper subset of
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IM P(P1™e9), This is because more flexible uti-
lization of sideways information passing [4] is pos-
sible in the framework of the relaxation method.
For example, relaxation P1%#LX12 of Example 3
includes predicates p1(z1,y;) and p2(z2, y2) to re-
strict not only the third and fourth arguments of
predicate p(z1i, 23,91, y2) in P but also its first
and second arguments. The relaxation method
can utilize sideways information passing through
extensional and/or intensional predicates of P,
while the original magic set method can utilize
only sideways information passing through ex-
tensional predicates. Furthermore, in the body
p1(21,91) As1(z1,91) of rule 710 in PREXY the re-
laxation method makes use of sideways informa-
tion passing not only in the direction from vari-
able z1(y1) of predicate p(zi,%2,y1,y2) to vari-
able z1(y1) of predicate s(zi,zs,y1,y2) but also
in the opposite direction in rule r5 of P1. The
relaxation method can utilize cyclic sideways in-
formation passing between predicate arguments,
while the original magic set method can utilize
only acyclic sideways information passing.

The generalization family of the original magic
set method can also generate restriction sets that
cannot be generated by the original magic set
method. There are some such generalized restric-
tion sets which cannot be realized by the relax-
ation method, and there are some restriction sets
generated by the relaxation method which can-
not be realized by the generalization family of
the original magic set method.

7 Conclusions

The relaxation method has the following advan-
tages:

1. Tt can utilize various restrictions flexibly and
efficiently.

2. Ttisintuitively easy to understand how to de-
fine restrictions. Therefore, there is a chance
to find useful relaxations that reflect the
essence of a given database in natural way.
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