光化学スモッグに関する基礎研究――

ョウ化カリウム水溶液と窒素酸化物の間の反応性(3)**

佐野 慄, 太田 洋, 中村 善之*。

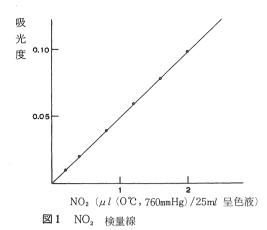
A Basic Study of Photochemical Smog—the Chemical Reactivity of Nitrogen Oxides to Aqueous KI (3)

Isamu SANO, Hiroshi OHTA, Yoshiyuki NAKAMURA

窒素酸化物に係る環境汚染の諸問題 例えば光化学 スモッグのオキシダント測定値の信頼度,固定・移動発生源に対する窒素酸化物排出量の抑制など に関し, 筆者は一,二の基礎的知見を獲得する目的で,数年来, 窒素酸化物,とくに二酸化窒素,とヨウ化カリウム溶液の間の反応につき実験的研究を行なっているので前報に 引続き,ここに第二報を提出する。

実験方法

乾燥した硝酸鉛を等量の白砂と混合し,試験管に入れて加熱すると,数分後,試験管内は赤褐色の気体で充満する。これが二酸化窒素で,他に酸素を含んでいる(2 Pb(NO_3)。 \rightarrow 2 PbO $+O_2+4$ NO_2)。この混合気体を注射器で1 m_l 採取し,褐色瓶($120m_l$)に注入して空気で稀釈し,保存する。内容積 $75m_l$ の試験管若干本にヨウ化カリウム溶液(1 %あるいは10%) $15m_l$ ずつを,また同大の他の試験管若干本に二酸化窒素の出発濃度を知るために吸収液(0.1N 水酸化ナトリウム溶液) $20m_l$ ずつを入れ,これらの各試験管に出発濃度が $20\sim40$ ppmになるように,保存してある空気稀釈の二酸化窒素を注入,テフロンシリコン栓で密栓した後,ヨウ化カリウム溶液を入れた試験管は実験の最初と最後に2 分間程度それぞれ


振盪した。各反応時間(15,30,45および60分)毎に,順次,試験管 1 本ずつについて気相中の二酸化窒素濃度とヨウ化カリウム溶液中の遊離ョウ素量を測定し,これらの結果から反応の進行状況を追跡した。反応温度は15,20および25℃で,室温を調節することにより,それぞれ,一定(± 0.3℃)に保った。

二酸化窒素濃度の測定:日本工業規格, K 0104 (1974), 排ガス中の窒素酸化物分析法, N-ナフチルエチレンジア ミン法によった(適用範囲:5~500ppm)。 吸収液(0.1 N水酸化ナトリウム溶液) 10 ml を入れた注射器 (容量: 50ml)を用意し,二酸化窒素をこれに吸収、2分間振盪 した後メスフラスコ(25ml)に移し*1,発色液4ml*2を加え て発色させ(橙赤色),さらに吸収液を標線まで加えて密 栓し,室温下に30分間放置した後,光電分光光度計で吸 光度を測定し(波長:545nm),検量線(図1*3)から二酸 化窒素濃度を知った。二酸化窒素の出発濃度については, 二酸化窒素を吸収させた水酸化ナトリウム溶液 20 ml の 内10.mlをメスフラスコ (25 ml) に移し,以下,上と同様 の操作を行なって濃度を決めた。

遊離ヨウ素量の測定:光電分光光度計で吸光度を測定し(波長: 352nm),検量線(図 2 , 3^{*4})から遊離ヨウ素量を求めた。なお、ヨウ化カリウム濃度が1および10%の場合には光などによる影響が多少とも認められるの

- * a 第8回中部化学関係学協会支部連合秋季大会(昭和52年10月)で発表
- * b 環境工学研究所
- * c 応用化学科
- *1 さらに注射器内を吸収液で洗い, これもメスフラ スコに移した。
- *2 スルファニルアミド溶液(スルファニルアミド1
- g+ 塩酸 (1:1) $100 \,\mathrm{m} l$) $2 \,\mathrm{m} l$ とナフチルエチレンジアミン溶液 $(\mathrm{N-(1-}$ ナフチル) エチレンジアミン二塩酸塩 $0.1\mathrm{g+}$ 水 $100 \,\mathrm{m} l$) $2 \,\mathrm{m} l$
- *3 横軸:呈色溶液25ml中のNO₂量, μ_l(O°C, 760 mmHg)
- * 4 横軸: ヨウ化カリウム溶液1ml中のI2 量, μg
- *5 対照液:蒸留水

