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Has a long history the technique collecting iron-components with magnetic field. It is also
possible to gather paramagnetic materials in high gradient magnetic field. In order to obtain a
wide capture region in high field-high gradient magnetic field, are recently utilized magnetic fine
wires in high intensity field. We call it a device of HGMS( High Gradient Magnetic Separation
or Separator ). a

Working devices of HGMS are, therefore, constructed with a great number of arranged
magnetic wires. The .analysis of particle trajectory in the capture region has been mainly
considered, however, on a single capturing wire element. In this paper are shown the particle loci
around multiple wires arranged in a line and the capture radius.

1 . Introduction

The particle trajectory investigated so far at a single wire!’? is extended to that of multiple capturing
elements. That is why there are many wires in practical appratus for the purpose increasing the capture efficiency.
It is necessary, therefore, for actual devices to consider the particle trajectory around multiple wires.

The capturing elements are arranged in a line, and external magnetic field are applied to parallel or
perpendicular for the wire arrangement. And also for the two cases are considered the direction of flow.

The capture radius are given on the strength of the obtained trajectory equations and the comparison is

done for the cases of a single and multiple wires.
II. Preliminary consideration for the case of a single wire (Observation on the influence by the value of k)*

A circular cylindrical wire of radius a is placed in a homogenious magnetic field of strength H, (Fig.1).

|

Fig. 1. Coordinates system used to calculate the field
with a wire of radius a.
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It follows from magnetostatics that magnetization by the magnetic field causes the cylinder to act as a two-

dimentional dipole. The magnetic potential ¢, at a point P(7, ) is given by

_ Msa®
¢m—_7’HOCOS(9+2#07 cos 8§ for 210Ho>M; (1)
_ 2
:—7H00050+Z+ZZ %cos@ for 2uoHo< M, (2)

where ¢ and M; are the permeability and the saturation magnetization of the wire respectively.
For convienience the formula (1) is treated, and in the case of the condition 2u,Ho, <M, the formula (2) may

be used. The magnetic field H is given by

H=—gradgn (3)
That is, the components are given by
2
H,=H,cos 19-1—12\/#[;0% cos 8 (4)
2
Ha:—HoSine-l'%vi:iz sin@ (5)

The force acting a magnetic sphere with radius b at the point P is given by
Fon = o5V ograd(H?) )

where xs and V, correspond to the relative magnetic susceptibility and the volume of the sphere respectively. Then

the components are given by

F ;_47rstuMsa2b3< Msa® ‘c0320> )
e 3 2ucHor®  7°

273 :
Fme:_47rst%Msa b ‘51;1320 ®)

In the case that a fluid velocity is small and the Reynolz number is low, the drag force Fp acting the sphere
by the fluid is expressed by the following Stoke’s formula.
Fp=—677bv (9)

where 7 and v correspond to the viscosity of fluid and the relative velocity between the sphere and fluid.
Then, the equation of motion is given by
FrntFo=0 (10
That is, the velocity components are given by

dre m 2
=¥ a
df _ _vmsin2d
it T T a s w
_r Um _2X3H0M3b2 _ Ms
where 7o =- - 2 9yat and % =300,

From the formulas (1) and (12), the following differential equation is gotten.

dra _ 1
df ~sin26

(%'FVaCOS 26) 13
And the solution is given by (See Annexe 1)

ra:(csin20—kc0520)% ) 14

(70® +kcos26,)

where = -
¢ sin26,

The coordinates of a initial position P, of the particle are », and §,. The curves are shown in Fig. 2 with
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Fig. 2. Variation of particle loci by k in case of flowless.

the condition 0 < %, < 1. These figures represent the influence of the value of £ on the locus of the sphere. The

dashed-curves written inside the wire are not of actual and the dot-dashed line is a bisector of x-y axis.
Il. Trajectory of particle and capture radius”’

1. Stream function
1.1 Consideration to the case that the wire arrangement is perpendicular to the stream

As shown in Fig. 3, the cylindrical magnetic wires with radius a are arranged along y-axis with equal
distances ¢ and the fluid folws for x-axis direction with speed —v,.

The stream potential function is given as follows. (Annexe 2)
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Fig. 3. Wire arrangement and flow direction.

2
w=@+i¢=—vo[z+%coth(§zﬂ (15
Therefore
_ 1 sinfya
Va= UO[‘Z/“ 2 B(chﬂxa~cosﬁ’ya)] 19

X _Y ,_2ma _v
£ yo=t p=25 and y,=L.

where x,=
The subscript « indicates the normalization by a.

