Bulletin of Aichi Institute of Technology
Vol.26 Part B March 1991

69

Logarithmic Number Systems for Picture Generation

HEERBME Y 27 4

& % H B 4 K

Tomio KUROKAWA+ and Takanari MIZUKOSHI++

EMERXR+

7K Bk R+ +

Abstract Logarithmic arithmetic (LA) is a very fast computational method for real numbers. And
its precision is better than a floating point arithmetic of equivalent word length and range. This
paper shows a method to use LA in computer graphics——-picture generation of almost any kind.
Various experiments are done———from curve drawing to 3D image generation. The results are all

excellent for quality and speed.

1. Introduction

LA is a third type of arithmetic which uses a
number system called logarithmic number system
(LNS). Its fast addition/subtraction method was
first introduced by Kingsbury et al.®) In LNS, a
number is expressed by a binary sequence®@:

sdydd_ L1, 1)

where s, d;, and l}. are 0 or I; s and d, are the sign
of the number and the exponent, respectively; the
d-part and /-part combined represents the expo—
nent of the number; the base is assumed to be a
constant a (greater than 1); [.] is the assumed
binary point of the exponent. Then, the sequence
(1) indicates the number,

+ ad—pan.l—pan . (2)

Due to the number expression form, many compu-
tations become simple. Let a* and a¥ be two
numbers expressed as in the form of (2). In LA,
multiplication/division, square/square root, addi-

a* *a¥ =a™; a*/a¥ =a*". 3)
(@) = a%; (@2 = 2?2, @)
If a% = a* + @Y = a*(1 + a¥™¥),

then z=x +log (1 +a'™), (x>y). 5)
Ifaz=a*-a’,

then z=x +log (1 - a'™), (x>y). ©6)

As shown in (3), LA multiplication/division is
equivalent to fixed point number addition/subtrac—
tion; square/square root, as (4) shows, becomes
equivalent to shift operation. If log (1+a¥™™) is
pre—computed as a look-up table with the table
address y-x, then z can be obtained quickly as (5)
shows. Subtraction can be done in a similar
fashion with log,(1-a’7*), the additional lookup
table.

2. Method of Fixed Point Number Computation
in LNS
LNSis very effective if it is used as in Fig. 1.

tion and subtraction can be done as indicated by Fixed Log. LA Exp. Fixed

the expressions (3), (4), (5) and (6), respectively.

+ Department of Industrial Engineering, Aichi
Institute of Technology (Toyota-shi)
++ Oki Technosystems Laboratory (Nagoya—shi)

number table

—{lookup|__| pro- lookup | point

cessor table number

Fig.1 Method of fixed point number computation using LA.

70

It is for fixed point number computations. This
method is very simple but effective. In computing
fixed point numbers, the numbers are first con-
verted to logarithmic numbers (LN); then compu~—
tations are done in LNS; and whenever necessary,
the results are converted back to fixed point
numbers. Those conversions of integer to LNS
and vice versa can be done by look-up tables
(LUT). Accordingly the processing should be
very quick.

Digital pictures are usually defined as a two
variable function f(x,y), where f is the pixel inten-
sity and x and y are coordinate addresses. In
many cases, all of f, x, and y are fixed point
numbers (usually integers). Then f(x,y) can be
generated using the above method. For curve
drawing, the dot generation can be done by
computing y=g(x) or x=h(y), where g and h are
curve functions.

3. Experiments

Using the above method, some experiments
were done to evaluate the quality and the speed of
curve drawing, geometrical picture transformation,
ray tracing, and fractal image generation. The
comparisons were done on a personal computer
between two kinds of computer programs: one is
the pure software which employs LNS, the other is
the software which uses a floating point hardware
chip (FP). The specific conditions are as follows:

1) Used computer: a personal computer, PC-
98XL with 80286:8Mz CPU.

2) LNS program: 16 bit LNS implemented by C
language. There are two type of program-
ming. One is called "procedure call" (subrou-
tine call); the other is "non—procedure call".
In "procedure call” programming, arithmetic
functions of addition/subtraction, multiplica—
tion/division and square/square root are real—
ized in procedures. The computations are
done by calling them. This programming is
used for polynomial curve, geometrical trans—
formation, fractal image and ray tracing.
"Non procedure call" is a programming in
which LNS arithmetics are realized without

Tomio KUROKAWA and Takanari MIZUKOSHI

using procedures. This programming is used
for circle and ellipse drawing by LNS.