でブランク値(二酸化窒素と接触させることなく同様に 処理したヨウ化カリウム溶液のヨウ素量)を差引いて残 りを真の遊離量とした。

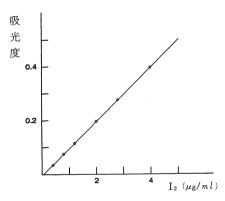


図2 I₂(1%KI溶液)検量線

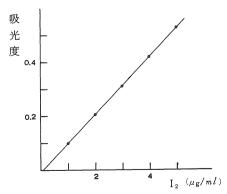


図3 I2(10%KI溶液)検量線

実験結果とその考察

表 1 に実験結果を示した。表中の二酸化窒素反応量 p (モル) およびョウ素遊離量 q (モル) の計算式はそれぞれ下の通りである。

表1 実験結果

(I)溶液濃度:1%* (1)反応温度:15℃

	1	NO	I 2		
反応時間	山区公地市	NO ₂	反応量	遊離量	反応比
t (分)	出発濃度 A(ppm)	残存濃度 B(ppm)	p×10 8(mol)	q×10 8 (mol)	q/p
C ()37	Tr (ppin)	- (PP)	F - 20 ,	1	
15	24.8	4.6	5. 12	0.49	0.096
	25.2	2.3	5. 81	0.60	0.103
	28.8	2.7	6. 63	0.81	0.122
	30.2	2.3	7. 08	0. 57	0.081
	30.2	1.4	7. 31	0. 98	0.134
	30.5	1.7	7. 31	0. 73	0. 10 ₀
	32.0	3.8	7. 16	0.65	0.091
	33.1	1.8	7. 95	1.06	0. 133
	33. 2	0.9	8. 20	1. 16	0. 141
	35.2	2.8	8. 23	1. 24	0. 151
					0. 12
30	23. 7	2.3	5. 43	0. 41	0.076
	24.7	3.2	5. 46	0. 51	0.093
	28. 7	1.8	6. 83	0. 75	0.11 ₀
	29.2	1.4	7. 06	0. 70	0.099
	29.9	1.4	7. 24	0. 54	0.075
	31.8	1.4	7. 72	0. 67	0.087
	32.9	0.4	8. 25	1. 16	0. 141
	34.9	3.3	8. 02	1. 21	0. 151
	43.1	3.7	10.00	1. 15	0.115
	45.4	6.3	9. 93	1. 20	0. 121
					0. 11
45	21.1	2.7	4. 67	0. 44	0.094
	22.4	2.3	5. 10	0.46	0.090
	29.6	2.3	6. 93	0.65	0.094
	31.5	2.3	7. 41	0. 70	0.094
	32.6	1.0	8. 02	1.18	0. 147
	34.6	1.4	8. 43	1. 32	0.157
	37.4	3.7	8. 56	0. 99	0.116
	38.0	7.0	7. 87	0, 97	0. 12 ₃
					0. 11
60	24.2	3.3	5. 31	0.44	0.083
	24.6	2.4	5. 64	0. 47	0.083
	29.2	4.6	6. 25	0. 78	0.125
	29.4	1.8	7. 01	0.52	0.074
	31.2	2.7	7. 24	0. 75	0.104
	31.6	8.1	5, 97	0. 72	0.121
	32.3	2.4	7. 59	1.00	0.132
	34.3	3.4	7. 85	1. 21	0.154
	38.2	2.8	8. 99	1. 01	0.112
	38.9	3.7	8. 94	1. 10	0.123
					0.11