The boundary surface is given by ¥,= 0, and we shall consider the surface configuration under the influence

of neighboring wires is considered. The dashed curve A in Fig. 4 shows the surface of ¥,= 0 when ¢/a=5.



10 #* g —

For the purpose of keeping 7,2~ 1, is introduced a correction factor ¢, at the second term in the braket

of Eq. (16).
Then the following is gotten when @,= 0.

1 ___ sinfys - 4
Ya=73 'Bc‘(chﬂxa—cosﬂya) w y y

That is,

./Cl (@]
1] ,
G X
10
5 10 2030-—l/A
Fig. 5. Value of ¢, dy //a. Fig. 6. Wire arrangement and Fig. 7. Rotation of coordinates.
flow direction.
_2ya(chBxa—cosBya)
a= Bsinfya 9
Putting y,= 0, then
_lim 2y4(chBxa—1) _(g B )2 _(i ﬂz)z
'm0 BsinfBya - ,BSh 2ra o s Z )

A solid line of Fig. 5 shows the value of ¢, with the variable ¢/q, and we may regard that ¢, is nearly

equal to 1 for ¢/a>10.
And also for x,= 0, the following is taken.

21 B

Ya=1

¢i = lim 2ya(chﬂﬁgggyc‘?sﬂya) ZZyE(S}I:BZOGSBya) :%y—z"tané@ _2...8_Ua) s (19)

) p 4 tanw/ a)

A dashed line of the same figure shows c¢i. A attractive region for particles due to magnetic field is the
neighbourhood at x,= 0, and the value for ¢, may be taken that of the solid line in Fig. 5.

For ¢/a=5, ¢, =1.14 is adopted and the dot-dashed curve B in Fig. 4 corresponds to this case.

Then, the following stream function is obtained.

_ 1. sinfya/Bya
Ya= Uw“[l 2P Cl(ChBZa—"COS,Bya)] @

Accordingly, the velocity components v,x, and vy, are

_0¥. _ 1,, 1—chBxa cosBya
U T Gy yo[ 1 +25 C‘(chﬂxa—cosﬂya)z] @

_ 0% (1, shfxa*sinBya
U= T Gx, _”"[23 Cl(ChBXa_COSB]/a)z]

1.2 Consideration to the case that the wire arrangement is in parallel with the stream

Now, consider the occasion shown in Fig. 6.
The potential function is as follows. (Annexe 3)

2
cu'=@’+i¢"=—vo[z'+%cot%z’] )

Therefore, the stream function normalized by a ¥, is given by

vi=-u 13 el o
And then, consider a revolution of coordinates axis as indicated in Fig. 7. The formula of the revolving transformation
of coordinates is shown as follows.

x'=xcos@—ysinf (25)

v =xsin@+ycos
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Accordingly, putting §= /2 and applying to the expression (%), the following is gotten.

- 1, shBxe/Bxe
Vo= ””‘“[1 B(chBXrCOSﬁya)] @

And also introduce a correction factor ¢, with the same manner as done in the last paragraph. In this case ¢, =0.88
for £/a=5 and c,~1 for £/a=10.

Then, the velocity components vy, and v,,, are

shBxa sinfBya

Vo _

_0 [L 2 ]
Ure =gy, U2 e (chBxa—cos Bya)’ @)
= 9% __, [ _lge MJ
i P L “2(chfxa—cosBya) @
That is, the velocity in the case shown in Fig. 8 is gotten.
Ly I
0
Ho @ P(x.y) f
—(
X X -
% I Ho
Fig. 8. Wire arrangement and Fig. 9. Wire arrangement and Fig. 10. Wire arrangement and
flow direction. external field direction. external field direction.
2. Magnetic field of linearly arranged magnetic wires
2.1 Consideration to the case that the wire arrangement is perpendicular to the external field
Let the magnetic field be applied as shown in Fig. 9 and the magnetic wire be saturated.
The magnetic potential ¢, at the point P(x, y) is given by (Annexe 4)
_ @M.\ a’Ms 7 . sh2zx/¢
om(x, y)=—xHot 2 1o 27 x -I—(y ml? —aHo+ 210 £ (ch2mx/é—cos2zyll) 2
Consequently,
- 0Pm _ 1M V5P Ya
Ha= 0x =Ho— 22 (chBxa—cosBya)? 60
H, = —9¢n_1Ms g shBxasinfya a)
o dy ~ 2 2ue” (chfxa—cosBya)?
And the square sum is
— 2 2172 Ms o2 1 _ChﬂXa'COSﬁ)Jla_k'Bz
=Hx"+Hy"=Ho 2#0’8 Ho (chBxa—cosBya)? (2

