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Probabilistic Study of the Variability of Flexural
Strength of Reinforced Concrete Simple Beam
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This study, in the Experiment I and II, examined variability of strength of materials such as
reinforcing bars and concrete composing reinforced concrete beams, and offered data to simulate
occurrence of the probability distribution of materials used. In the Experiment III, fourty-eight
reinforced concrete beams were fabricated, and the probability distridution of variations in steel
placement, variability of the size of cross area were examined and variability of ultimate flexural
strength of reinforced concrete simple beams were tested, Supposing the probability distribution of
materials used and dimension variations obtained by the Experiment I, II and Il as Normal
distribution, the computer simulation was done by the Monte Carlo Method, and the result were
compared with ones of ultimate flexural strength of reinforced concrete simple beams obtained by
the Experiment [I. By these comparative studies, possibility to presume the probability distribu-
tion of flexural strength of reinforeced concrete beams were examined.

1. Introduction

As strength of materials such as reinforcing bars
and concrete composing reinforced concrete members
is affected by various defects distributed at random
within materials, the strength has variability peculiar
to each material and should be treated as random
variable. [Ref. 1,2,3,4] As to dimension variations
of materials used and dimension variations at fabri-
cating beams, the variability distribution of dimen-
sion is largely affected by the qurlity of construction
works, and should be treated as random variable.

[Ref. 5,6] Therefore, strength and deformation
capacity of reinforced concrete members composed
by these random variables are also probabilistic
phenomena occuring from the combination of each
random variable. These values should show the
probability distribution and should be treated as
random variable.

On the other hand, in case of calculating the
probability distribution of strength of reinforced
concrete members by Monte Carlo simulation by the
computer, sumpling the probability distribution of
strength of each material and dimension variations at
fabricating test specimens has very important
meaning, but data on these probability distributions
are very scarce at present. [Ref. 2,5,6,7,8,9,10,11]

This study, in the Experiment I, examined
variability of diameter, strength and elongation of

four kinds of reinforcing bars, and in the Experiment
II, examined variability of strength of concrete which
composes reinforced concrete beams, and offered
data to simulate occurence of the probability distribu-
tion of materials used. In the Experiment III, forty
eight reinforced concrete beams with two kinds of
similar ‘dimensions using the reinforcing bars from
the same lot and concrete from hte same batch tested
in the Experiment I and II were fabricated, and the
probability distribution of variations in steel place-
ment and variability of the size of cross area were
examined. Supposing the probability distribution of
materials used and dimension variations obtained by
the Experiment LII and III as normal distribution, the
computer simulation was done by the Monte Carlo
Method, and the results were compared with ones of
ultimate flexural strength of reinforced concrete
simple beams obtained by the Experiment III. By
these comparative studies, possibility to presume the
probability distribution of flexural strength of
reinforced concrete simple beams was examined.

2. Experiment I (Diameter, Elongation, Yield
Strength of Reinforcing Bars)

The load that reinforcing bars can carry is
determined not only by strength of bars but also by
the area of cross section of bars. Generally, there is
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variability in strength of reinforcing bars and
moreover, the coefficient of variance of the area of
cross section becomes more than two times of the
coefficient of wvariance of diameter. Therefore,
variability of diameter of reinforcing bars largely
affects the load carried by the reinforcing bars. By
Aoki’s study based on the test results of reinforcing
bars for construction works examined at the Building
Material Test Center, vareability of the area of cross
section of bars is larger than expected in both of
deformed bars and round bars, and it shows Log-
normal distribution, and in case of strength, the form
of distribution shows tendency to incline toword the
smaller values of strength. [Ref. 2] On the other
hand, from the results of mechanical properties of
various reinforcing bars, Sher Ali Mirza,et al reports
that variation in yield strength within a single bar is
relatively small, while the in-batch variation for a
given heat is slightly larger, and the variation of
samples taken from different batches or sources is
larger. [Ref. 7]

(1) Summary of Experiment

To examine the probability distribution of
diameter, elongation, yield strength and ultimate
tensile strength about reinforcing bars of ¢6A, D10,
D13 and D16, 150 bars each- total 600 bars were
measured their area of cross section, length, weight
and tension test was done. The dialgage type bar
tension meter was used for measuring yield strength
and the yield strength was confirmed by careful
reading of scales on the tension meter, especially
around yield strength.