3) FP program: 80287,10Mz (PC-98XL-03)
processor used in C program, 32 or 64 bit
word FP is used.

Curve drawing: Figure 2 shows the circles drawn

by the method. They are obtained by computing
the following with each integer of x:

y=VR?-x2 @)

Figure 3 is the circles by FP. There are no differ-
ence for a look. An ellipse can be generated by
computing

y = (b/a)Va? - x2. ®)

N

Fig.2 Circles generated by LNS (16 bit: a=2, m=4, n=10).
R =20, 40, 60, ..., 180.

©

Fig.3 Circles generated by FP (64 bit). R = 20, 40,
60, ...,180.

Logarithmic Number System for Picture Generation 71

Figure 4 shows the ellipses drawn by the method.
And Fig.5 is the curve of the polynomial:

y=x° +2x* - 7x3 - 8x2 + 12x, and
py = p(((((1.0t + 2.0)t - 7.0)t — 8.0)t + 12.0)t +0.0),
©)

where x and y are scaled by 50 and 10, respective—
ly, that is, p=10, t = /50 = x, and s is integers.
The scaling is to draw the curve of Fig.5 and to
avoid the overflow within the number system.
The computation order is by (9). Gaps are interpo—
lated by straight lines if they occur. The specific
LNS used is of a=2, n=4 and m=10, which is of 16
bit word, for all the three kinds of curves. The
experimental speed comparisons between LNS
and FP are shown on Table 1. Note that the circle

Fig.4 Ellipses generated by LNS (16 bit: a=2, m=4, n=10).
b =150; a = 30, 60, 90, ..., 240.

\J

Fig.5 Polynomial curve by LNS (16 bit: a=2, m=4, n=10).
y=x"+2x* - 7° - 8x% + 12x.

and ellipse drawing (non-procedure call) by LNS
is drastically faster than FP method. The circle is
mostly by integer computations and by 64 bit FP
square oot procedure (a vendor's library); the
ellipse and polynomial are by 64 bit FP hardware.
The object program sizes of circle drawing
are 104 bytes for LNS and 74 bytes for FP, both
very small.
Geometrical transformation of pictures: Bi-
level picture (size 100 x 100) of an alphabet "K" is
used for the affine transformation with scaling of
6x6 and rotation of 30° (see Fig.6 and 7). Three

K !

Pl
A\ Ay

Fig.6 Affine transformation of a bi-level picture using LNS
(16 bit: a=2, m=5, n=9).

Fig.7 Affine transformation of a bi-level picture using FP
(32 bit).

*Note: Upper left (original); Upper right(cubic convolution);

Lower left (bi-linear); Lower right (nearest neighbor) for

Fig.6 and 7 also for 8 (on next page).

72 Tomio KUROKAWA and Takanari MIZUKOSHI

Table 1 Experimental speed comparison between LNS and
FP for curve drawing. Data is in seconds per one
dot generation. LNS circle and ellipse are by "non-

procedure call" and LNS polynomial is by "proce

dure call".

LNS FP
circle 112x107° 1.45x107*
ellipse 1.27x10° 1.85x107*

polynomial 5.31x10™ 5.47x107*

Fig.8 Non-linear transformation of a gray level picture
using LNS (16 bit: a=2, m=5, n=9).

Table 2 Experimental speed comparison between LNS and
FP (hardware, 32 bits) for geometrical transforma
tion of pictures. A picture of size 100x100 is
mapped to a picture 100x100. LNS is by "procedure

call".
Affine Trans. Non-linear
LNS FP LNS FP
Nearest neighbor 2 3 3 5
Bi-linear 6 7 7 9
Cubic conv. 35 35 36 38

interpolation methods, "nearest neighbor," "bi-
linear," and "cubic convolution" are tried for LNS
and FP. The resulting pictures by LA and by FP
look alike with no particular difference. The
second geometrical transformation is non-
linear®. A gray level picture (a child head, size
100x100) is used for the mapping:

x, = a,x,(14b,Vx > +y ?),
Yo = ay,(1+b,Vx 2 +y 2. (10)

Constants of a, = a, =0.5and b, = b, = 0.02 are
used. The results are shown in Fig.8. Table 2
shows the speed comparison between LNS and FP
(hardware, 32 bits) for the above two kinds of

mapping.

