構造部材の塑性ヒンジ機構を考慮した 構造物の応答解析(その2)

小 高 昭 夫

Non-Linear Response Analysis of Frames in Consideration of Plastic Hinged Mechanism Subjected to Earthquake Ground Motions. Part 2.

Teruo ODAKA

In this paper, the analytical method is developed to investigate the behaviors on non-linear response of framed structures subjected to earthquake ground motions under the occurrence of plastic hinges in structural members of which framed structures is formed.

And the results of numerical analysis in the two cases of frame structural models is presented.

The first case of model is in case of which changed the design in structural members on former model of the R. P. C. structure.

The second model is the structural model with shear wall, and is also considered the swaying and rocking vibration in the foundation.

It is evident that the energy absorption owing to hysteresis loop of plastic hinged mechanism, and the behavior of structural models for the rocking and swaying vibration etc...

1. 序

本論文は前に発表された研究の続編で、解析例として 2 例が示され考察される。解析例(1)として、前論文 $^{(1),(2)}$ に示された R.P.C. (鉄筋コンクリート・ブレキャスト構造) 11層の建物において、設計用ベースシャー係数の値を大きくして設計変更した場合に対して、前論文と比較、検討される。解析(2)として地盤の影響および、壁体のせん 断降伏を考慮した場合について、H.P.C. (鉄骨(H型鋼)・プレキャスト構造) 9 層の建物が示される。

2. 解析例(1)(R.P.C. 11層建物):

- 2.1 設計変更の概要:前論文に示された解析例において、設計変更された内容は次のようである。
 - (1) 設計用ベースシャー係数を C_{BU} =0.35 (前論文では C_{BU} =0.25) とされる。
 - (2) 柱・梁の断面の大きさ、スパンおよび階高は変更されないが、ベースシャー係数を C_{BU} =0.35とすることにより、断面の鉄筋量が多くなる。
 - (3) 建物重量が僅かながら軽量化され、とくに屋上の重量がかなり軽減される。
 - (2) 2層の柱脚より下層の軀体コンクリート強度が

FC=400kg/cm²とされた。

- (5) 降伏モーメントの算定式が変更された。 解析に供した架構の概要と解析モデルは図1に示される。
- 2.2 解析における諸量:コンクリートの強度およびヤング係数,鉄筋の強度およびヤング係数等は表1に示される。また建物の重量,断面性能および断面リスト等は表2に示される。
- 2.3 部材のひび割れモーメントおよび降伏モーメント:柱・梁のひび割れモーメントおよび降伏モーメント My を求めた結果は表 2 に示される。なおひび割れモーメント Mc および降伏モーメント My は次式によって計算される。

$$Mc=1.8\sqrt{Fc}\cdot Ze + \frac{ND}{6}$$
 (柱)

$$Mc=1.8\sqrt{Fc}$$
•Ze (梁)

$$My = 0.8a_t \sigma_y D + \frac{ND}{2} (1 - \eta_0)$$
 (柱)

$$My = 0.9a_t\sigma_y d$$
 (梁)

$$z z_c z_c , \ Ze = Z_c + {}_c Z_s = rac{b D^2}{6} + rac{(n-1) A_s j^{12}}{D}$$

$$n = \frac{E_s}{E_c} = 7.56$$
(2層柱頭より上層)

表1. 材料の性質

	コンク	鉄	筋	
使 用 場 所	2層柱頭より上層	2層柱脚より下層	全	層
強 度 (kg/cm²)	350	2,778 ×10 ⁵	S D:	
ヤング 係数 E (kg/cm³)	400	2,970 ×10 ⁵	2 ×:	. 1 10 ⁶
せん断弾 性係数G (kg/cm²)	1,191 ×10 ⁵	1.273 ×10 ⁵		

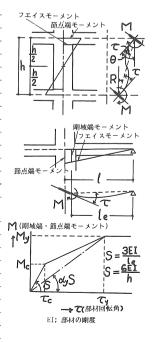

コンクリートのポアソン比 ν=1/6

表 2. 柱・梁の断面および断面性能

								Ħ.				
	J	M	断面寸法 (cm×cm)	†i: ∳h W	<i>J</i>) (+	_	A (cm²)	I (cm ⁴)	施 Mc (t·m)	My (t•m)	断面リスト (片 側)	備考
	1	.1	55×90	18.7	18.	7	5080.26	3.678.936	30.34	58.37	2 - D32 2 - D16	1段配筋
	1	.0	"	21.3	40.	0	"	"	33.53	67.63	2 - D16	"
		9	" .	"	61.	3	5093.28	3,712,787	36.98	81.67	2 - D32 3 - D16	"
		8	"	"	82.	6	"	"	40.17	90.46	3 D10	"
		7	"	"	103.	9	5080.26	3,678,936	43.12	94.00	2 - D32 2 - D16	"
		6	"	21.3	125.	2	"	"	46.31	102.32	"	"
		5	"	21.5	146.	7	" "	" , ,	49.54	110.47	" :	"
		4	"	21.8	168.	5	"	"	52.81	118.50	"	"
		3	"	"	190.	3	"	. "	56.08	126.28	2 - D32 2 - D16	1段配筋
	2	頭	55×90	21.8	212.	,	"	,,	59.35	133.81	2 - D32 2 - D16	1 断配筋
		脚	35 × 30	21.0	212.	_			62.10	175.29	4 - D32	2段配筋
	1	頭 55×90 23.1 235.2		,	5184.45	3,785,543	65,56	183.33	2 - D32 2 - D16	1段 "		
		脚	0000	50.1	2001		0101110	011001010	65.74	187.77	4 - D32 2 - D19	2段 //
						梁						
	J.	8	断面寸法	断	面	性	能	剛域長比	Mc	My	断面リスト	備考
		-	(cm×cm)	Α (cm²)		I (cm ⁴)	λ	(t·m)	(t•m)	DIM 7 A I	уні
_	I	?	40×55	2304	. 17		629,794	0.112	7.71	23.26	2 - D32	1段配筋
	1	1	"	2356	. 26		667,403	"	8.17	34.89	3 - D32	"
_	1	0	"	2388	. 34		690,565	"	8.46	42.05	3 - D35	"
_)	"	2424	. 34	L	716,564		8.77	50.09	3 - D38	"
		3	"	2463	.71		744,982	"	9.12	58.88	3 - D41	1段配筋
	- 7	7	"	2530.	. 23		753,397	"	9.23	71.04	3 - D41 2 - D25	2 段配筋
	(; 	"	"			"	"	"	"	"	"
_		5	"				"	"	"	"	"	"
_	4		"	"		_	"	"	"	"	"	"
_	- 3		40×55	2530.	. 23		753,397	0.112	9.23	71.04	3 - D41 2 - D25	"
_	2	?	40×70	2105.	. 56	1	,520,714	0.099	15.64	94.83	3 - D41 2 - D25	2段配筋