Test Results and Discussion

Table 2.1 shows a part of the results of tension
test of reinforcing bars. M shows the average value,
VA-variance, SD-standard deviation, and CD
-coefficient of variance (%). The diameter of $6A
bars shows coefficient of variance of 1.479%, but the
values of D10, D13 and D16 bars are smaller as 0.43%
-0.80%. It is considered because ¢6A bars, not for
structural use, are not ristricted severely regarding
the area of cross section. These values, except $6A,
show the smaller values cempared with ones of Sher
Ali Mirza, et al [Ref. 7] and lower than Aoki’s value
(0.9%-1.45%) [Ref. 2] that is the test result of the
Test Center. Among these reinforcing bars, ¢6A and
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D10 bars and their data were used for the beam test
(reported later) and for simulation. Yield strength and
tensile strength shew the same tendency and sher Ali
Mirza, et al showed that the coefficint of variation
was, in general, in the order of 1%-4% for individual
bar sizes and 5%-8% for individual bar sizes when 4
data were taken from many sources. [Ref.7] Onthe
other hand, Aoki’s value shows 4.5%-8.4% for yield
strength and 4.39%-8.5% for tensile strength, and these
two values are similar. [Ref. 2] The test results of
this time, except $6A, show 1.1%-1.6% for yield
strength and 0.649-2.63% for tensile strength, and
similar to the deta by sher Ali Milza, et al. Julian
reports the coefficient of variance of 129 for 40 ksi
steel. [Ref. 10] Horikawa shows that variability of
elongations larger compared with variability of
strength, and the result of this experiment also shows
large values as 5.1%-6.2%. [Ref. 12] Fig. 2.1 shows
yield strength of reinforcing bars by Weibull distribu-
tion, by Normal distribution and by Log-normal
distribution. The straight lines in the figures were

Table 2.1 Test result of reinforcing bars.

diameter | yield str. | ultimate |elong-
@s Osy str. Osu ation
M |5.65 mm| 4020kg /cof | 4750kg /cof |27 .4 %

6 VA]0.00689 | 15900 20200 6.13
* |SD|0.0830mm | 126 kg /cnf | 142 kg /ot |2.48%
CV|1.47 % |3.14 % 12.99 % |9.05%

M 19.18 4140 6020 23.6

D10 VA|0.00537 | 4400 24900 2.15

SD|[0.0733 66.4 158 1.47

CV]0.799 1.60 2.63 6.23

M [12.25 3779 5515 24.9

D13 VA]0.0039 1627 1237 1.66

SD|0.0627 40.34 35 1.29

CV]0.51 1.07 0.64 5.17

M |15.8 4010 6140 23.6

Di6 VA10.00456 | 3260 8060 1.48

SD|0.0675 57.1 89.8 1.22
CV]0.428 1.42 1.46 5.13 |

Table 2.2 Correlation coefficient for the straight
line calculated by the method of least square
of experiment values of yield strength.

Weible dist. Logd}rsl?rmal Normal dist.
P64 0.976 —0.995 —0.999
D10 0.992 —0.992 —0.993
D13 0.980 —0.965 —0.996
D16 0.951 —0.985 —0.986

Weibull Distribution
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Fig. 2.1 Probability distribution for yield strength of reinforcing bars.
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obtained by the method of least squares, and Table 2.
2 shows correlation coefficient for the straight line
formula of experiment values. Every correlation
coefficient shows more than (.98 and they are close to
the straight line and can be indicated well by both of
Normal distribution and Log-normal distribution, but
in Weibull distribution, both ends of distribution
separate slightly from the straight line. On the other
hand, by Nishimura’s report which examined
mechanical properties of steel, [Ref.9] both of yield
strength and tensile strength of steel show Log
-normal distribution, and Freudenthal confirmed that
yield strength of ASTM A7 steel by Mill Test was
coincident with Log-normal distribution. [Ref. 11]
Sher Ali Mirza, et al [Ref. 7], considering that normal
distribution or log-normal distribution does not
coincide for yield strength at both ends of data,
proporsed the new equation of probability density
function. The test of this time is the result of one lot,
and quite coincident with both of Normal distribution
and Log-normal distribution.

3. Experiment [T (Experiment on compressive and
Splitting Tensile Strength of Concrete)

(1) Summary of Experiment

Table 3.3 shows the actual dimensions of three
kinds of concrete prism specimens fabricated for the
experiment. 15 prisoms each of three kinds and total
of 45 prisms were fabricated, cast by concrete of the
same mix proportion, and 100 concrete cylinders of
$10x20cm were made at the same time in each
casting for examination of the probability distribu-
tion of compressive strength and splitting tensile

strength. Both ends of concrete prism specimens had
steel mold and concrete was cast sideways.