Fractal image and 3D computer graphics:
Further experiments are done for picture genera—
tions of fractals and ray tracing. Figure 9 is a
fractal image and Fig.10 is a ray tracing picture,
both made by the method (LNS of a=2, m=5 n=9).
Figure 11 is generated by FP (hardware, 32 bits)
method, which is presumably the same picture as
Fig.10. There are not big differences between the
two. All the three pictures were originally with
colors. As for the speed comparison, LNS
(Fig.10) took 5 minutes and 44 seconds and FP
method (Fig.11) took 5 minutes and 56 seconds,
both excluding the display time. Although the
programming with LNS is with "procedure call",
which are time consuming at run time, it is as fast
as the FP method. The speed of the fractal image
generation with "procedure call” is equivalent to
that of FP also.

Lookup table size: The size of lookup table is
2m++2 entries for LA addition and subtraction
combined with no reduction. This size could be
reduced to 1/4 or more very easily®. For the
conversion, the size of LUT (from LNS to integer)
is 2™m1 with no reduction. This can be reduced,
too, depending on the output range. LUT (from
integer to LNS) should be small; 1000 entries
could be enough for most cases.

Logarithmic Number System for Picture Generation 73

TFig.9 Fractal image by LNS (16 bit: a=2,m=5,n=9).

Fig.10 Ray tracing by LNS (16 bit: a=2,m=5,n=9).

Fig.11 Ray tracing by FP (32 bit).

Speed of single computations and the polyno-
mial: The speed comparison of individual compu-
tations between LNS procedures (library) and FP
(32 and 64 bits) computatijons is shown in Table 3.
LNS software is faster than FP hardware in divi-
sion, square, and square root. For the addition and
the subtraction, the order is reversed. The FP
software is much slower. Note that the square root
of 32 bit FP hardware is slower than that of 64 bit
FP hardware.

The above results (16 bit LNS and 64 bit FP)
roughly agree with the data (polynomial case) of
Table 1. According to the results of Table 3 and
(9): five additions, six multiplications and one
division, however, 64 bit FP hardware polynomi-
al, which should take about 4.9x10™* seconds for a
dot without the overhead such as the loop, should
be slightly faster than that of 16 bit LNS, which
should take about 5.3x107* seconds. It differs a
little from the results of Table 1. It is probably
due to the fact that the actual LNS software is so
implemented as to be capable of handling zeros,
and the addition of zero is faster; it takes only
1.7x107° seconds instead of 5.6x107°. The addi-
tion of zero exists in (9). The polynomial with 32
bit FP (hardware), which should take 4.1x107*
seconds for a dot, should be somewhat faster than
LNS software.

5. Error Size on Circle Drawing

Since the word size to represent a number is
limited, the conversion or computation error
cannot be avoided. LNS is no exception. LNS (n
bit fraction) and FPn (FP with n bit fraction) are
compared in error size for circle drawing. Lety,
and y, be the computational result (just before
final conversion to integers) of (7), for LNS and
FPn respectively. And let y be the true result
(computed by 64 bit FP). Then the errors ¢, for
LNS and e, for FPn are expressed by

EENTY, EFYY- (11)

With above errors, the error to signal ratios

74 Tomio KUROKAWA and Takanari MIZUKOSHI

V 2e¥ Yy?*, and

are computed for both of LNS and FPn for the
octant of R=180. The results are shown on
column A and B of Table 4. The error to signal
ratios of FPn are about two times larger than
those of LNS. LNS is defined by a=2, m=4 and
n=10 to 15; and FPn is defined by a=2 m=4 n=10
to 15 with m+n+2 bit (same as LNS) floating point
number system as

V Se Ty (12

fxa

Table 3 Speed comparison for single computations between

LNS and FP. Time unit is in seconds.