表3. 柱・梁の復元力特性

		ひび割れ-	モーメント	降伏モ-	-メント	剛性低下率	初期剛性	ひび割れ回転角	降伏回軸角
	層	Mc(t.m) (フェイス)	Mc(t.m) (節点端)	My(t.m) (フェイス)	My(t.m) (節点端)	γу	S(t.m/rad)	Tc (md×10 ⁻³)	$(\text{rad} \times 10^{-3})$
	11	30.34	38.10	58.37	73.30	0.1196	227113.0	0.1677	2,698
	10	33.53	42.02	67.63	84.93	0.1229	"	0.1850	3,043
	9	36.98	46.44	81.67	102.56	0.1302		0.2026	3,436
	8	40.17	50.45	90.46	113.60	0.1335	"	0.2201	3,713
44.	7	43.12	54.14	94.00	118.04	0.1328		0.2384	3,915
柱	6	46.31	58.16	102.32	128.49	0.1361	"	0.2561	4,158
	5	49.54	62.21	110.47	138.73	0.1394	"	0.2739	4,383
	4	52.81	66.31	118.50	148.81	0.1427	"	0.2920	4,591
	3	56.08	70.42	126.28	158.58	0.1461	"	0.3101	4,780
	2	59.35	74.88	133.81	173.34	0.1495	220974.8	0.3389	5,249
	4	62.10	81.87	175.29	225.60	0.1247	227377.9	0.3601	7,954
	,	65.56	86.94	183.33	243.74	0.1276	247553.7	0.3512	7,719
	1	65.74	79.48	187.77	226.60	0.1306	248985.4	0.3192	6,970
		ひび割れっ	モーメント	降伏モ-	-メント	剛性低下率	初期剛性	ひび割れ回転角	降伏回転角
	層	Mc(t.m) (フェイス)	Mc(t.m) (剛域端)	My (t.m) (フェイス)	My(t.m) (剛域端)	門性以下学 アy	S(t.m/rad)	Tc (rad×10 ⁻³)	Ty (rad×10 ⁻³)
	R	7.71	8.16	23.26	24.63	0.2331	21185.5	0.3853	4,986
	11	8.17	8.65	34.89	36.94	0.2652	22450.6	"	6,206
	10	8.46	8.96	42.05	44.52	0.2849	23229.7	0.3856	6,705
am	9	8.77	9.29	50.09	53.03	0.3070	24104.3	0.3852	7,168
梁	8	9.12	9.66	58.88	62.34	0.3311	25060.3	0.3899	7,513
	7	9.23	9.772	71.04	75.21	0.3453	25343.3	0.3856	8,595
	6	"	//	"	"	"	//	"	"
	5	"	"	"	"	"	"	"	"
	4	"	"	"	"	"	"	"	"
	3	"	"	"	"	"	"	"	"
	2	15.64	16,81	94.83	101.92	0.2963	53875.0	0.3120	6,386

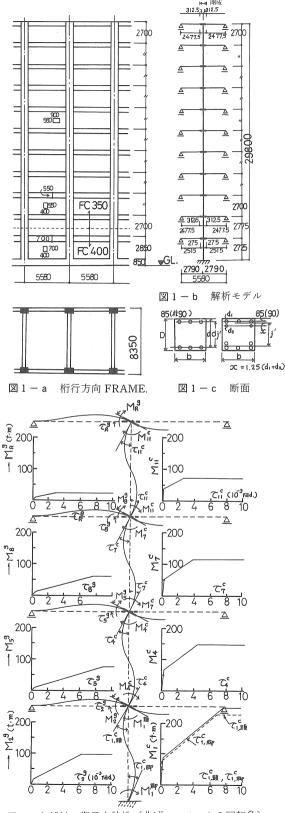


図2 各部材の復元力特性(曲げモーメントの回転角)

=7.07(2層柱脚より下層)

 $\eta_0 = \frac{N}{bDF_c}$

σy=3.5t/cm² (降伏点応力度)

N:柱の軸方向力,

b, D, j', As, at: 図1-C参照

2.4 部材の復元力特性:部材の復元力特性は、表 2 に示される柱・梁のひび割れモーメントおよび降伏モーメントが与えられ、部材の初期剛性および剛性低下率が決定されれば、ひび割れ時の回転角および降伏回転角が計算される。これらの値は表 3 に示される。なお表 3 に示される節点端モーメントは、フェイスモーメントより、柱においては反曲点が中央という仮定のもとに計算される。

表3より各部材の復元力特性(曲げモーメントと回転 角の関係)を描くことができる。図2は部材の復元力特 性の代表例が示される。

2.5 解析に用いた振動系および地震動:振動系は柱脚を固定とし、曲げ、せん断型の弾塑性振動系とする。減衰常数(h)は、1 次振動に対しては $_1h=0.02$ 、 $_2$ 次振動以上の高次振動に対しては、 $_nh=_1h\frac{n\omega}{_1\omega}$ $(n\geq 2$ 、 ω :固有円振動数)とする。

地震動は EL-CENTRO, 1940, 05, 18, N-S 成分, および HACHINOHE, 1968, 05, 16. E-W 成分とし、最大加速度はそれぞれの地震動に対して、 α_{max} =300gal.および α_{max} =450gal.とし、地震動の継続時間は Td=9.0 sec.とする。また解析における積分時間刻み間隔は $\Delta t=1/400$ sec.とする。

2.6 解析結果:固有値を Jacobi 法によって計算した結果,第 1 次固有周期は $_1$ T=0.7212sec.,第 2 次固有周期は $_2$ T=0.2351sec.,となり,各次の固有周期は設計変更前の固有周期よりも短かくなって,明かに,補強の効果が表れている。結果は図 3 に示される。

応答解析結果として、絶対変位、層間変位、層せん断力、層せん断力係数、質点力、柱・梁の部材回転角、部材回転角の降伏塑性率、節点の回転角、および層間部材角の最大値が表4に示される。また絶対変位、層間変位、層せん断力および層せん断力係数の最大値は図4に示される。さらに梁部材角の降伏塑性率および柱部材回転角の降伏塑性率(柱頭回転角の降伏塑性率と柱脚回転角の降伏塑性率の平均値)は図5に示される。

曲げせん断型の弾塑性応答においては、等価せん断型 の弾塑性応答の場合と異なり各層の層間変位に対する降 伏塑性率が一義的に与えられない。それゆえここでは次 のような便法による。

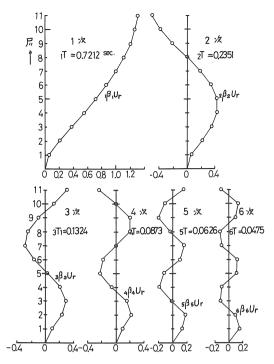


図3 各次の固有周期sTと刺激関数sβsUr

先ず表 4 に示される梁の部材回転角 τ_g と柱の層間部材角 R の応答値を τ_g \sim R 座標にプロットすれば図 6 のようになる。図 6 より明かなように τ_g \geq R は略一致する。応答値が大きくなると,建物の中間層においてややバラッキが大きくなるが,大局的には両者はよく近似している。このことは梁部材にひび割れが生じると,降伏時の回転角は近似的に柱の層間部材角に等しいことを意味する。ゆえに柱に降伏が生ぜず,梁が降伏するような場合には,梁のひび割れ発生時および梁の降伏時の層間変位は近似的に次式で与えられる。

$$\delta_c = R_c h = \tau_g$$
, ch
 $\delta_y = R_y h = \tau_g$, yh

ここに.