Common Portland cement and, as aggregates,
Yahagi River sand less than 5mm and Tenryu River
gravel less than 15mm were used. The water cement
ratio of concrete was 60% and Table 3.1 shows its
mix proportion. Concrete was mixed by the Smith
type concrete mixer with the maximum capacity of
600 1 and casting was done at the same time with the
beam specimens (reported later). Both of concrete
prisms and cylinders were remolded after two days
and examined after seven weeks.

(2) Test Resulis and Discussion

Table 3.2 and Fig. 3.1 show the test results of
compressive and splitting tensile strength of ¢10x20
cm concrete cylinders and their probability distribu-
tion. In the mark CP % 2-AC, CP means cylinder, no.2
means the first casting, AC means thecompressive
test by the Amsler Type hydraulic compressive
machine. (2-4) shows the result considering the total
of 2-4 as one population. Essentially, data should be
treated for three different populations, but three
populations had very close properties and therefore,
is indicated as one populaton. AT shows the test
results of splitting tensile strength. r shows correla-
tion coefficient, # in Normal distribution shows the
medium value of the Normal distribution curve
supposing the test results as Normal distribution. ¢

Table 3.1 Concrete mix proportion.

Water|Concret| Sand |Gravel|s/a|design slump
Coneret | /ut)| thg /) |(hg /m)| g /) o) (crn)
MX 12151 358 [ 810|887 |49 15

Table 3.2 Test results of compressive strength and splitting tensile strength of ¢10x20cm

concrete cylinder.

No. of Mean SD | VA | CV Weible dist. Normal dist.
specimen | kg/cof | kg/cnf % | appro. eq. r u“ o r’
i CP* 2 —AC 40 260 | 14.8 | 219]5.68]19.9X—111]0.976|261|16.4| —0.988
YINCEEr | cPs% 3 —AC 34 264 |14.9| 221|5.64]19.6X—110]0.958| 264 |16.7 | —0.985
Ci’mpri;s“’e CPx* 4 —AC 31 260 | 14.0 | 196(5.39(20.6X—1150.995 | 260 | 15.8 | —0.981
streng CP% (2~4) AC 105 261 | 14.6 | 212|5.57|21.4X—120|0.983|262|15.5|—0.997
splitting CP* (2~4)AT| 101 25.8 | 28.2(7.94/10.9
strength
PRO(1-P) (%) LN(LN(1-P) w:ibull. Di%!';l;u]ggn oaowpre,
999 \ Normal Distibution 1 / 999 Normal Distribution
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- £ 4 o k-0 10
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1 \ -4 ~.// ~'/~‘ or
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01 47 48 49 SO 51 52 53 S. =3 55 57 150 200 250 Fe(kglem?)
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Fe(kgler .
0 . 0 ° 9 . 'b“ .5'“ 55;6 > Fig. 3.2 Probability distribution of compre-
Fig.3.1 Probability distribution of compre- ssive strength for concrete prisms

ssive strength for ¢10x20 cm con-
crete cylinder (CP % (2~4) AC).

(KP % (2~4) AC).
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‘Table 3.3 Test results of compressive strength of concrete prisms.