16 bit 32 bit FP 64 bit FP FP soft

INS (80287) (80287) 32 bit
atb 56x107° 3.3x10”° 3.8x10° 1.8x107*
a-b 58x107° 3.3x10”° 3.8x10° 2.0x107*
a*h 3.5x107° 3.4x107° 4.2x10° 1.9x107°
ab 35x107° 4.4x10”° 4.9x10™* 2.2x107*
1.7x107° 3.3x107° 3.8x10™° 1.9x107™*
Ja 1.4x107° 1.7x10™* 1.2x107* 9.6x107*

[

Table 4 Error size comparison for circle drawing. LNS and
FPn used are of a=2, m=4 n=10 to 15. The radius of
the circle is 180.
A is the error to signal ratio for LNS;
B is that for FPn;
C is the number of disagreement from the true point

for LNS;

D is that for FPn.

n A B C D
10 1.97x10° 3.95x10° 5 23
11 9.01x10° 1.89x10° 5 11
12 4.83x10° 9.80x10° 1 8
13 2.34x10° 5.086x10° 1 1
14 1.15x10° 2.75x10° 0 1
15 554x107 1.22x10° 0 1

where f (n+1 bits) and e (m+1 bits) both in
2'complement form for negative numbers and f
normalized; all computations are by rounding in
stead of truncation. The columns C (LNS) and D
(FPn) show the disagreement counts from the true
point computed by 64 bit FP, out of 180/vZ points.
This also shows that LNS is more accurate.
Similar results were obtained for other radius R.
Those results are not really surprising. Because
the error range of the individual relative error
(conversion, subtraction, square or square root) for
LNS is about 2.89 times smaller than the corre—
sponding error of FPn with equivalent word length
and dynamic range®. That is, if the individual
relative error distributions are uniform for both
number systems, the relative error variances of
LNS are 8.35 times smaller. In addition, LNS has
no error in square (multiplication and division
also) and LNS error in square root is very small.
That can be more than setting off the conversion
eTIor.

6. Comments at Conclusion

In computer graphics or image data process—
ing, the most data to be processed are originally
fixed point numbers or may be integers. They are
discrete coordinate addresses or integers of 0 to
255. Thus the proposed method is very effective
in very wide area of computer graphics——-image
generation of almost any kind. The picture quality
and the processing speed are surprisingly excel-
lent. As for the experimental speed, LNS with
"procedure call" (overhead of stack, call and
return operations is expected large) is equivalent
with that of hardware co-processor; and with
"non-procedure call" it is drastically faster in a
popular personal computer environment.

This paper puts the emphasis on the over all
effectiveness of LNS in picture generation. And it
seems very effective. There are, however, some
problems left for future study. One of them is the
relation between picture quality and the size of
required memory. The word length of LNS used
in the eXperiments is 16 bits. It is known that the
longer the word, the more accurate the computa-
tions become, thus the better picture quality is

Logarithmic Number System for Picture Generation 75

obtained. But the word length of LNS cannot be
extended unlimited because the required memory
size (look-up tables) is generally doubled with
each one bit extension. Experimental accuracy
comparison is made between LNS and FP for
circle drawing. The result is that LNS is more
accurate for equivalent word length and range.

Further study is desired to investigate how
much memory is required for what kind of picture
quality.

References

(1) N. G. Kingsbury and P. J. W. Rayner:
"Digital Filtering Using Logarithmic Arith—
metic," Electron. Lett., 7, 2, pp.56-58
(1971).

(2) T. Kurokawa, J. A. Payne and S. C. Lee:
"Error Analysis of Recursive Digital Filters
Implemented with Logarithmic Number
Systems," IEEE Trans. on ASSP, ASSP-28,
pp.706-715 (1980).

(3) M. Shiono: "Generation of Various Hand-
written Style Character Patterns Using
Nonlinear Distortion," (in Japanese), IPSJ
SIG Reports, 89-CG-41-8 (1989).

(4) A.D.Edgarand S. C. Lee: "Focus Micro-
computer Number System, Comm. ACM,
vol.22, pp.166-177 (1979).

(Received March 20, 1991)