&:梁のひび割れ発生時における層間変位,

δy: 梁の降伏時における層間変位,

 R_c , R_y : 梁のひび割れ発生時および梁の降伏時に おける層間部材角,

 $au_{g,c}$, $au_{g,u}$: 梁のひび割れ発生時および梁の降伏時における層間部材角,

h: 階高.

一方梁のひび割れ時および梁の降伏時における柱の層せん断力は、便宜的に梁にひび割れや、降伏が生じる時に、柱に生じる曲げモーメントから求めることができるものとする(反曲点は柱の部材内に生ずるものと仮定す

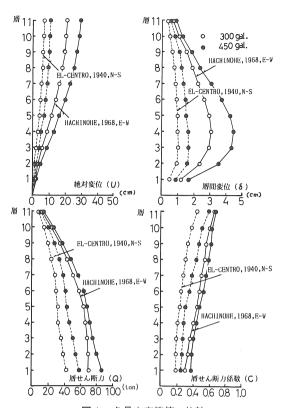


図4 各最大応答値の比較

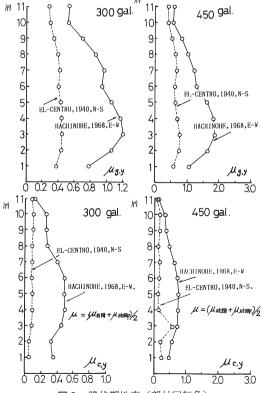


図 5 降伏塑性率(部材回転角)

 $(\alpha_{\text{max}} = 300 \text{ga} \ell, \text{ EL-CENTRO 1940 NS})$ 表4a.曲げせん断型応答解析結果

		,											
	層間部材角	R (×10 ³rad)	2.123	3.020	3.989	4.597	5.042	5.342	5.546	6.075	6.028	5.785	3.245
(S)	節点回転角	θ +×10 ⁻³ rad>	1.828	2.255	3.102	3.919	4.363	4.715	4.978	5.292	5.770	5.659	3.413
RO 1940 N	類	系 Hear 國域端	0.413	0.409	0.521	0.616	0.654	0.618	0.652	0.693	0.756	0.741	0.593
EL-CENTI	降伏	柱頭 柱脚 ^{Ac.s}	0.113	0.261	0.270	0.200	0.211	0.234	0.209	0.190	0.835	0.120	0.066
$(\alpha_{\text{max}} = 450 \text{ga}\ell, \text{ EL-CENTRO } 1940 \text{ NS})$	回転角	条 (×10 ³rad)	2.058	2.539	3.494	4.413	4.914	5.309	5.606	5.959	6.498	6.373	3.788
$(\alpha_{max} =$	指本	柱頭 左脚 ×10 3rad	0.306	0.795	0.927	0.744	0.826	0.975	0.917	0.872	3.992	0.432	0.513
f結果	絶対加速度	$(\mathcal{X}_o + ii)$ (cm/sec^2)	597.00	507.47	461.67	385.34	367.43	345.65	342.19	335.73	360.70	415.34	461.33
曲げせん断型応答解析結果	質点力課度	P(t) (k)	11.391	11.033	10.037	8.377	7.988	7.514	7.508	7.470	8.026	9.241	10.874
ん断型)	層せん断力	Q(t)	11.154	20.486	28.885	35.355	39.786	42.654	44.089	46.724	51.406	54.692	59.176
曲げず	層間変位	ô (cm)	0.573	0.815	1.077	1.241	1.361	1.442	1.498	1.640	1.628	1.605	0.884
表4b.	絶対変位	U (cm)	11.415	10.996	10.604	10.039	9.285	8.319	7.112	5.686	4.091	2.480	0.884
III/4	1	E1	=	10	6	∞	2	9	2	4	e2	6	-
	Æ	ŷ			~	∞				9	4	6	
	節点回転角 韓間部材角	R (×10 ³rad	1.470	1.961	2.472	2.888	3.223	3.470	3.601	3.646	3.704	3.379	1.997
NS)	節点问転	θ (×10 ³rad)	2.222	3.391	3,443	3.378	3.327	3.137	2.873	2.535	2.095	1.603	1.212
30 1940 1	類 佐 糸	系 Ac.x 阿城瑞	0.274	0.291	0.352	0.398	0.431	0.411	0.436	0.443	0.451	0.444	0.386
300gaℓ, EL-CENTRO 1940 NS)	降伏	柱頭 柱関	0.098	0.132	0.127	0.113	0.111	0.106	0.105	0.093	0.062	0.080	0.063
300ga l. E	回転角	梁 阿域端 ×10 ³rad	1.364	1.805	2.359	2.855	3.235	3.533	3.746	3.804	3.877	3.818	2.466
(\alpha_max = ;	部材作	柱頭 - Te - H Trad	0.265	0.401	0.436	0.420	0.436	0.440	0.460	0.428	0.295	0.421	0.485
結果	絶対加速度	$(f_o + ii)$ (cm/sec ²)	445.32	346.81	299.13	270.96	238.62	279.66	287.53	269.16	243.20	277.69	290.74
,答解析	質点力談及	P(t) (k)	8.500	7.540	6.503	5.891	5.188	6.080	6.308	5.989	5.411	6.179	6.853
曲げせん断型応答解析結果	層 セ ん断 力 層セん断力係数	Q(t)	8.355	15.053	20.329	24.834	28.564	31.075 6.080	32.603	33.324	36.697	39.392	42.503 6.853 (0.297)
曲がず、	層間変位	δ (cm)	0.397	0.530	0.667	0.780	0.870	0.937	0.972	0.984	1.000	0.938	0.544
4 a .	絶対変位	U (cm)	7.312	7.094	6.760	6.296	5.704	1.984	4.266	3.423	2.473	1.478	0.544
表			Ξ	10	6	20	·	9	ıcı	77	23	23	-

11.339

8.190

1.228

0.814

9.223

3.186

13,777

9.877

1.294

0.953

11.123

3.963

494.58

15.773

12.452

1.632

0.957

14.023

4.195

484.58

16.495

13.856

1.815

0.786

15.603

3.609

429.94

16,156

14.185

1.859

0.558

15,974

2.666

456.08

12.621

1.654

0.319

14.212

1.673

6.190

6.236

1.084

0.083

6.921

0.643

466.74

8.845

6.589

1.035

0.608

7.420

2.257

547.89

6.728

4.798

908.0

0.562

5.403

1.931

608.60

HACHINOHE 1968 EW)
$(\alpha_{\text{max}} = 300 \text{ga} \ell,$
曲げせん断型応答解析結果
表4 c.