No.of | b | h | 1 | Prismcompressive Weibull dist. Normal dist.
i. | (em) | (cm) | (cm) ] v
spect M [ SD [ CV [LNGLN(-p) | = P o r
— 6 15 4.4614.66/13.4| 180]17.719.82| 10.4X—54.6 | 0.959| 180 ]21.4| —0.967
KP%2 | —10 15 7.2217.36121.8| 198 |18.6(9.40| 10.8X—57.3 1 0.967 | 198]22.5| —0.967
—16 15 12.4112.637.4| 212]10.7]5.03| 20.5X—11.0 | 0.979| 212]12.6| —0.990
— 6 15 4.4614.56]13.4| 190]20.8]12.3| 6.48X—34.5 | 0.879| 193|32.1| —0.867
KP%3 | —10 15 7.2217.37121.8] 209/20.8[9.91| 9.95X—53.6 | 0.980 | 210]25.1| —0.967
—16 15 12.4 [12.5[37.4| 209]20.7|9.91| 10.2X-—55.2 [0.993| 209 |24.7 | —0.981
— 6 15 4.4614.58|13.4| 174]21.5[12.4| 8.15X—42.5 [ 0.988 | 174]25.5| —0.986
KP#*4 | —10 15 7.22|7.4021.8] 207[20.5]9.89| 10.5X—56.2 [0.986| 207 |24.1]—0.994
—16 15 12.4112.637.4| 226]16.3|7.23] 13.9X—75.6 [ 0.979| 22619.9| —0.960
KP % — 6 45 4.46 | 4.60]13.4| 182]22.2|12.2] 9.00X—47.3 ] 0.995| 183|24.5| —0.987
o4 —10 45 7.2217.39|21.8] 205]20.1|9.84| 11.5X—61.6 10.989| 205|22.1|—0.993
—16 45 12.4112.6|37.4] 216|17.6]|8.18] 13.8X—74.6 [0.995| 216]19.4]|—0.989
shows standard deviation, r’ shows correlation (1) Summary of Experiment
coefficient for the approximate straight line of data in Fig. 4.1 and Table 4.1 show details of beam
Normal distribution. The result of this time is closer specimen. Stirrups were placed densely to prevent

to Noormal distribution than Weibull distribution. By
Cook’s report, cofficient of variance of concrete with
compressive strength of 3.46 ksi shows 12%. [Ref.
8] On the other hand, by bruce’s report, coefficient of
variance of concrete with compressive strength of 3.5
ksi is 12%. [Ref. 6] Besides, data of concrete of
used by Robert, et al for Monte Carlo simulation was
the one in Normal distribution that showed coefficient
of variance of 17.6%. The result of this time shows
coefficient of variance of 5.39%-5.68%, much smaller
than values in the papers refered.

Table 3.3 and Fig. 3.2 show the test results of
compressive strength for concrete prisms with three
kinds of similar dimensions and their probability
distribution. The coefficient of variance for
compressive strength of concrete prisms shows 5.03%
-12.3% and shows slightly larger variability than
ones of concrete cylinder . It is contidered because
wooden molds were used for sides of specimens at
fabricating them, and the height/width(diameter)
ratio of concrete prisms is 3:1 while it is 2:1 in
concrete cylinders. Generally, smaller specimens have
larger coefficient of variance compared with larger
specimens, and specimens should be fabricated care-
fully. Their distributions, except KP % 3-6, are quite
close to either of weibull distribution or Normal
distribution.

4. Experiment [l (Flexural Test of Reinforced
Concrete Simple Beams)

Total of 48 reinforced concrete beams with two
kinds of dimensions were fabricated using the same
reinforcing bars and concrete examined in the Ex-
periments I & II, under three separate operations.
Flexural tests were done for simple beams and the
probability distribution of the ultimate flexural st-
rength was examined.

shear failure. BA-6 beams and BA-10 beams were
fabricated to have similar dimensions of cross sec-
tion, main reinforcement ratio and stirrup ratio.
Table 4.1 shows the objective dimensions for fabrica-
tion. Beams were tested by two-point loading condi-
tion having three same spans. Load was measured by
the 3-ton and 5-ton load-cell, and deflection was
measured by the slide type differential transformer
with digital strain meter.

(2) Test Results and Discussion

Table 4.2 shows the actual dimensions of beam
specimen after removing mold. As they were care-
fully fabricated in the laboratory to have precise
dimensions, the coefficient of variance is quite small,
but this preciseness is different from the one at the
construction site. These values were measured for
simulation.

Table 4.3 and 4.2 show the test results of ultimate
flexural strength and their probability distribution.
Fig. 4.2 shows results of conversion from the beam
with two o05y,=4000 kg/cm? bars as main reinforce-
ment at top and bottom of the beam to the one with
dimension of 2.789 times of BA-6 beam. The
coefficient of variance for the ultimate flexural
strength on beam specimens is 2.1%-3.3% and qute
small compared with variability of yield strength of
steel bars.

5. Monte Carlo Simulation of the Ultimate Flexural
Strength of Reinforced Concrete Simple Beams

The ultimate flexural strength of reinforced
concrete simple beam is affected by the variations in
the strength of concrete and reinforcement, the cross
section dimension and steel placement.