(2)反	広温	噟	٠	20	r

		T =	i		
反応時間	. (. = ×	NO ₂	I 2	反応比	
t (分)	出発濃度	残存濃度	反応量	遊離量	q/p
	A (ppm)	B (ppm)	p×10 8 (mol)	q×10 8(mol)	
15	27.8	2.8	6. 24	0. 73	0. 11 7
	29.6	2.3	6. 81	0. 84	0.123
	31.5	2.3	7. 29	1.05	0.144
	33.4	6.5	6. 71	0. 97	0.145
	37.7	2.8	8. 71	1. 18	0. 13₅
	40.1	3.8	9.06	1. 18	0. 13 ₀
					0. 13
30	27.6	1.8	6. 44	0. 78	0. 121
	29.3	1.4	6. 96	0.89	0.128
	31.2	1.4	7. 44	0. 99	0.133
	33.1	2.8	7. 56	1. 07	0.142
	37.4	2.4	8. 74	1. 10	0.126
	39.7	2.4	9. 31	1. 13	0.121
					0. 13
45	27.3	2.4	6. 21	0. 92	0. 148
	29.1	1. 4	6. 91	0.91	0. 13 ₂
	30.9	1.8	7. 26	1.05	0.145
	32.9	2.4	7. 61	1.05	0.138
	37.1	3.3	8. 44	1. 18	0. 14 ₀
	39.4	2.9	9. 11	1 07	0. 11 7
					0. 14
60	27.1	4.3	5. 69	0. 68	0.12 ₀
	28.8	2.5	6. 56	0. 91	0.139
	30.6	1.8	7. 19	0. 88	0.122
	32.6	2.5	7. 51	0. 94	0.125
	36.7	5.5	7. 79	0. 97	0.125
	39.1	2.9	9. 03	1. 20	0.133
					0. 13

(3)反応温度:25℃

C:ctnt:88		NO ₂		I ₂	反応比
反応時間	出発濃度	残存濃度	反応量	遊離量	121010
t(分)	A(ppm)	B (ppm)	p×10 8 (mol)	q×10 8 (mol)	q/p
				0.05	0.11
15	26.3	3.4	5. 62	0. 65	0. 11 6
	28.0	2.8	6. 18	0. 75	0.121
	29.1	3.3	6. 33	1.02	0.161
	30.9	2.9	6, 87	0.89	0.130
	34.9	5.2	7. 29	1. 05	0.144
	37.1	4.8	7. 93	1. 23	0. 15 ₅
					0. 14
30	26.1	2.5	5. 79	0. 65	0.112
	27.7	1.9	6. 33	0. 75	0.118
	28.9	2.8	6. 40	0. 78	0.122
	30.7	2.4	6. 94	0. 81	0. 11 7
	34.6	4.2	7. 46	0. 97	0.130
	36.8	3.6	8. 15	1.15	0.141
					0. 12

25.9	4.4	5. 28	0.70	0.133
27.5	2.4	6. 16	0.80	0.130
28.6	3.3	6. 21	0.81	0.130
30.4	2.3	6. 90	0.86	0.125
34.3	4.3	7. 36	1.02	0.139
36.5	3.7	8. 05	1. 20	0. 149
				0. 13
25.6	1.9	5. 82	0, 54	0.093
27.3	2.9	5. 99	0.72	0.12 ₀
28.4	2.8	6. 28	0. 68	0.108
30.2	2.4	6. 82	0.84	0. 123
34.0	4.3	7. 29	0.88	0.121
36.2	4.0	7. 90	1. 20	0. 152
				0. 12
	27. 5 28. 6 30. 4 34. 3 36. 5 25. 6 27. 3 28. 4 30. 2 34. 0	27.5 2.4 28.6 3.3 30.4 2.3 34.3 4.3 36.5 3.7 25.6 1.9 27.3 2.9 28.4 2.8 30.2 2.4 34.0 4.3	27. 5 2. 4 6. 16 28. 6 3. 3 6. 21 30. 4 2. 3 6. 90 34. 3 4. 3 7. 36 36. 5 3. 7 8. 05 25. 6 1. 9 5. 82 27. 3 2. 9 5. 99 28. 4 2. 8 6. 28 30. 2 2. 4 6. 82 34. 0 4. 3 7. 29	27.5 2.4 6.16 0.80 28.6 3.3 6.21 0.81 30.4 2.3 6.90 0.86 34.3 4.3 7.36 1.02 36.5 3.7 8.05 1.20 25.6 1.9 5.82 0.54 27.3 2.9 5.99 0.72 28.4 2.8 6.28 0.68 30.2 2.4 6.82 0.84 34.0 4.3 7.29 0.88