344												
質点力	P(t) (k)	12.517	13.571	13.233	11.911	10.543	10.752	10.632	9.566	10.148	11.133	11.001
層せん断力 層せん断力係数	Q(t)	12.436	25.259	38.169	49.214	57.869	65.708	68.708	71.941	75.839	79.940	87.062
層間変位	δ (cm)	608.0	1.277	1.817	2.388	3.062	3.720	4.259	4.454	4.362	3.551	1.687
絶対変位	U (cm)	29.917	29.109	27.841	26.058	23.755	20.796	17.232	13.771	9.569	5.221	1.687
18	<u> </u>	=	2	6	oc .	·-	9	co.	4	en	~	-
便												
節点回転角 層間部材角	R (× 10 ³ rad	2.728	4.165	5.668	6.942	8.422	9.716	10.812	11.349	10.765	8.481	4.424
節点回転角	θ · × 10 ³rad›	2.381	2.890	4.230	5.530	6.493	7.253	8.197	9.042	9.281	8.212	4.548
整件举	条 ## 四域補	0.538	0.524	0.710	0.869	0.973	0.950	1.074	1.185	1.216	1.076	0.791
降伏	住頭 住間 Ac.s	0.131	0.422	0.423	0.386	0.494	0.595	0.599	0.520	0.363	0.168	0.082
転角	杂	2.681	3.254	4.763	6.227	7.311	8.168	9.231	10.182	10.452	9.248	5.048
五本	柱頭 tel	0.352	1.285	1.454	1.433	1.935	2.473	2.625	2.389	1.735	3.363	0.633
絶対加速度	(f, + ii) (cm/sec ²)	657.30	594.71	541.13	479.34	431.02	407.05	360.04	319.87	308.93	367.73	290.31
質点力製廠廠	P(t)	12.541	12.929	11.764	10.421	9.370	8.849	7.899	7.117	6.874	8,182	6.843
層せん断力 層せん断力係数	Q(t)	12.397	24.385	35.374	44.103	52.199	59.776	64.946	67.238	68.894	70.732	69.806
層間変位	δ (cm)	0.736	1.125	1.530	1.874	2.274	2.623	2.919	3.064	2.906	2.353	1.206
能対変位	U (cm)	21.833	21.147	20.109	18.683	16.923	14.784	12.257	9.412	6.411	3.549	1.206
		=	2	6.	×	-	9	ıs.	-7	20	.2	_

表4d. 曲げせん断型応答解析結果 (amax = 450gal HACHINOHE 1986 EW)

節点回転角 層間部材角

降伏塑件率

部材回転角

絶対加速度

R × 10 ³rad

 $\times 10^{-3} rad^{\circ}$

μκ.ν

条 華

 株式

 Pag語
 Pag語

 Pag語
 Pag語

> $(x_0 + it)$ (cm/sec^2)

4.730

3.170

0.575

0.516

3.570

1.570

624.22

2.997

0.594

0.136

0.368

656.04

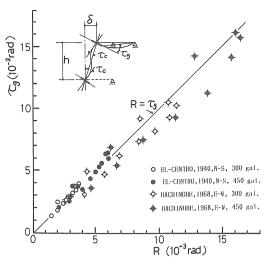


図 6 応答値における部材角 (R) と梁部材回転角 (Tg)の関係

この仮定にもとずき各層の復元力特性が作成できる。 この結果は表5および図7に示される。すなわち表5は 梁のひび割れ時、および降伏時における層せん断力と層 間変位で、図7は各層の復元力特性を示す。

梁降伏時の層間変位を用いて、層間変位による降伏塑性率を計算し、これらの値を表 6 に示す。ここで図 5 に示す梁の部材回転角より求めた降伏塑性率 μ_8 , ν_8 と層間変位より求めた降伏塑性率 μ_7 を比較すると図 8 に示すようになる。図 8 によれば両者は良い近似を示すが、建物の中間層においては、応答値が大きい場合に対しては層間変位による降伏塑性率 μ_8 , ν_8 の方が、梁の部材回転角による降伏塑性率 μ_8 , ν_8 の大きいことが明かである。

図 9 においては柱・梁部材の最大応力と各部材の塑性 化の状況が示される。

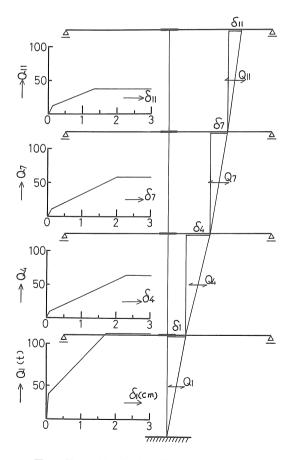


図7 梁ひび割れ時、梁降伏時の各層の復元力特性

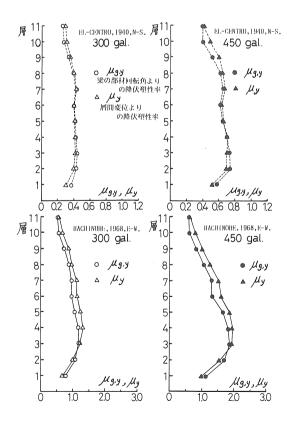


図8 梁部材回転角,降伏塑性率と層間変位の降伏塑性 率の比較

表 6. 梁降伏時層間変位の降伏塑性率

表5. 梁ひび割れ時梁降伏時における層せん断力と層間変位

	= 450ga l	μу	09.0	0.76	1.01	1.23	1.51	1.60	1.84	1,92	1.88	1.53	0.98
E 1968 EW	αmax = 4	ð(cm)	0.81	1.28	1.82	2.39	3.06	3.72	4.26	4.45	4.36	3.55	1.69
HACHINOHE 1968 EW	=300ga/	μy	0.55	0.67	0.85	96.0	1.12	1.13	1.26	1.32	1.25	1.01	0.70
H	amax = 3	δ(cm)	0.74	1.13	1.53	1.87	2.27	2.62	2.92	3.06	2.91	2.35	1.21
	50gaℓ	μу	0.42	0.49	09.0	0.64	0.67	0.62	0.65	0.71	0.70	69.0	0.51
O 1940 NS	α _{max} =450gaℓ	δ(cm)	0.57	0.82	1.08	1.24	1.36	1.44	1.50	1.64	1.63	1.61	0.88
EL-CENTRO 1940 NS	300gaℓ	μу	0.30	0.32	0.37	0.40	0.43	0.41	0.42	0.42	0.43	0.41	0.31
щ	amax ≡	δ(cm).	0.40	0.53	0.67	0.78	0.87	0:94	0.97	96.0	1.00	0.94	0.54
梁降伏時	層間変位	$\delta_{\rm y}({ m cm})$	1.35	1.68	1.81	1.94	2.03	2.32	2.32	2.32	2.32	2.32	1.72
			11	10	6	∞	7	9	2	4	es	2	-
					:								

cm 1.346 1.676 1.810 1.935 2.029 2.321 2.321 2.321 2.321 2.321 1.724 佚 畴 (※) 厳密には、架構解析等による、初期剛性を求め、これとひび割れ時の層間変位から柱のせん断力を得る。 迣 部村田転角 4.986 6.206 6.705 7.513 8.595 8.595 8.395 8.595 6.386 × 10 - 3 胀 0.104 cm 0.104 0.104 0.104 0.1040.1040.104 0.104 0.104 0.084 0.3850.385 0.386 0.3850.386 0.386 0.386 0.3860.386 0.386 0.312 × 10 3 62.73 柱せん断力 35.94 125.80 33.97 40.68 48.11 62.73 62.73 62.73 57.36 73.24 盘 # 少 性 化 柱頭·柱関 t•m 55.46 50.13 59.71 70.19 70.19 113.06 41.59 50.13 59.71 84.68 84.68 84.68 84.68 84.68 84.68 84.68 84.68 84.68 84.68 113.06 (※) 住せん断力 10.41 7.34 7.61 7.90 8.10 8.15 8.15 8.15 8.15 10.98 36.34 梁ひび割れ時 柱頭·柱脚 10.46 キーイント t•m 18.38 10.09 11.00 11.00 11.00 11.00 11.00 79.48 9.74 10.09 10.46 10.88 10.88 11.00 11.00 11.00 11.00 11.00 18.65 27.73 t·m 50.13 41.59 59.71 70.19 84.68 84.68 84.68 84.68 84.68 113.06 Μ̈́ Mc 9.18t·m 9.74 10.09 10.46 10.88 11.00 11.00 2.700 2.700 2.775 2.725 Ξ 10 33 2 6 ∞ <u>~</u> 9 2 4 _