The effects of these variables on the variability
of flexural strength were studies using the Monte
Carlo simulation.
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The fundamental ploblem of sampling in the
Monte Carlo simulation is to choose the suitable
values of the probability distribution among the
already known random variables as values of the
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probability distribution of mechanical properties of
each material. On solution of this problem, occurence
of random variables can simulated by the physical
probabilistic process.

The pseudorandom numbers are generated by D.

% % 1-000- 6 H.Lemer’s multiplicative cargruential method for the
shearspan 45 y / iy computer simulation in this study. [Ref. 13,14] The
TTTITTIT D 1
J{ IFﬁlH |“v(|: T I,||H|H- wmm”””m”ﬂ;ﬂ procedure for generating pseudorandom numbers are
L 15h 4 3, 3h | 3nh  Disn shown below.
=0.5h - Sh - | Ny =7° X
6 h where, n; is the integer number of eight figures.
The upper bit of n;,, is rejected by overflow in the
BEAM  BA-10(BA-6) computer and remained lower bit n,, is smaller
Fig.4.1 Outline of beam specimen than2®—1.
BA-10 (BA-6). o
ri+l—_231_1
Table 4.1 Details of beam specimen.
beam Main_ reinforcement Cross section Shear |Bending | Span | Beam Stirrup _IScale
. diameter | cross sec.| b h d span span length spacing | -
series (mm) | area(ci) | (cm) | (cm) | (cm) |3h(cm) | 3h(em) |9h(cm) |12h (cm) (cm)
BA-62-¢6 5.65 0.249 4.47] 8.93| 8.04| 26.79 | 26.79 | 80.37|107.16|¢2.6| 1.59 |0.616
BA-10|2-D10 9.16 0.662 7.25]14.49]13.04| 43.47 | 43.47 |130.41|173.88|¢4.5| 2.93 1
Table 4.2 Actual dimensions of beam specimen after removing mold.
Beam width o ibuion | Beam depth o iirbution | Lective depth e ution
M | SD |[CV| u o T M SD |CV| u a r M SD |CV | u o T
BA%x6-2 4.49/0.021]0.47[4.49|0.025{—0.97| 9.00|{0.045|0.50| 9.00{0.056|—0.98| 8.15[0.114|1.40| 8.15/{0.180|—0.79
BA%6-3 4.50/0.016]/0.35{4.50/0.018{—0.99| 9.03{0.032|0.35] 9.03[0.039|—0.97| 8.23]0.229(2.78| 8.24/0.374|—0.77
BA%x 6-4 4.55/0.026{0.57|4.55|0.032|—0.97| 9.11]/0.113 1‘24‘ 9.11{0.144|—0.98| 8.16/0.052|0.64| 8.16(0.067|—0.97
BA%10-2 7.35/0.082]1.11{7.35/0.126|—0.81{14.67{0.086(0.59|14.67|0.109[—0.98]13.03(0.077/0.59(13.02(0.102|—0.94
BA%10-3 7.35/0.137|1.86(|7.35/0.260|—0.66]14.62|0.065|0.44|14.62(0.082|—0.95/12.99/0.062|0.47{13.00[0.082| —0.93
BA%10-4 7.33]0.026]0.36|7.30{0.033|—0.99({14.67|0.068|0.46(14.67|0.086|—0.97|12.99[/0.108/0.83]/12.99({0.141|—0.96
BA% 6-2~4]4.51/0.033]0.72|4.51/0.038|—0.98| 9.05]0.084[0.93| 9.05/0.103|—0.91| 8.18[0.148(1.81] 8.19/0.218]—0.77
BA%10-2~417.33/0.092|1.26/7.34]0.146{—0.71{14.05]0.080{0.55[14.66|0.084|—0.98|13.00{0.088/0.68]/13.00[0.096] —0.96
Table 4.3 Test results of ultimate flexural where, i, is uniformly distributed pseudo-

strength of beam specimen.

