FRMLERETRRE =N, 167
%28 B FRIE Bliii} j(

Reverse Counting Method for Linear Recursive Query
with Many Cyclic Extensional Predicates

CERBRBERERRET — - ZHT B
WA bk

Susumu Suzuki!, Toshihide Ibaraki'f, Masahichi Kishi'
2 7 = KK BF, B Bt

Abstract We consider to answer a datalog program that is a generalization of the well
known same generation problem in the sense that it 1s defined over Cartesian product of m
extensional predicates r;. Each r; is in general assumed to be cyclic. We present a method,
which 1s the reverse counting method with a modification of termination test to deal cor-
rectly with cyclic predicates r;, and analyze its three costs of complexity: space-requirement,
database-access-time and test-time. When compared with the magic set method, which is
also applicable to the same problem, this reverse counting method is inferior in the sense of
worst-case bound of test-time but competitive in worst-case costs of other two. Some simula-
tions are also conducted to examine these costs on randomly generated r;. According to the
simulation results, however, the reverse counting method is superior to the magic set method
by orders of magnitude in the costs of space-requirement and database-access-time, and 1s in

the same order in the cost of test-time.

1 Introduction

We consider to answer the following Datalog pro-
gram:

P21,y 2m) = 10(T1, ey Tm)-
p(z1,- -y Zm) 1= 7i(21,21), o, (T T,
p(z3, ..., 2,).

which is a generalization of the well known same
generation problem in the sense that the sec-
ond rule contains many extensional predicates
r1,T2, ..., 'm defined over disjoint sets of variables
i,...,z,.. These r; are in general assumed to be
cyclic. pis a recursive predicate. ry is an exten-
sional predicate to initialize p. A typical query
given to this program is:

t BFRIRRY BHHEETEN (BE!)
Tt WBRZE TR HFETER (FET)

p(a1, 02, ..., Ghy Thaty oo oy Trn) ?

where ay,...,a, are constants. This program
reduces to the same generation program when
m = 2. An example of this program is shown
in Section 2.

For the same generation program, various
methods such as the counting method[6], the
reverse counting method[6], the magic set
method[6] and others[4] are proposed, and their
worst case complexities are analyzed[l, 2, 3, 4, 5].
Here we are specially concerned with the methods
which are applicable to more than two predicates
71,72, ...,y that are cyclic. It appears difficult
to generalize the counting method to this prob-
lem setting, but the magic set method(denoted
by MS method) can be generalized in a straight
forward manner. For the case of m = 2, the re-
verse counting method is more efficient than the
magic set method, because the former computes
unary relations while the latter does binary rela-

168 FHMITERKEHERE, 5265 B, ‘FR 34, Vol.26-B, Mar.1991

tions[5,6]). However, the reverse counting method
is not safe when r; and ry are cyclic. In Section 3,
we present a method that is the reverse counting
method with a modification of termination test
to deal correctly with cyclic predicates r;. This
method(Reverse Counting method with Termi-
nation test, denoted by RCwT method) can han-
dle the case of general m.

In Section 4, we analyze the worst case bounds
of RCwT method of three costs: database-access-
time (to carry out join operations), test-time (
to check whether given tuples already exist) and
space-requirement. In Section 5, Some simula-
tion tests are conducted to examine actual per-
formance of RCwT method and MS method on
randomly generated ri. Finally, we give our con-
clusion in Section 6.