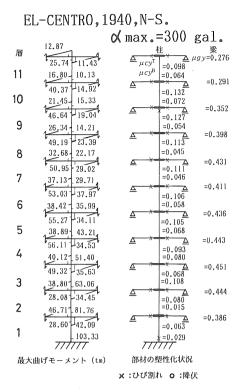


図9-a 最大曲げモーメントと各部材の塑性化状況

HACHTNOHF. 1968. E-W.

	HWOHTHOHE & T		
		d max.=300	gal.
層	17.59	柱	梁
11	35.18 15.62 23.89 14.05	$\Delta \mu c y^{T} = 0.131 = 0.068$	y=0.538
10	38.43 21.22 35.96 25.88	=0.422 =0.110	=0.524
9	61.79 31.93 48.30 35.56	△ × × △ =0.423 =0.123	=0.710
8	66.69 43.33	<u>△ × × △</u> =0.386	=0.869
7	63.77 53.75 75.61 56.63	△ × × △ △ =0.191 =0.494 =0.332	=0.973
6	75.04 66.00	=0.333 =0.595	=0.950
5	85.15 75.15 93.44 75.21	=0.394 =0.599 =0.424	=1.074
4	85.15 82.72 93.98 75.21 85.15 91.97	*	=1.185
3	80.32 75.21 85.15 143.98	*	=1.216
2	72.41 75.21 81.32 125.75		=1.076
1	63.43 73.27	<u> </u>	=0.791
	149.41	=0.633	
	最大曲げモーメント (tn) 部材の塑性化状況	

図9-c 最大曲げモーメントと各部材の塑性化状況

x:ひび割れ O:降伏

EL-CENTRO.1940.N-S. ox max = 450 gal. 層 15.19 $\mu c y^{T}$ =0.113 $\mu c y^{B}$ 0.073 $\mu c y^{B}$ 1 36.58 13.49 11 20.76 14.34 1 36.83 18.43 0.073 =0.261 =0.409 10 28.23 19.47 =0.110 54.03 25.06 =0.521 =0.270 9 36.52 26.73 =0.101 56.17 32.43 =0.616 =0.200 46.70 43.69 8 =0.086 =0.654 59.79 40.58 51.62 53.61 7 =0.101 =0.618 65,58 45.84 =0.234 53.79 58.36 =0.106 69.18 47.77 =0.652 =0.209 57.56 62.66 5 =0 107 =0.190 =0.111 =0.693 72.84 51.11 4 161.74 67.20 79.05 54.83 =0.756=0.084 =0.387 3 58.67 83.71 =0.74179.24 52.10 =0.120 =0.302 2 65.06 103.25 =0.593 =0.066 85,19 58,62 1 131.90 =0.466 7777777

図9-b 最大曲げモーメントと各部材の塑性化状況

部材塑性化状況 ×:ひび割れ o:降伏

最大曲げモーメント (Lm)

HACHTNOHE 1968 E-W

HAUHINUHE,	1900,E-W.	
	∝max.=450 ga	1.
層 18.47	柱	
36.94 16.40	$\Delta \chi \chi \chi \chi \chi = 0.59$ $\mu g y = 0.59$	34
75.68 17.78	$\mu cy^{B} = 0.071$ $\Delta \times \times \Delta = 0.57$	75
10 55.50 22.80	=0.516	
67.79 35.54	△ × × △ =0.80	6
9 60.62 43.36	=0.562 =0.163	
77.29 -53.83	<u>△</u> =0.608 =1.00	35
8 70.61 60.30	<u>→</u> =0.344 <u>→</u> <u>→</u> =1.23	28
88.72 62.34 84.79 72.04	$= \int_{=0.482}^{=0.814}$	
105.90 75.21	<u>△</u> =0.953 =1.29	94
6 84.70 81.42	=0.514	32
5 115.47 75.21 84.79 89.94	=0.957 =0.538	
111 20 75 21	△ → △ =1.8	15
84.79 106.14	=0.786 =0.708	
3 103.04 75.21	△ × △ =1.89	59
92.82 75.21	<u>≠</u> =0.873 <u>≠</u> =1.65	54
2 113.06 163.57	=0.319 =0.828	
1 67.90 101.92	<u>△</u> *	34
1 183.15	=0.888	
///// 最大曲げモーメント(tm)		
	x:ひび割れ o:降伏	

図9-d 最大曲げモーメントと各部材の塑性化状況

- 2.7 解析結果の考察:解析結果にもとづき,前論文において示された解析例(R.P.C.11層建物)と本論文の解析例(1), すなわち設計変更前と設計変更後の解析結果について, 両者を対比しつつ考察する。
- (1) 第 1 次固有周期 $_1$ T=0.7212sec.は、設計変更前の固有周期 $_1$ T=0.7703sec.の約94%で、第 2 次固有周期 $_2$ T=0.2351sec.は変更前の $_2$ T=0.2662sec.の約88%となり、ともに短くなっている。この理由は設計変更に伴い部材の剛性が増加したこと、および設計変更前は等価せん断型とし、変更後は曲げせん断型として固有周期を計算したためである。
- (2) 設計変更後の応答値は、一般に変更前の応答値よりも小さい。しかし詳しく検討すれば、地震動が EL-CENTRO の場合と HACHINOHE の場合とではかなりの相違がある。すなわち地震動が EL-CENTRO による設計変更後の応答値は変更前の応答値よりも若干小さくなっているものも多いが、逆に大きくなっているものもある。この例は $\alpha_{\max}=450$ gal.の場合における下層の絶対変位、層間変位およびベースシャー係数である。この理由は、EL-CENTRO の応答スペクトルにおいて、応答値が固有周期 T=0.72-0.77sec.近傍では T=0.7212sec.のほうが T=0.7703sec.(変更前)よりやや大きいことに起因していると思われる。

これに対して、地震動が HACHINOHE の場合におけ る設計変更後の応答値は、変更前の応答値よりも著しく 小さい。とくに $\alpha_{max} = 450$ gal.の場合は絶対変位,層間変 位および降伏塑性率が小さい。この理由は HACHI-NOHE の応答スペクトルにおける T=0.7703sec.に対 する応答値が T=0.7212sec.に対する応答値より大きい ことに原因があると考えられる。とくに $\alpha_{max} = 450$ gal.の 場合においては塑性化が進んでいるので、履歴減衰によ る影響が大きいためと考えられる。層せん断力係数は, αmax=450gal.の場合は、設計変更前よりも変更後のほう が大きい。この理由は変更後は柱・梁部材の耐力および 剛性が高められたためである。しかしながら α_{max} =300 gal.の場合は、設計変更前の応答値が変更後の応答値よ りも必ずしも大きいとはいえない。とくに1層を除く中 間層から下層における絶対変位や層間変更は変更後の応 答値のほうが大きい。これは曲げせん断型の弾塑性的な 取扱による微妙な影響によるものと考えられる。