Therefore the force acted on a magnetic particle with the volume V, and the relative permeability X5 is given by

oH,\* _ ZVstMszr a*Ho (chfxa+cosBya)cosfya—(2—1/2-kB*)

mel Vp/loXs ox - ‘ (ChBXa COSﬂ]/a) ShﬁXa (33)
OH® 2V XsMsn®a*Ho (chfxa+cosBya)chfra—(2—1/2-kB%) .
me, Vp/JO Xs——=— ay = /3 (ChBXa_COS,BZ/a) 3 Slnﬁya (34)

2.2 Consideration to the case that the wire arrangement is in aprallel with the field

The potential shown in Fig. 10 is given by (Annexe 5)
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om,(x, y)=—yHo +%/Io—sm_ m}—g% =—yHo+ d;}yfs 7; (Chﬁzin—ﬁcygsﬁya) (39)
Consequently,
H. __O0Pm _ 1 e shfxae:sinfya .
: ox 2" (chBxa—cosBya) (36)
o == Hom b B e m
And also

—chBxa cosBya—1/4-kS° (39
(chfBxa—cosBya)?

Hl= szz +Hy22 = 02 +12VI-5 BZHQ 1
o
Accordingly, the force components in this case are given by

0H} _4xXsMsHob* LBE,(ch,li’xrl—cos[i’ya)cosﬁya—2-{—1/2'/e,B2 shBra %)

ox 3 da (chBxa—cosBya)®

Fox, :’%— VptoXs

_1 0HZ _ 4xXMHob> 1 ,5(chfxa+cosBya)chBra—2+1/2-kB% .
Fry.= 2 VouoXs dy 3 4a£ (chBxa—cosBya)’ sinfya

3. Equation of motion for a particle
Let the stream speed and the particle velocity v, and v, respectively. The drag force Fp acting on a particle

with the radius b is

Fo=677b(v,—v5) (0)]
Now, the motion of particle is decided by the following relation.
Fo+Fn=10 (‘0]

|V Yo

H— Ji\ —Vo  Hqe— % § Y %
IHo IH.,

(a) (b) (c) (d)

Fig. 11. Relation among the wire arrangement, the flow
direction and the external field.

And, apply the equation of motion to the case shown in Fig. 11.
Case (a)

The components are given by

dx# Fm)n
42‘ = fo,v’" 67(77b (43)
dy _ Fuy,
dt _vfy‘+67l'77b (44)

Accordingly,

1, shfxe'sinBya 1 paf vm\(chBxa+cosBya)chBxa—(2—1/2-kB*) .
dy_ _ ZBC’(chﬁxa—cos[i’z/a)2 4ﬂ(vo> (chfxa—cosBya)’ sinfya @

x 1 ,, 1—chBxacosBya , 1 3<g_@> (chBxa+cosBya)cos Bya—(2—1/2-kB?)
1+ 2 e (chBxe—cosBya) + 4 B Vo (chBxa—cosBya)? shfxa
;
where vm=w is called “a magnetic velocity”. If £ =0 (this assumption may be comparatively good

9na
as shown in the preliminary consideration and the influence on capture radius by £ is considered elsewhere®),

the following solution is obtained.

sinfya +%aﬂz shBxa:sinfBya

1 _
Va5 hes (chpBxa—cosfya) (chBxa—cos Bya)* =const. (46)
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where
=27 and ﬂzzljﬂ
0
Case (b)
Similarly,
Qﬁ _ me,
dt _fo2+67r71b
me
dt =% b
Then,

1 +—1—,82c chfBxa-cosBya—1

(chBxa—cos Bya)® sinfya

L1 ( )(chﬂxa+cosﬁya)chﬂxa~(2 1/2-kB%)
dy_ 27 “*(chBxa—cosBya)’ Ty
dx 1 ., shBx."sinfya Um
P C2(chBxa—cosBya)® ﬂ

Likely, when £ = 0, the solution is given by

(chBxa+cosBya)cosBya—(2—1/2-kS*)
) (chBxe— cos,é’ya)3 shfxa

(&

shfBxa 1 ap? shfBxa-sinfya

*eTg Bcz(chﬁ —cosfBya) (chfBxa—cosBya)? =const
Case ()
dx_ mez
dt U“‘+67n7b
p— meZ
dt ZU”‘—'_Glmb
Then
1 5. shfxa'sinBya (ctha—i-cos,Bya)ch,Hxa (2—1/2-kB?) .
dy_ i (ctha cosBya)’ B (v ) (chBxa—cos Bya)® sinfya
dx 1 +vﬂzc —chpBxa cosﬂya_l ( \(chBxe+cosBya)cos Bya—(2—1/2+ kB?) shg
27 =Y ch,Bxa cosBya)’ G (chBxa—cosBya)® a

Similarly, when % = 0, the solution is following.

