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An Appropriate Method for
The Maximum Capacity Route Problem [ I ]

Ichibei KUDO, Makoto BITO
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The maximum capacity route problem is to find a route R = {( s, 1), (i, j), -+, (k,m), (m,t) } from the source
s to the sink t wnose capacity c(R) “J:ER(i, j)min ¢;j is maximum, where c¢;j is the capacity of the directed edge (i, j).
It is the route that allows the greatest flow from s to t.

Let B = (S, F) be a subgraph of a given directed graph G = (V, E) such that, for every i € S, B contains a
unique route from s to i, that is ,B is a directed tree rooted at s. We shall describe a simple labeling procedure for
gradually expanding the directed tree rooted at s. Each time the tree is expanded, the new tree, B, will be assigned
a value h(B). When the tree B reaches the sink t, B contains an unique route from s to t which is the maximum
capacity route in G with the capacity h(B).

i) Start with B = ( |s}, ¢) and h (B) = o
ii) Given a tree B = (S, F) with t € S, from a new tree B' = (S, F') as follows: First, find the value ¢ such that,

1) c=max {cn:rEsandje T}
where T = V — S. Then, define a subset, D, of the cut (S, T) as
(2) D={@G1j/G)He @ T) and cs= hj,
where
(3) h =min {h(B), c}.
Also let
(4) K={keT/(Gk) D}

Now, for every k € K, we select an edge (i, k) € D and add to F to from an new F'. And also
S'=S U K. Then, set

5) h(B') = h.
At this point, one may define a capacity transformation
(6) c'. = h for every (i, k) € D,

though it is not essential in our algorithm. We, thus, simply repeat this tree expansion until either the tree
reaches the sink t, or the cut (S, T) for a tree B = (S, F) is empty.
= [t is to be noted that, by the way of constructing the tree, B = (S, F), and defining h(B), the route in the tree
from s to any i & S has a capacity equal to or greater than h(B). In particular, when a new tree B' = (S, F') is
formed from B = (S, F) by adding new vertices K, the route in the tree from s to any k € K is equal to h(B').
When the capacity transformation defined in (6) is also performed during procedure, the edge capacities along the
route, { (s, 1), (4, j) ---, (m, n) }, in the tree B = (S, F) from s to any n € S from a non-increasing sequence, i.e.,
Csi > Cij > -+ > Cma, and thus the route capacity is determind by the capacity of the last edge, (m, n), along the
route. We now show,
Theorem: When the tree B reaches the sink t, the route in the tree from s to t is a maximum capacity route
in G with the capacity h(B).
Proof: Since any route, R, from s to t and any cut, C, separating s and t in G, have at least an edge, (p, q),
in common, i.e, R N C % ¢, we have
c(R) < ¢pp < m(C), where
(7) ¢(R) = min {¢;: (i, j) € R} and
(8) m(C) = max {c;: (i, j) €C}.
Hence, if we specify a procedure to find a route, R*, such that c(R*) = m(C*) for some cut, C*, then R* is
proved to be a maximum capacity route.
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Now, let B* be the tree which reaches the sink t for the first time, then h(B*) is the capacity of the route R*
in the tree from s to t. However, by the way in which h(B) is determined by the procedure described in (1), (3) and
(5), h(B*) represents the value ¢ = maxf{c;j:r& S, j& T} for some cut (S, T) with s S and t & T. This
completes the proof.

If the procedure stops short of reaching t, the cut (S, T) for some tree B = (S, F) is empty and there is no
route from s to t in G. Since the set S expands by at least one vertex at each iteration, the tree will necessarily
reach t if there exists at least one route from s to t in G.

In fact, our algorithm provides a new proof to the min-max theorem concerning routes and cuts which was
first pointed out by D. R. Fulkerson:

Theorem: let ¢c(R) and m(C) be defined as in (7) and (8), then
max c¢(R) = min m(C)
ReR cecC

where R is the collection of routes from s to t in G, and C is the collection of cuts separating s and t in G.

As a variation of the algorithm, given a subgraph B = (S, F), one may from a new subgraph B’ = (S, F) by
adding all edges of D defined in (2) to F. Then, the expanding subgraph may not be a directed tree and when the
subgraph reaches t for the first time, any route in B from s to t is a maximum capacity route.

Example:

We shall find a maximum capacity route in the following mixed network. The transformed capacities will

be indicated by the symbol—( ) along edges. The labeled edges show the tree B when it reached t for the first time:

20—(12)

12 @\11 10 ® 6
% O T=1—"6 k
) / ©

7
® ®10-(9)

Stepl:S:{s};ST—{sA)(sC( B) !
= min {o0,12} = 12, K = {A}.
Step2: S ={s, A}; (S,T)={(, B), (s, C), (A, B), (A, C), (AE)},
h = min{12, 20} = 12, K = {E}.
Step3: S= s, A El; (5T)={(sB) (s C), (A B),ACQC),EQCQC,ED),ETFE,E?t}
h =min{l12, 11} =11, K = {C, B}.
Step4: S=1Is5,A B, CE I}, (S T)={@®BF),BD),CD),ED),ETF,E'1t},
h = min {11, 15} =11, K = {D}.
Step5 S=1s, A, B,C,D,E}; (5, T)={BF), D1, EF),E?,
h=min{ll, 9 =9, K = {F}.
Step6: S=1s,A,B,C,D,E F}; S§T)={(D,t), E1) F1t)}.
h=min{9, 10} =9, K = {t}.
t € S, terminate. The terminal value O +h = 9.
The maximum capacity route = {(s, A), (A, B), (B, F), (F, t)} with the capacity 9.
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