(3) 設計変更後の応答値が変更前の応答値よりも概して小さいことから推定できるように、設計変更後における柱・梁の塑性化の進行が変更前に比してかなり抑えられている。そして柱部材の降伏は地震動が HACHI-NOHE で、 α_{max} =450gal.の場合においても生じていない。これは柱・梁の耐力が増加したためである。

(4) 各層の降伏塑性率とゆう捉え方をするために、梁の部材回転角と層間部材角とが近似的に一致する事実にもとずき、梁部材のひび割れ時や降伏時における層間変位を算出できるので、各層の降伏塑性率を導入する。この値は等価せん断型における層間降伏塑性率に対応する。この結果この層間降伏塑性率が梁部材降伏塑性率に安全側の誤差でよく近似していることが明かである。

3. 解析例(2): (H.P.C. 9層建物)

3.1 概要:地下 1 層,地上 9 層の H.P.C. 構造の建物における梁間架構について解析する。この建物は桁行方向の長さは77m で,5.5m 毎に梁間方向15ヶ所に耐震付ラーメンが設けられている。そして15ヶ所の耐震壁付きラーメンに等価置換して解析される。

柱・梁H型鋼を用い、ALC 板による耐火被覆とし、耐 震壁は図型式の平鋼板の筋違を挿入した PC 板を用い ている、床板は現場打ちコンクリートとし、外壁は PC 板

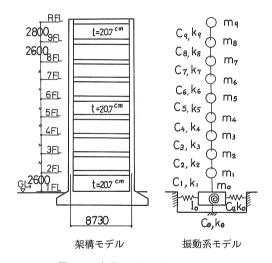


図-10 架構モデルと振動系モデル

によるカーテンウォールである。基礎は杭打ち基礎で、深礎基礎工法を用いている。杭長さは5.40m および7.60 m の2種類、杭径は1.20m のベノト杭とし、n値50以上の土丹層に支持されている。土質柱状図によれば表層は5 m-8 m の間にローム、シルトおよび細砂の各層がある。図10はこの建物の解析モデルを示す。

なお本建物は振動試験(3)が行われている。振動試験による固有周期等は表7に示される。

3.2 固有振動解析:図10に示される架構の剛性マトリックスはマトリックス法による骨組解析法(4)によって算定される。解析に必要な諸量は表8に示される。ま

方向	ラーメン 次 数	ス ラ ブ 次 数	偏心モーメント (kg.m)	共振振動数 f(1/sec)	共振周期 'T(sec)	減 衰 常 数 h	ロッキング率	スウェイ率
短		. 0	75.0	2.40	0.416	0.012	0.425	0.049
辺		0	8.0	2.47	0.405		-	
	1	1	75.0	2.64	0.379	0.015	0.480	0.055
梁		1	8.0	2.73	0.366			
間		2	20.0	5.08	0.197	0.012	0.248	0.039
	2	3	7.0	10.50	0.095	0.045	0.206	0.082
ė.	1	0	25.0	2.19	0.457	0.022	0.018	0.030
辺(1	0	8.0	2.30	0.435			-
良辺(桁行)	2	0	18.0	6.99	0.143	0.036	0.005	0.400
	3	0	7.0	11.30	0.089	0.052	0.041	0.095

表 7. 振動実験による固有固期一覧

表 8. 架構解析用(梁間方向)の諸元

	せん断断面積 Aı(cm²)	断面 2 次モーメント I1(cm ⁴)	形状係数	塑性係数 βι*	ヤング率 E(t/cm²)**	せん断剛性 G(t/cm²)
9	180711	0.148×10^{10}	1.50	1.50	2.1×10^{3}	59.00
8	"	0.148×10^{10}	//	"	"	"
7	"	0.148×10^{10}	//	"	//	"
6	"	0.169×10^{10}	//	"	//	"
5	"	0.169×10^{10}	//	"	//	"
4	"	0.175×10^{10}	//	//	//	"
3	"	0.175×10^{10}	//	//	//	"
2	//	0.183×10^{10}	//	//	//	"
1	180711	9.183×10^{10}	1.50	1.00	2.1×10^{3}	59.00

^{*} ひび割れ発生後は β =0.1となる

た固有値解析は基礎が固定の場合とロッキングおよびス ウェイングを伴う場合について行う。

解析に必要な諸量は表 9 に示される。なおロッキング およびスウェイングに対するばね常数は振動試験の結果 より算定した。固有値解析は Jacobi 法による。この結果 より基礎固定の場合とそうでない場合の違いが明かであ る。

3.3. 地震応答解析:地震応答解析で用いるロッキングおよびスウェイングを伴う場合における架構の弾性時の剛性マトリックスは"付録1"に示される。また質量,せん断剛性,せん断降状歪等の諸量は表9に示される。

解析における復元力特性は、壁柱のせん断歪に対して、 図11に示される BI-LINEAR 型とする。作用させる地震 動は EL-CENTRO, 1940, 05, 18, N-S 成分とし,最大加速度 α_{max} =500gal.,継続時間 Td=5.0sec.,計算時間 刻みは Δt =0.002sec. (ブリンターの打ち出しは0.01sec. 刻み) とされる。

減衰マトリック [C] はロッキングおよびスウェイングを伴う場合の架構の剛性マトリックスを [K] とすれば、次式で求まる。

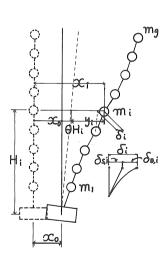
$$[C] = \frac{2_1 h}{\omega} [K]$$

ここに, 第1次減衰常数:₁h=0.02,

第1次固有円振動数: 1ω=15.43779 (1/sec.),

第1次固有周期:₁T=0.4070 (sec.)

応答解析結果は表10, および表11に示され, かつ図12, 図13, および図14に図示される。これらの図よりそれぞ


^{**} 柱が鉄骨構造の為

	階高	質 量	せん断剛性	せん断2次剛性	せん断降伏度位	せん断降伏歪	剛性	減衰常数
	H ₁ (m)	$m_1(t \cdot sec^2/cm)$	k _{sl} (t/cm)*	k's1(t/cm)**	$\delta_{s,l,y}(cm)$	$\gamma_{s,i,y}(rad)$	k _i (t/cm)	k(t.sec/cm)
9	2.80	0.601	0.7108×10 ⁷	0.7108×10 ⁶	0.056	0.20×10^{-3}	/	1
8	2.65	0.492	//	//	0.053	"		
7	"	0.487	//	"	"	"		
6	"	//	//	//	"	"		
5	"	//	//	"	"	"		
4	"	"	//	"	. //	"		
3	"	//	//	"	//	"		
2	"	"	"	"	"	"		
1	2.65	0.487	0.7108×10^{7}	0.7108×10^{6}	0.053	0.20×10^{-3}	/	
0		0.713				k0=	=0.119×10 ⁵	c _o =30.8728
θ		$I_{\theta} = 0.235 \times 10^{6}$ (t.sec.cm)				K_{θ} =	=0.691×10 ¹⁰	$C_{\theta} = 0.1793 \times 10^{8}$
*	$k_{s,l} = i$	$\frac{\beta GA_{l}}{\kappa_{l}}(t/cm)$	** $k_{,s,l} = \frac{k_{s,l}}{10} (t_{l})$	c/cm)		(t•cm/rad)	(t•sec•cm	n/rad)