1,  sinfya 1 ., shfxe-sinfya _

) BC‘(chﬂxa—cosﬂya) g (chBxa—cosfBya)? =const.
Case (d)

ﬂ_ mez

dt VT 677b

@ =y mez

dt ront 67nb
Accordingly,

1+L6262chﬂx4-cosﬂya—l _ ) chBxa+cosBya)chBra—(2—1/2- kS*)
Vo

Siﬂﬂya

1
dy_ 2 (chBra—cosBya)’ 47 < (chBxa—cos Bya)®
dx shpBxae sinBya 1 n'\ (chfBxa+cosBya)cos Bya—(2—1/2-kB*)
AR 4 Ch <_> - (chBxa— cozﬁya)3 shfxa

1,
2 €2 chBxa—cos Bya)
Similarly, when % = 0, the solution is gotten.

shfxa 1 ., shfBxa'sinfya _
) Bcz(chﬁ —cos fYa) tyab (chBxa—cos Bya)? =const.

The results which are obtained in the method described above are summarized in Table T .

4. Examples of particle trajectory

13

(50

Some examples of locus obtained by the equations of motion derived in the preceeding paragraph are shown

in Fig. 12 and Fig. 13. Fig. 14 shows that of the limiting case #/a— oo, that is, for a single wire.

5. Capture radius

The capture radius for each case is obtained by the particle trajectory equations. The results are given in
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Case|Arrangement of Motio for %/a - e
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Case(a) \
H

Const=2.5

B a/l=115
I

Formula
(50) *a¥a

| 2 —]

|
|
L

H v - ———+(v_/v )
s \ @ | 2o—=° YaT ey 2 Y
5_“___.r___“__ 5 R PR Formula a a
45 Xy
\\ / \‘ P (46) X__aza 5—,= const.
= (x “+y. ")
3 | v
a.,

1 [
Y
\ 05 v y_- = -(v_/v )
] o a 2 2 m’ "o
oL L \éu—///‘/— (c) = | Formula Xy Ty
), - 3 2 - 0 — x! 2 3 4 5
a I (54) y X ¥ B
Fig. 12. Typical particle trajectory for the Hy (x_ 2ty 2)2_c°“5t’,
case (a) or (d). I x
a
v x_- +(v_/v_)
o a 2 2 m’ "o
25 \ - (@) Formula Xa TV,
(58) Xy
HCJ X%T2=const.
(x_"+y

L N
N1
N

Table I. Equation of Motion for each Case.

Z 10
0 [§ 3 A 5 7
— X r Capture Radius 1
al=1/s
-1 g
) — ——Case(a)(c) -
Jf—— -mitase(b)(d)
-2 - 9 —— :Single Wire /
5 AL 3
Case (b) 5
a/l=1/5 8
Al
Vel Vo= 50 7
Fig. 13. Typical particle trajectory for the
case (b) or (c). o
| .01 K — WV |1 10 100
i Fig. 15. Capture radius.
6 B I B 3
. | 00—
T : =
5 3 5
- 3 |
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4 1 El !
. Single .Wire | \cw/\/’_ § |
13 Yol Vo= 50 | k! 50 i
i
%
, : \l A I
s 1 L5
N T g
0 0
! - - -2 -1 0 _'Xq] 2 3 4 5 201 R — V/Ve 1 10 100
Fig. 14. For the case of a single wire. Fig. 16. Capture percentage for case (a).

Fig. 15. In the case (a)the circumstances that all particles are captured are come about. Therefore the capture

ratio for particle is shown in Fig. 16.
IV. Conclusion and Acknowledgment

The expressions on trajectory among multiple wire arranged in a line are given on condition that £ =0

and the capture radius is obtained. For the influence of £ over particle trajectory the tendency is examined also.
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With the formula obtained will be possible the extension for the case of many parallel wires.
The author is grateful to the collaborator Prof. S. Uchiyama, Nagoya Univ., and to the attendants of the

Session 3C at the Second Joint INTERMAG-MMM Conference in 1979.