Log Normal Distribution

random number generated between O and I. Fig. 5.1
shows the flow chart of generating of random
numbers. Essentially, 2%-1 should be used, but 23—
1=2,147,483,647 were used because of convenience of
the computer. Because the probability distributions of
the Experiment I, I and III showed the result closer to
Normal distribution than to other probability distribu-
tion, the Normal distribution type random numbers
were generated by Direct Method (Inverse Trans-
formation Method) using the uniformly distributed
pseudorandom numbers generated by multiplicative

Iog(-log¢1-P») Weinll Distribution

a1

(Series2~4Total)

© — BAE2~4-6
M=87951

® --- BAE2~4-10
M=8.8441

No. |Beam ultimate flexural strength (P)
of | M | SD | CV|Normal distribution
specl. | (ton) | (ton) (%) » | o | ¢
BA% 2—6 8 [1.162/0.0292.491.16/0.04—0.94
BA%x3—6 8 11.1480.027]2.32]1.150.03—0.98
BA%x4—6 8 11.0960.027|2.47]1.10/0.04|—0.95
BA%x 2—10 8 13.060/0.101)3.313.06/0.15—0.85
BA% 3—10 8 13.086]0.065/2.10j3.090.08—0.96
BA% 4 —10 8 13.074]0.0862.79)3.07/0.11]—0.98
BA%(@2~4)-6 | 24 |1.1350.039)3.44]1.140.05(—0.98
BA%(2~4)-10| 24 [3.073]0 082[2.683.07/0.10]—0.98
PROI-P)C4) . PRO(1-P)(*%s)
Normal Dstribution
999 999
99 (Series 2~4 Tolal) 99 (Series2 ~4 Total)
%0 \\‘»\Q{ %0
50 “‘s. 50
0 A0 . 1
© —BA¥2~4—6 M=8.7951 T
1 1 © —— BAR 2~4-6 M=8.795t
o - BAE2~4—10 M=8.8441
oY o1 ® -~ BA#R 2~4-10 M=8.844t
82 B4 86 88 90 9.2 94 Pullon) 210 212 214 236

218

220 222 log(Pu) 20 212 214 26 18 ~220 222 log(Pu)

Fig. 4.2 Probability distribution of ultimate flexural strength of beam specimen.
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cargruential method.

The random variable x of probability density
function f(x) was divided into eighty divisions
between M-4¢(o: standard deviation, M: mean value)
and M+4¢, and the area of each divisions were
integrated, and the values of existence probabilities
at each eighty points were calculated. The Normal
distribution type randm numbers were generated
using the relationship between the pseudorandom
number and the discrete cumulative frequency func-
tion derived from the value of existence probabiliti-
es.

The random variables used in this simulation are
beam width b, effective depth d, bar diameter ¢s, bar
yield strength oy, young’s modulus of concrete Ec,
young’s modulus ratio n, compressive strength of

T A

o EEEZE

put in the initial value
of IX(eight figures)

4

IX=IX% 16807

L g ]

| PRA=FLOAT(IX)/12, 147,483, 647D0 |

8
[ RRAN=ABS (RRA) ]

3
| RAN=RRAN |
: 1
L——— RN(K)=RAN j
3

Fig.5.1 Flow chart of generating of random
number using Lehmer’s multiplicative
corgruential method.

Table 5.1 Input data for the beam Monte Carlo simulation and properties of pseudorandom number.

BAx 2~4)—6 BA%x (2~4)—10
Input data Pseudorandom number Input data Pseudorandom number
M SD |[CV(%)| M SD [CV(%)| M SD | CV(%) M SD |CV(%)
b cm 4.55[0.0230.51| 4.55]/0.0400.88| 7.46[0.066| 0.88| 7.46]0.130|1.74
b cem 8.1810.041/0.50| 1.180.119(1.45]| 13.0[0.012|0.092 |13.00]0.098]0.76
¢s mm 5.65/0.083|1.47| 5.65[0.1121.97 | 9.18|0.073| 0.80| 9.18|0.139]1.51
Osy kg/cnt 4020 126 | 3.14 | 4032 13313.29| 4140| 66.4| 1.60| 4144| 76.0/1.83
E. (X10°)kg/cnf 1.78| 0.34119.1| 1.80| 0.35[19.3| 1.78| 0.34| 19.1| 1.80| 0.35]|19.3
n 11.80| 0.34119.1(12.14| 2.73[22.5]|11.80| 0.34| 19.1|12.14| 2.73]22.5
a cm 26.8 43.5
Es (X10°) kg /cnt 2.10 2.10
Prism ,Fc kg/cof 182 21.8]12.2 180 | 21.512.0 205 20.61 10.1 204 | 20.4]10.0
Cylinder : cFc kg/cnf 261 | 14.6(5.57 262 | 14.5]5.54 261 | 14.6| 5.57 262 | 14.5|5.55
Table 5.2 Comparison between the test results of ultimate flexural strength of beam and the
ones by the Monte Carlo simulation.
No. of M SD Cv normal dist.
speci. (ton) (ton) (%) u o r
test result 24 1.135 | 0.039 3.44 1.14 0.05 0.98
BA%(2~4)—6 | gimulation |_Prism 1000 1.011 | 0.043 4.26
cylinder 1000 1.081 0.041 3.80
test result 24 3.073 | 0.082 2.68 3.07 0.10 0.95
BA % (2~4)—10 simulation prism 1000 2.734 | 0.078 2.87
cylinder 1000 2.853 | 0.067 2.37
Frequency .
S . L Pl o
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w0 A 0 w0 c
0 304 30
20 20] 20
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Fig.5.2 Frequency distribution histgram of random numbers of yield strength of