1 Program Example

An example of a Datalog program in Section 1 is:

ez-59(Z1, .-+, Tm-1,Y)

i — meeq(z1,. .., Tm-1,Y)-

ez-5¢(%1y- - Tm-1,Y)
1= par(zy,), Par(Tm=1, Th_1),
2.eq(y,y') ez-sg(z1, -, T, ¥).
ez_sg(at, ..., lm2, Tra—1,4) 7

where ez_sg is a recursive predicate and
par, m.eq and 2_eq are extensional predicates.
m-eq(zy,...,Tm-1,y) means that z; =,...,=
Tm-1 = ¥, and 2_eq(y,y’') does that y = y"
par(z;,z!) means that z! is a parent of z;.
The intention of ez_sg(z1,...,Zm-1,y) is that
Z1,...,Z,—1 are cousins having a common ances-
tor y, i.e., there are lines of descendant from y to
T1,...,Zpm-1 covering the same number of gener-
ations. par can be cyclic. The query
ez-sg(ai, ..., am—2,Tm-1,Y) Tequests to find all
pairs of the cousin z,,-; and the common ances-
tor y of particular individuals ay,. .., am,—3.

2 Reverse Count-
ing Method with Termi-
nation Test

We present RCwT method in Fig.1. According
to the idea of the magic set[6], each r; is re-
stricted to a part relevant to a constant a; before

RCwT method starts. The reverse counting set
RCS;(41) is a set of descendants z;” that are i;
generations down from z;; , where

(:1311, Z12y- ‘,mlm) € RQ. RCS_,(Z] + 'Lz) s a set
of descendants z;” that are i, generations down
from z,;, where (221,222, ...,T2m) € Ro. And so
on. The method works as follows:

(1)in step2, computes all RCS;(i) to satisfy
a condition: {(z1,...,2m) | p(z1,.-.,2m)} C
Ur{(z1,...,2m) | ; € RCS;(k)}, (2) answers to
a query by using these RC'S;(k) in step3.

RCwT method has a termination test:
(o1, 2m) | 3, € WS;} CU(ahy ., 21 |
) € RCS;(k)} (line 9) , so that it can terminate
even when all r; are cyclic. To reduce running-
time, termination tests are also executed only
when the number of generations down from
each (21,23, ...,%m) € Ro is power of 2(line 9).

1: stepl: /* initialize */
2: Ry:={(z1,...,2m) | ro(21,.- ., Tm)};

3: step2: /* compute all reverse counting sets
ROS,(i) */
4: i:=1;

5. while Ry # ¢ do begin

6 R = Ro - {(s.m)l [*
3(:51)"')5171) € RO */

T for j:= 1 tom do WS, := {z;};

8: ij:=1;

9: while i=1 or notpower(ij, 2) or

{(z1,...,2m) | z; e WS;}

¢ UZol(ah, . 7) | 25 € ROS;(k)}

/* notpower(ij, 2) means that ij is not power of 2

*/

10: do begin

11: for j := 1 to m do begin

12: RCS;(3) :=WS;;

13 WS; = {z; | rj(z;,5}),2; €
RCS;(i)};

14: end

15: i=14+1; dj:=4§+1

16: end

17: end

18: step3: /* find all answers */
190 Answer :=

U{(zh+l) ’ zm) l The1 € RCSh+1 (k), Ty
zm € RCS,K)}

k such that a; € RCS;(k),...,ar € RCSy(k)
Fig.1. RCwT method

Reverse Counting Method for Linear Recursive Query with Many Cyclic Extensional Predicates 169

Fig.2 shows an example of RCwT method’s
process for { ri(aj,as), ri(as,a1) , ra(by,b2)
) Tz(bz,bl)) Ts(Cl,Cz)) 7‘3(02,01)) 7“3(02,02))
70(01,51,01)) To(al,bz,cz) }

Li yj R1 R2 R3 test status
1 1 {al} {bl} {C]} (NEW)
2 2 {ag} {bg} { Cg} TEST NEW
3 3 {a} A{b1} {e1,c2} (NEW)
4 4 {az} {b2} {01, Cg} TEST NEW
5 5 {al} {b]} {C],Cz} (OLD)
6 6 {az} {bz} {Cl, Cz} (OLD)
T 7 e} A{b1} Aen e} (OLD)

8 {(12} {bg} {Cl, Cg} TEST OLD

1 {0,1} {bg} {Cg} TEST NEW
9 2 {ag} {bl} {01, C2} TEST NEW
10 3 {(11} {bg} {Cl, Cz} (NEW)

4 {(1.2} {bl} {Cl, Cz} TEST OLD

Li means level i.