Annexe 1
Solution of Eq. (13)
dra__ 1 [k >
do _sinZH( Ya +7ac0820 &
That is,
dva k

—cot20- Ya= o in20

do

. _ d?’a _‘ﬂ ﬁ_ 2 2k
Putting r,= u, then 27, 20 —do And 27, 70 2cot28- 74 Sin2d

Then, the solution is given by

zfc0t25d9[ Sii];@ 272I60t29d6d9+c] :emlsinzel ( — keot 20+c¢)

u—=e

Therefore
re =|sin26|( — kcot 20 +c)
Consider principally the region 0 <@ s%, then

7a*=csin20— kcos 20 1-1)
=¢’sin2(6—a) (1-2)
where ¢’ =y c?+k? |, tan2a=£k/c
For a initial position we take » =7, and §=6,, then
70?2 = csin28o—kcos 26, (1-3)
therefore
7 7' +2k7e>cos 200 + k*
(g— 2 2 0 0
cEvCtE = sin26,
tan2a=*%/c=Fksin200 /(70> + kcos 20,)
And also, by
c=(7o*4 kcos28,)/sin20, . (1-4)
Applying (1-4) to (1-1), the following formula is gotten also*.
270’ +kcos200 . opn _ sin26 o
T sin20 — kcos = sn28, ro+E(cot 28, sinf—cos26) (1-5)

Annexe 2
The stream potential function for a single wire with radius a is, as known well, given by®’

2
a
w=z+—
z

For the case of the arrangement of multiple wires lined along y-axis with interval ¢, the expression is given by

o

_ & N[ & a ]_ z[i 1 ]
w_z+z+mzl[z—iml+z+z’m€ =zta z+zzz zZ'+(mé)*

m=1

Now, with coth z =L+222 S —
z

m=1

Accordingly,

coth( -2) T 12) +2(52) ), WZ%[%”% )
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Then the following expression is obtained.
a’n ya
7 (z Z)

Annexe 3

For the case arranged along x-axis, the expression is given by

—er L) (5
a)—z-f-z-i— P
m=1

wrt st (3], w )

Now,
cotz=i+222 3 7
z L 2" —(mr)
Therefore
o= s (5]
Annexe 4

£

Caleulation of f(m)=)| Lt

6)

Representing its Fourier transformation by f (27n), the following expression is obtained.

—i2nnt

dt

f(27m /—f x+(y M)ze
Putting y —tl=—y, k=2an/l

y _L sy 1 X —iky,
f(27m)—£ e Ner: [mx2+g/12 e dy:

While, for x >0

ey, :\/_?e';"‘ for k>0
= % e;'k for £<0
For x <0
[y, Z@{‘; for &> 0
= 127—-@_‘)‘; for k<0

Therefore, for x > 0

\/'7rf(27rn):% g Rx+i) for >0
:%ek(x—iy) for k<0

For ‘x <0
\/erﬁ(Zﬂn)=—%e""‘""y’ for £>0
:_% g~ XTIy for k<0

Accordingly, for x > 0

© —co

e

2m .
7 (x=iy)

Z Z —ZM—(xﬂy) Z 6275"
L x +(_z/ ml)Y ¢

nzfl 1—-e

:_71'_[ sh2zx/4 ]
¢ ch2nx/é—cos2mylt

i{ 1
l —ZT"(xﬂ'y) 1 _e—gli(x—iy)

J
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And also, for x <0

X -2
mZ_m;vcz—i—(y—m{)2 -

Annexe 5

[ sh2zx/l ]
ch2rx/l—cos2ry/?

~
A\
s
o
o
13
%
1
¢
+
>
[\
|
.
N
%
+
€
A —
ESE

Calculation of f(m)= z x—'%y_y%

Similarly, by the Fourier transformation

c_y—t —i2znt
f2rn)= ,/—nfeexz—t-(y—té)ze dat

Putting y—té=—y,, k=2mn/¢

C_n 2y Y1 _ L1y 1Ty,
f(27m ﬁfmxz_i_ylz e 't 7 7 e m[mxz_’_ylz e dy:
While, for x >0
1 r= —ikyy L _x
7—2—7r/:mx21¢y12 e U dy, ——&gn(k),/%e 1l
Therefore, for x > 0
\/ﬂf(Zﬂn):—% g kT for £>0
:A}e""“"y’ for k<0
For x <0
/2_7rf(27m)=—% ehtx— for £>0
=g ey for £>0

hen 7 =0, the following is obtained.

g

On account of £(0)=0
For x >0

mZ— Y—fm ZZ e_—(x+ry)+ Z

n=—l

___l[ sin2xy/¢ ]
¢ ch2rmx/l—cos2myl?

And also, for x < 0

8
|
8

i y———i ”2 et :L[JZ@LJ
L x P+ (y—md)? 4L ey ¢ Lch2nx/é—cos2my/t
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