表9. 動的解析用(梁間方向)の諸元

表10. 最大応答値

	絶対変位	基礎上り量	ロッキング量	実 変 位	層間変位	曲げ層間変位	せん断層間変位	せん断層間 変位塑性率
	x _i (cm)	x _o (cm)	θH _i (cm)	y _i (cm)	δ _I (cm)	δ _{8,i} (cm)	δ _{s,i} (cm)	$\mu_{\mathrm{s,i}}$
9	7.4132	0.300	1.7688	88 5.5550 0.4194 0.3845 0.0349		0.0349	0.6232	
8	6.7956	"	1.5624	5.1356	0.4132	0.3543	0.0589	1.1113
7	6.1957	"	1.3671	4.7225	0.5228	0.3284	0.1944	3.6679
6	5.5273	"	1.1718	4.2205	0.6345	0.3116	0.3229	6.0925
5	4.7582	"	0.9765	3.6155	0.7168	0.2860	0.4308	8.1283
4	3.9445	"	0.7812	2.9265	0.7649	0.2448	0.5201	9.8132
3	3.0998	"	0.5859	2.2554	0.7690	0.1880	0.5810	10.9623
2	2.1742	"	0.3906	1.5159	0.7637	0.1159	0.6478	12.2226
1	1.2252	"	0.1953	0.7528	0.7528 0.0418		0.7111	13.4172
0	0.3000	0.300		0.3000				
θ	0.737×10 ⁻³ rad							

れの応答値および応答の傾向, すなわちスウェイング振動, ロッキング振動, およびせん断, 曲げ振動等の割合が明かである。

なお、"付録(2)、(3)"において、各層におけるせん断力とせん断部材角の関係($Q_1-r_{i\cdot s}$)、および 1 層と 3 層におけるせん断歪速度とせん断歪の関係 $(r_{i\cdot s}-r_{i\cdot s})$ が示される。

4. 結

前論文においては、構造物における柱・梁部材に塑性 ヒンジが発生する状態を単純塑性解析理論にもとずき解 析し、この方法を地震応答解析法に適用する方法を提案 した。そしてこの解析法の妥当性を例題によって示し、 若干の考察を加えた。

	水平力	震 度	層せん断力	層せん断力係数	転倒モーメント	絶対加速度	絶 対 速 度	
	P _i (t)	Ki	$Q_{i}(t)$	gı	$M_{OVT}(\times 10^2 \text{t.m})$	$(\ddot{x}_{i} + \ddot{x}_{o})$ (cm/sec^{2})	x_1 (cm/sec)	
9	837.81	1.4225	837.81	1.4225	23.459	1394.03	90.63	
8	593.22	1.2303	1431.03	1.3360	61.381	1205.73	80.94	
7	496.10	1.0395	1910.01	1.2335	111.852	1018.69	76.23	
6	427.96	0.8967	2257.43	1.1144	171.056	878.76	74.19	
5	426.83	0.8943	2506.08	1.0013	235.152	876.45	69.08	
4	430.35	0.7017	2707.08	0.9084	301.601	883.67	59.79	
3	400.18	0.8385	2887.04	0.8350	367.734	822.73	47.72	
2	332.22	0.6961	3113.60	0.7913	435.631	682.19	33.15	
1	284.08	0.5952	3349.55	0.7592	505.397	583.32	18.12	
0	472.96	0.6769	3572.72	0.6791	505.397	663.33	44.82	
θ						$\ddot{\theta}$ =500.15 (rad/sec ²)	$\dot{\theta}$ =0.0126 (rad/sec)	

表11. 応答層せん断力, せん断力係数等

表12. 応答部材角

(単位:10⁻³rad.)

	全部材角	ロッキング	層間部材角	せん断部材角	曲げ部材角	せん断部材角 層 間 部 材 角	曲げ部材角層間部材角	
	R _i *	θ	$R_i - \theta^{**}$	γ ι	$R_i - \theta - \gamma_i$	$\gamma_{\rm i}/{ m R}_{ m i}$ $ heta$	$R_{i} - \theta - \gamma_{i}/R_{i} - \theta$	
9	2.2060	0.7370	1.4979	0.1245	1.3734	0.0831	0.9169	
8	2.2637	//	1.5592	0.2223	1.3369	0.1426	0.8574	
7	2.5222	11	1.9728	0.7336	1.2392	0.3719	0.6281	
6	2.9025	//	2.3743	1.2184	1.1759	0.5089	0.4911	
5	3.0703	//	2.7048	1.6258	1.0790	0.6011	0.3989	
4	3.1875	//	2.8863	1.9626	0.9237	0.6800	0.3200	
3	3.4931	11	2.9020	2.1926	0.7094	0.7555	0.2445	
2	3.5811	"	2.8819	2.4445	0.4374	0.8482	0.1518	
1	3.4911	0.7370	2.8408	2.6832	0.1576	0.9445	0.0555	

* $R_i = rac{x_i - x_{i-1}}{H_i - H_{i-1}}$ ** $(R_i - heta)$ の最大値で, R_i の最大値と heta の最大値の差とは稍異る。

本論文においては,更に2例について解析し,前論文において提案された解析法の妥当性について考察した。 その結果,

(1) 本解析法によれば、構造における各部材の塑性化の状況を考慮しながら、地震時に於ける構造物の挙動を厳密に把握できる。すなわち鉄筋コンクリート構造における、部材のヒビ割れ、降伏の状況、また鉄骨構造にお

ける降伏の状況, ならびに各種構造の時系列における応力や変形の状態を明白にすることができる。

- (2) 通常地震動による構造物の応答解析は構造物をせん断系に置換して解析する。厳密には曲げ・せん断系として解析すべきで、とくに剛性の評価に違いが生じ、地震応答に微妙な違いが生じる。
 - (3) 地盤の状況を考慮して、スウェイング、ロッキン

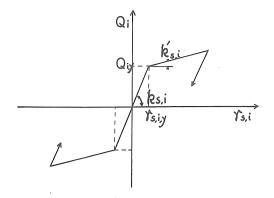


図-11 せん断力とせん断部材角の関係

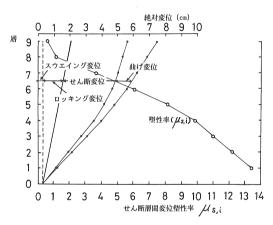


図-12 最大応答値

グ振動を伴う場合における地震応答解析も可能である。 そして地震時における構造物の振動性状を明確にすることができる。勿論地盤のモデル化については今後検討すべき点は多い。

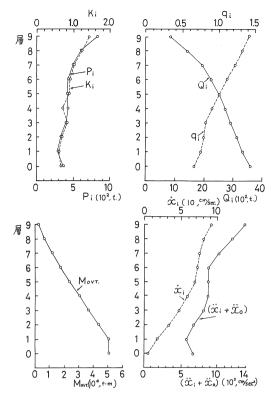
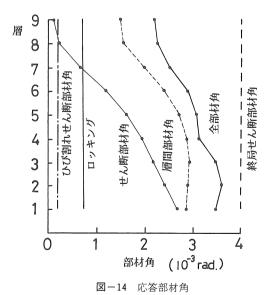



図-13 応答層せん断力, せん断力係数他

参考文献

(1)小高昭夫:構造部材の塑性ヒンジ機構を考慮した構造物の応答解析,愛知工業大学,"研究報告"No.17:1982,03.