* ブランク値: (0.5~0.6)×10⁻⁸ mol

(Ⅲ)溶液濃度:10% ** (1)反応温度:15℃

-	反応時間		NO 2	I_2	反応比	
		出発濃度	残存濃度	反応量	遊離量	q/p
	t (分)	A(ppm)	B(ppm)	p×10 8 (mol)	q×10 ⁸ (mol)	4/1
	3	29.1	9.6	4. 95	3. 35	0. 67,
	3	29.1	7.6	5.64	3. 10	0.550
			3.5	7. 26	3. 68	0.507
		32.1		7. 20	3, 46	0. 487
		32.6	4.6	6. 17	5. 16	0. 836
		39.0	14.7	7. 16	5. 13	0.716
		39.7	11.5		5. 85	0. 638
		43.4	7.3	9. 17	6.04	0.678
		44.1	9.0	8. 91	0.04	0. 64
	15	00.0	4.2	4. 77	2. 30	0. 489
	15	23. 0 24. 1	4. 2	4. 95	2. 75	0. 556
			8.7	3. 99	2. 41	0.604
		24.4	4.5	5. 36	2. 41	0. 45
		25.6	9.6	4. 24	2. 58	0. 60 8
		26.3		4. 82	2. 52	0. 523
		28.3	9.3	5. 94	3. 96	0. 667
		31.8	8. 4 7. 5	6. 68	3. 90	0. 584
		33.8	5.3	10. 61	5. 61	0. 529
		47.1	5.8	11. 22	6. 24	0. 556
		50 0	3.0	11. 22	0. 24	0. 56
	30	22.8	4.4	4. 67	2. 03	0. 435
	30	23.9	4.4	4. 90	2. 43	0. 496
		24.2	2.5	5. 51	2. 80	0. 50 8
		25.4	3.0	5. 69	2.75	0. 483
		26. 0	12.0	3. 55	2. 58	0. 727
		1	8.4	5. 00	2.52	0. 523
		28.1	6.5	6. 37	3. 66	0. 523
	31.6		9.2	6. 17	3. 96	0.642
		33.5	1	10. 56	4. 71	0. 44 6
		46.7	5. 1 6. 5	10. 56	5. 64	0. 51 6
		49.6	0.3	10. 34	3, 04	$\frac{0.51}{0.54}$
		1	1		1	10.04

45	22.6	4.4	4. 62	2. 25	0.487
	23.7	3.7	5. 08	2. 55	0.502
	24.0	4.2	5. 03	2.41	0.479
*	25.2	5.3	5. 05	2. 55	0.50₅
	25.8	10.0	4. 01	2. 73	0.681
	27.8	8.0	5. 03	2. 70	0. 537
	33.3	4.8	7. 24	3. 84	0.53,
	46.2	7.5	9. 83	4. 62	0.470
	49.2	6.8	10. 77	5. 11	0.474
					0. 52
60	22.4	4.3	4. 60	2. 22	0. 483
	23.5	5.1	4. 67	2. 35	0.50 ₃
	23.8	4.2	4. 98	2. 41	0. 484
	24.9	5.5	4. 93	2. 49	0.50₅
	25, 6	9.8	4. 01	2. 79	0.696
	27.6	8.9	4. 75	2, 58	0.543
	33.0	5.6	6. 96	4. 14	0.59₅
	45.8	13.0	8. 33	4. 47	0, 537
	48.7	4.9	11. 12	5. 14	0.462
					0.53

(2)反応温度:20℃

巨点時期		NO ₂		I ₂	反応比
反応時間	出発濃度	残存濃度	反応量	遊離量	
t (分)	A (ppm)	B (ppm)	q×10 8 (mol)	$q \times 10^8 (mol)$	q/p
3	13.7	5.3	2. 10	1. 38	0.657
	15.7	5.5	2. 55	1. 83	0.718
	15.9	7.6	2. 07	1. 47	0.71 0
	20.6	5. 9	3. 67	2. 29	0.624
	20.9	5.0	3. 97	2. 15	0.542
	25.4	12.8	3. 19	2. 66	0.834
	25.8	7.6	4. 54	2.69	0.593
					0. 67
15	24.0	4.3	4. 92	2. 99	0.608
	25.5	0.4	6. 26	3. 59	0. 57 ₃
	31.8	8.7	5. 77	3. 61	0.626
	34.3	5.6	7. 16	3. 95	0.552
	34.3	12.3	5. 49	3. 37	0.614
	36.4	6.0	7. 59	4. 16	0.548
	38. 1	8.7	7. 34	4. 08	0.556
	41.1	17.7	5. 84	3. 78	0. 64 7
					0, 59
30	23.8	6.0	4. 44	3. 24	0.730
	25.3	2.5	5. 69	3. 47	0.610
	31.6	9.0	5. 64	3, 45	0.612
	34.0	6.7	6. 81	3, 98	0.584
	34.0	7.9	6. 51	3. 80	0. 584
	36. 1	4.9	7. 79	4.04	0.519
	37.8	4.9	8. 21	3. 75	0. 45,
	40.8	7.6	8. 29	4. 02	0.485
					0. 57