steel bars and compressive strength of concrete prisms, and ultimate
flexural strength of beam model calculated by Monte Carlo simulation.
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concrete prism ,F. and compressive strength of
concrete cylinder .F.. The Normal distribution type
random numbers were generated for each parameter
one by one to calculate the beam ultimate flexural
strength.

Table 5.1 shows the result of statistical treatment
of a thousand of the Normal distribution type random
numbers generated using the results of the Experi-
ments I, II and III as input data, supposing them as
Normal distribution. Generally, the coefficiet of
variance for random numbers show the slightly large
values. It is because the section to occur the normal
distribution type random numbers was divided into
eighty divisions and the discrete cumulative frequen-
cy function was derived, and preciseness inproves by
increasing number of divisions.

The assumption to calculate the ultimate flexural
strength are shown below.

i) In every portion of beams, the values of the
mechanichal properties of steel bars and concrete are
just the same as the random number generated by
computer.

ii) In the center bending span of beams, the
dimensions of beams are just the same as the random
numbers generated by computer.

iii) The stress-strain curve of concrete is bi-linear
with compressive strength 0.85 F. and ultimate strain
0.003.

iv) The stress-strain curve of steel bars are bi-
linear with young’s modulus 2.1x10°%kg/cm?® In each
calculations, each Normal distribution type random
numbers generated by computer are assumed as the
decision variate in the beam and simulated to calcu-
late the beam ultimate flexurl strength.

Table 5.2 shows comparison between the test
results of ultimate flexural strength of beams and
ones by the Monte Carlo simulation. With either of
data of concrete prisms or concrete cylinders as the
value of concrete strength, the simulated results of
coefficient of variance of ultimate flexural strength
stowed similar values to ones by experiments.

Feg. 5.2 shows the frequency distribution hist-
gram of random numbers of yield strength of steel
bars and compressive strength of concrete prisms by
simulation, and the histogram of ultimate flexural
strength of beams. It is interesting that the histogram
of ultimate flexural strength (results of simulation)
show the form of distribution inclining slightly
toward right, while the histogram of numbers, being
normal distribution, is symmetrical on both sides of
the mean values.

6. Conclusion

The following conclusion were obtained as the
result of the Monte Carlo simulation using values of
the probability distribution obtained by the experi-
ments to examine the probability distribution of

concrete strength and steel bars which are the main
parameters to determine the strength of reinforced
concrete beams, and the probability distribution of
cross section dimentions of beams and placement
variation of reinforcing bars, as input data.

(1) In case of specimens with reinforcing bars
from the same lot, as in this experiment, both yield
strength and tensile strength show the quite small
coefficient of variance, but the coefficiet of variance
of elongation showed large values. In this test, both
yield strength and tensile strength showed distribu-
tion which was quite coincident with either Normal
distribution or Log-normal distribution.

(2) The values of compressive strength of con-
crete cylinders showed the result closer to Normal
distribution than to Weibull distribution. The values
of coefficiet of variance of concrete strength showed
much smaller value than ones used by Cook or
Robert, et al.

(3) The value of compressive strength of con-
crete prisms showed much larger valiability than one
of concrete cylinders, but its distribution was quite
close either to Weibull distribution or Normal distribu-
tion.

(4) The value of coefficient of variance of
flexural strength of beam specimens was 2.1%-3.3%
and quite small compared with variability of concrete
strength.

(5) Pseudorandom numbers occured by simula-
tion of this time showed the tendency to have small
variations when small values of coefficient of
variance were input.

(6) The values of coefficient of variance of
ultimate flexural strength of beams obtained by the
Monte Carlo simulation was quite close to the experi-
mental results, and it showed possibility to presume
the probability distribution of flexural strength of
beams by simulation.
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