R1,R2 and R3 mean RCS;(i), RCSy(1) and
RC S;(1), respectively.

TEST means execution of termination test.
NEW means existence of new tuples, OLD no ex-

istence.
Fig.2. An example of RCWT method

3 Worst-case Costs

We compare the methods using three costs:

(1) database-access-time

Running time to carry out join operations.
It is the size of the intermediate results of join
operations, i.e. the size of {z;} in line 13 in Fig.1
before duplication elimination.

(2) test-time

Running time other than database access. It
is namely time to check whether generated tuples
already exist. Considering the time to process
a tuple, test-time of RCwT method is the prod-
uct of the number of tuples generated at level i
and i, i.e. |{(z1,...,2m)}| x ¢ in line 9 in Fig.1.
Test-time of MS method is the number of tuples
generated.

(3) space-requirement
The size of work space. It is the summation
of |RCS;(3)|.
The worst-case costs of RCwT method are
shown in Tab.1l. Those of MS method are also
shown in Tab. 2 to compare these two methods.

database-access-time

0(G x S, E;) < O(TI™|N; x £7, E:)

test-time
m G
O(F x G x H;=1N|' X 10g2 F)

< O(F x (2 Mi)? x logg =2

space-requirement

O(G x 22, N;) < O(IIZ, N; x &2, ;)

Tab.1. Worst-case costs of RCwT method

database-access-time

O(II7Z, N; x 2:7;1%)

test-time

O(I7, E:)

space-requirement

O(m x I, ;)

Tab.2. Worst-case costs of MS method

where N; and E; are the number of nodes and
edges, respectively, in
the graph SG;(node set SVi,edge set SE;) rep-
resenting r;, and F is the number of tuples in rq.
Let MG(MV,ME) be a product graph defined
by

MV ={(21,...,2m) | z; € SV;} and

ME = {((z1,.--,25) (21, ., &m)) | r5(2;,25)}.
For each tuple (= (¢;1,...,tm)) in ro, let
Sub-MG;(MV;, ME;) be the subgraph of MG
spanned by MV; C MV, where MV, = {z €
MV. | z(= (z1,...,%m)) is reachable from #;}
and MV; = { € MV | T is reachable from
i} — (MV1U...UMV,_;). Then, G is defined by
G=IL+IL+...4+Ip where I; = 1+ maxzepmv,{
the length of the shortest path from ¢; to Z in
Sub_MG;(MV;, ME;)}.

PROOF) We will prove Tab.1. Let MAXI
be the level, i.e. iin Fig.1 and Fig.2, when the
method terminates. Then,

170 EMLEARZHREE, $ 265 B, T3 4, Vol.26-B, Mar.1991

database-access-time < MAXI x L7, F;)

MAXI
) x MAXT x I, N;

test-time < log,(
space-requirement < MAXI x &2, N,

where, log,(M4X1)F is the upper bound of the

number of executions of termination tests. For
each £; in 7o, let I} be the number of executions
of the loop consisting of lines 10-16 in spite of the
fact that all tuples {(z1,...,2m) | z; € RCS;(i)}
at the same level have already been generated.
Then,

MAXI =(L+1)+(L+5)+...+(Ir+1p)

Also,
G=Il+...+IF

;<
G <L N

These prove Tab.1.

Tab.1 indicates that G greatly influences the
performance of RCwT method. That is, (i) in
the case of G <« II%; N;, RCwT method is more
efficient than MS method in database-access-time
and space-requirement, (i) while, in the case of
G = [O07,N;, RCwT method is inferior to MS
method in test-time.