45	23.6	4.9	4. 66	3. 45	0.740
	25.1	3.4	5. 42	3. 62	0.668
	31.3	9.9	5, 34	3. 29	0.616
	33. 7	4.5	7. 29	4. 16	0.571
	33.7	11.7	5. 49	3. 50	0.63 ₈
	35.8	4.1	7. 91	4. 25	0. 53,
	40.4	7.7	8. 16	4. 08	0. 50 ₀
					0.61
60	23.4	4.7	4. 66	3. 24	0.695
	24.9	3.0	5. 47	3. 73	0.682
	31.0	13.3	4. 42	3. 21	0.726
	33.4	5.2	7.04	4. 07	0. 57 s
	33.5	8.5	6, 24	3. 53	0. 56 6
	35.5	4.1	7. 84	4. 25	0.542
	37.2	8. 7	7. 11	3. 58	0.504
	40.1	6.1	8. 49	3. 86	0. 45 ₅
					0.59

(3)反応温度:25℃

反応時間		NO ₂		I ₂	
	出発濃度	残存濃度	反応量	遊離量	反応比
t(分)	A (ppm)	B (ppm)	p×10 8(mol)	$q \times 10^8 (mol)$	q/p
3	23. 7	8. 3	3. 78	2. 75	0.728
	24.0	5.3	4. 59	2.57	0.560
	27. 8	5.5	5. 47	2, 93	0.536
	28. 2	10.1	4.44	2. 88	0.649
	31.4	10.1	5. 23	3. 37	0.644
	31. 9	6.0	6.36	3. 13	0.492
	33. 8	9. 2	6.04	3. 78	0.626
	34, 3	7.9	6, 48	3. 58	0.552
					0.60
15	27.6	9.1	4. 54	3. 34	0.736
	29.0	5.6	5. 75	3. 13	0.544
	29.4	8.7	5. 08	3. 28	0.646
	31.3	6.6	6.06	3. 02	0.498
	38. 3	5. 8	7. 98	5. 18	0.649
	39. 5	13.8	6.31	5. 07	0.803
	40.7	5.6	8. 61	4. 69	0.545
	42.3	9.1	8. 15	4.41	0.541
	42.6	9. 9	8.02	4.69	0.585
	44.9	5. 2	9. 74	4. 53	0.465
					0.60
30	27.4	6.3	5. 18	3. 28	0.63₃
	28.8	4.9	5. 87	2. 99	0.509
	29. 1	7. 3 3. 6	5. 35	3. 57	0.667
	31.0		6. 73	3. 15	0.468
38. 0		7. 7 8. 8	7. 44	4. 39	0.590
	39. 2		7.46	4. 64	0.622
	40.3	5.0	8. 66	5.00	0.577
	41.9	7.9	8. 34	4. 51	0.541
	42. 2	7.9	8.42	4. 98	0.591
	44.6	4.4	9. 86	4.81	0.488
					0.57

45	27.2	6.0	5, 20	3, 25	0.625
	28.6	4.4	5. 93	3.02	0.509
	28. 9	4.6	5.96	3. 37	0.56₅
	30.8	3.7	6.65	3, 05	0.459
	37. 6	7.7	7.34	4. 45	0.606
	38. 9	9.9	7.11	4.47	0.629
	40.4	3.8	8, 88	4. 57	0.51₅
	41.6	7.5	8.37	4.72	0.564
	41. 9	8.3	8. 24	4.81	0.584
	44. 2	7.0	9. 13	4. 53	0.496
					0.56
60	26.9	5.0	5.37	2. 93	0.546
	28.3	4.6	5.82	3.05	0.524
	28. 6	8.1	5.03	3.54	0.704
	30.5	4.4	6.41	3.05	0.476
	37.3	7.7	7.26	4.36	0.601
	38. 6	8.7	7. 33	4.41	0.602
	39. 6	4.3	8.66	4, 54	0.524
	41.2	8. 7	7. 98	4.17	0.523
	41.6	7.9	8. 26	4. 72	0.571
	43.8	4.8	9. 57	4. 51	<u>0.47</u> ₁

** ブランク値: (1.6~2.5)×10⁻⁸ mol

NO₂ 反応量 (p モル):

$$p = \frac{(A-B) \times (V-15) \times 273}{22.4 \times (273+t)} \times 10^{-9}$$

V:試験管の内容積 (75 ml)

t:反応温度(℃)