(2) 小高昭夫他:部材の塑性ヒンジ機構を考慮した架構の応答解析、日本建築学会学術講演梗概集:1973, 10.

(3) 日本鋼管㈱:床変形を考慮した高層建築の動的解

析, 日本鋼管株式会社技報 No.60:1973.

(4) 小高昭夫他:マトリックスを用いた骨組解析の一考

察, 日本鋼造協会, 第3回研究集会, マトリックス構造

解析講演論文集:1969,05.

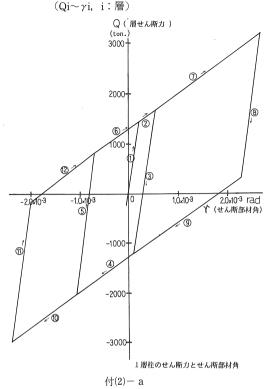
θ

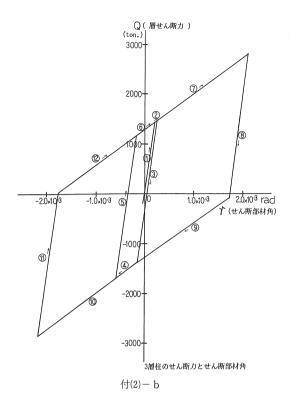
付録(1): ロッキングおよびスウェイングを伴う場合における架構の弾性時剛性マトリックス.

付録(2): 1層, 3層, 5層におけるせん断力とせん断部 材角の関係.

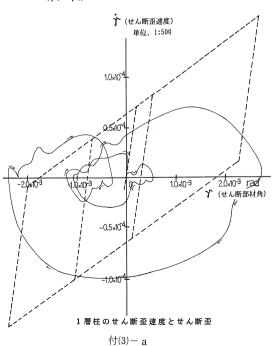
付録(3): 1層と3層におけるせん断歪速度とせん断歪の 関係、

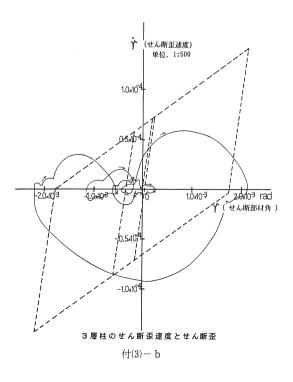
付録1.架構の剛性マトリックス

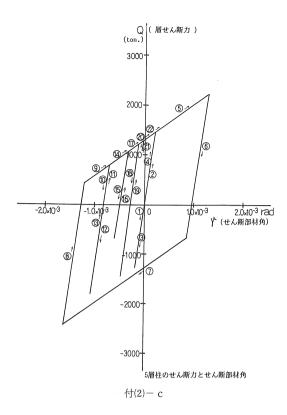

 χ_0


STIFFNESS MATRIX

 χ_3


					λ_1			2	2/3		•		
	0.1206171D	11 0.59	974777	D 07 -0.17	87714 I	07	-0.12570	26 D	07 - 0.882260	5D 06	-0.6071041I	06	
	0.5974777D	07 0.37	781937	D 05 -0.26	96820 I	05	0.31487	63 D	03 0.221000	1D 03	0.1520754I	03	
	-0.1787714D	07 - 0.26	696820	D 05 0.52	14731 I	05	-0.26744	46 D	05 0.471340	5D 03	0.3243404I	03	
	-0.1257026D	07 0.31	148763	D 03 -0.26	74446 I	05	0.51955	72 D	05 - 0.268663	6D 05	0.39733301	03	
	-0.8822605 D	06 0.22	210001	D 03 0.47	13405 I	03	-0.26866	36 D	05 0.518397	2D 05	-0.2691663I	05	
(K) =	$-0.6071041\mathrm{D}$	06 0.15	520754	D 03 0.32	43404 I	03	0.39733	30 D	03 - 0.269166	3D 05	0.5176174I	05	
	-0.4119175D	06 0.10	031825	D 03 0.22	00636I	03	0.26958	87 D	03 0.357665	3D 03	-0.2696671I	05	
	-0.2799146D	06 0.70	011666	D 02 0.14	95421 I	03	0.18319	65 D	03 0.243048	0D 03	0.3395280I	03	
	$-0.1786323\mathrm{D}$	06 0.44	174615	D 02 0.95	43286 I	02	0.11691	00 D	03 0.155105	3D 03	0.2166756I	03	
	$-0.8537630\mathrm{D}$	05 0.21	138617	D 02 0.45	61160 I	02	0.55876	45 D	02 0.741316	9D 02	0.1035589℃	03	
	$[-0.4848311\mathrm{D}]$	06 0.12	214468	D 03 0.25	90171 I	0, 03	0.31730	87 D	03 0.420975	7D 03	0.5880856I	03	
	x_5			x_6			x_7		x_8		x_9		
	-0.	4119175 D	06	-0.2799146I	06	-0	.1786323 D	06	-0.8537630D	05	-0.4848311D	06]	
	0.	1031825 D	03	0.7011666 I	02	0	.4474615D	02	0.2138617D	02	0.1214468D	03	
	0.	2200636D	03	0.1495421 D	03	0	.9543286 D	02	0.4561160D	02	0.2590171D	03	
	0.	2695887D	03	0.1831965 E	03	0	.1169100D	03	0.5587645D	02	0.3173087D	03	
	0.	3576653D	03	0.2430480 D	03	0	.1551053D	03	0.7413169D	02	0.4209757D	03	
	-0.	2696671 D	05	0.3395280 D	03	0	.2166756 D	03	$0.1035589\mathrm{D}$	03	$0.5880856\mathrm{D}$	03	
	0.	5169334D	05	-0.2697952 □	05	0	.3106816 _D	03	0.1484885D	03	0.8432300D	03	
	-0.	2697952D	05	0.5153171 D	05	-0	.2707774D	05	0.2306005D	03	0.1309524D	04	
	0.	3106816D	03	$-0.2707774\mathrm{D}$	05	0	.5131812D	05	$-0.2720383\mathrm{D}$	05	$0.2023896\mathrm{D}$	04	
	0.	1484885D	03	0.2306005 D	03	-0	. 2720383 D	05	0.4958340D	05	-0.2305922D	05	
	0.	8432300D	03	0.1309524 D	04	0	. 2023896 D	04	$-0.2305922\mathrm{D}$	05	0.1717574D	05	


付録(2):各層におけるせん断力とせん断部材角の関係



付録(3); 1 層と 3 層におけるせん断層断度とせん断層の関係 $(\gamma i \sim \gamma i)$

(受理 昭和62年1月25日)