4 Average Costs

Some simulation tests are conducted on randomly
generated r;. The parameters are that m = 2 ~
5,N(= N;) = 7 ~ 100, E/N(= E;/N;) = 1.0 ~
4.0, F = 20. These simulation tests shows that
G = O(logg y N™) in the case of E/N >= 1.5.
Tab.3 shows the costs when the above G is sub-
stituted into the G of Tab.1. It is also estimated
in test-time in Tab.2 that (the number of execu-
tions of termination test F x log, £) = G.

database-access-time

m? x loggy N x E

test-time

m? x (loggy N)* x N™

space-requirement

m? x loggy N x N

Tab.3. Estimates of average costs of RCwT
method

MS method H: average, O: estimate

2] /
PR - °-j—/-*.’>"':a---/--a"°-——'°—"°
g 100 o
E + . °o o 0 00— 0
s \
o 4
10 4 RCWT method @: average, O: estimate
: | | ' | : 4‘.0
. 2.0 3.0 .
10 EN
(a) database-access-time
T
E KS method
5 10° |
e
Iy
S|
é ./.-%‘—‘\‘—\-o*.u\'o —
10 4 RCwT method
1 t t t t + —
1.0 2.0 3.0 4.0
E/N
(b) space-requirement
107 1 o
\\\\\ O e ao—"°
g /_-;;;—“Z:Qo ----- 2 ----- o
R = o St
§ -c”’" . \ /
method RCAT method
10° {
i m=4
10 1 N (=N =Nz=Na=Ns)=10
1 ' * t t : —
1.0 2.0 3.0 4.0
EN
(c) test-time

Fig. 3. Average costs on randomly generated r;

We also demonstrate the simulation results of
average costs of RCwT method and MS method

Reverse Counting Method for Linear Recursive Query with Many Cyclic Extensional Predicates 177

in Fig.3, where m = 4, N = 10 and F' = 20. The
results of RCwT methods in Fig.3 are close to the
estimation of Tab.3. The results of MS method
in Fig.3 are also close to the worst case formulas
in Tab.2.

These indicate (i))RCwT method is superior to
MS method by orders of magnitude in the average
costs of space-requirement and database-access-
time, (i))RCwT method is in the same order as
MS method in the average cost of test-timie.

5 Conclusion

We have considered to answer a linear recur-
sive datalog program with many cyclic exten-
sional predicates r;. We have presented a method
that is a modification of the reverse counting
method, and have evaluated the performance in
three costs: space-requirement, database-access-
time and test-time. This reverse counting method
with termination test is inferior to the magic set
method in the worst case bound of test-time;
however, in the average space-requirement and
database-access-time on randomly generated 7y,
this method is superior to the magic set method
by orders of magnitude. The other costs of these
two methods are almost the same.

To apply our method to real applications, it is

desired to improve further the computational cost
of test-time.

References

(1] A. Marchetti-Spaccamela and D. Sacca,
“Worst-case Complexity Analysis of Methods for
Logic Query Implementation,” Proc, 6th ACM
SIGACT-SIGMOD-SIGART Symp. on PODS,
1987, pp.294-301.

[2] C. Beeri, ”On the Power of Magic,” 6th ACM
SIGACT-SIGMOD-SIGART Symp. on PODS,
1987, pp.269-283.

[3] D. Sacca and C. Zaniolo, ”On the Implemen-
tation of a Simple Class of Logic Queries for
Databases,” Proc. 5th ACM SIGACT-SIGMOD
Symp. on PODS, 1986, pp.16-23.

[4] D. Sacca and C. Zaniolo, "Magic Counting
Methods,” Proc. ACM SIGMOD Intern. Conf.
on Management of Data, 1987, pp.49-59.

[5] F. Bancilhon and R. Ramakrishnan, ”An Am-
ateur’s Introduction to Recursive Query Process-
ing Strategies,” Proc. ACM SIGMOD Intern.
Conf. on Management of Data, 1986, pp.16-52.
(6] F. Bancilhon, D. Maier, Y. Sagiv and J. Ull-
man, "Magic Sets and Other Strange Ways to
Implement Logic Programs,” Proc. 5th ACM
SIGACT-SIGMOD Symp. on PODS, 1986, pp.1-
15.

(E FL3#E3H208)