ただし

A (NO₂出発濃度) =
$$\frac{C' \times 2^{*6} \times (273+t) \times 10^{3}}{(V-15) \times 273}$$

C':検量線からのNO₂の量 (μl)

B (NO₂残存濃度) =
$$\frac{C'' \times (273+t) \times 10^3}{v \times 273}$$

C":検量線からのNO2の量 (μl)

v:分析用に採取した気相の量(ml)

I,遊離量 (qモル):

$$q = \frac{C \times 15}{127 \times 2} \times 10^{-6}$$

C:ョウ化カリウム溶液1ml 中に含まれる I_2 の量 (μg)

表1を一瞥すると測定値に規則性がないように思われるかも知れないが,例えば 20° C,30分の場合を目盛ると(縦軸 (y): A-B; 横軸 (x): A), 図 4, 5 の 如くで,直線関係が存在する。他の場合も同様で,これらの直線関係 y=axについて傾き a を決定すると表 2 の通りである。

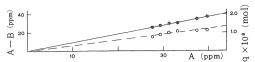


図4 二酸化窒素濃度減少量(A-B, ●)ならびに ョウ素遊離量(q,○)と二酸化窒素出発濃度(A) の間の関係(1%, 20°C, 30分)

図5 二酸化窒素濃度減少量(A-B, ●)ならびに ョウ素遊離量(g,○)と二酸化窒素出発濃度(A) の間の関係(10%, 20°C, 30分)

表2より、先ず、温度一定の下で、a は時間が短かい間は小さいが、長くなると時間に関せず一定となることが見られる。これは15分も経過すると二酸化窒素と溶液の間に平衡が、少なくとも近似的に、成立することを意味するものであろう。次に、温度が高くなるにつれて a が減少し、また溶液が濃くなる場合にも、やはり、減少することが見られるが、これは溶液に対する二酸化窒素の溶解度が関係していることを暗示するものであると思われ、この点を追究するために表2から表3を作成した。

表2 y = ax (y: A-B, x: A) のaの値 1 %溶液

温 度	時 間(分)					平均
(\mathcal{L})	3	15	30	45	60	平均
15		0.93	0.93	0.93	0.91	0.93
20		0.88	0.94	0.93	0.89	0.91
25		0.88	0.89	0.89	0.89	0.89
						0.91

10%溶液

温度		時 間(分)				
(C)	3	15	30	45	60	平均
15	(0.77)	0.82	0.82	0.82	0.82	082
20	(0.71)	0.79	0.82	0.82	0.82	0.81
25	(0.73)	0.78	0.82	0.83	0.82	0.81
						0.81

もし二酸化窒素とヨウ化カリウムの間に反応が起こらなければ表3の (A-B)/B は気体溶解に関するヘンリーの定数に該当する量であるが,実際にはaの値(表2)の反応温度や溶液濃度による変わり方から見て,先ず,溶解が迅速に完了し,次いで反応が進んでいるよ

^{*6} 二酸化窒素吸収後の水酸化ナトリウム溶液20mlから 10mlを分析に使用したことによる係数

表3 (A-B)/Bの値(平均)

温度	溶	液	
(C)	1 %	10%	
15	13.3	4.9	
20	10.1	4.3	
25	8.1	4.3	

うに考えられるので(A - B)の一部が溶液中の二酸化窒素溶存量*7を表わしてこれとBとの間にヘンリーの法則が成立し,残りが溶液中の二酸化窒素反応量であろうと思われるが,二酸化窒素の反応については事情が複雑で明らかでない。大体のところは前報 1)でも触れた通りであろうが,その他にも例えば次の可逆反応 2) 2 3 2 NO2 2

表4 反応比

1%溶液

温 度	温度時間(分)					平均
(°C)	3	15	30	45	60	7 5
15		0.12	0.11	0.11	0.11	0.11
20		0.13	0.13	0.14	0.13	0.13
25		0.14	0.12	0.13	0.12	0.13
						0.12±0.01

10%溶液

温 度		平均				
(℃)	3	15	30	45	60	+ 5
15	(0.64)	0.56	0.54	0.52	0.53	0.54
20	(0.67)	0.59	0.57	0.61	0.59	0.59
25	(0.60)	0.60	0.57	0.56	0.55	0.57
						0.57±0.03

^{* 7} 多分,少量。

*8 これらの反応によって、さらに、亜硝酸をも生じ、従って溶液は次第に酸性になることが認められ(溶液中に二酸化窒素を通じていると溶液は黄色から次第に赤色に変化し、pHが5前後に達するが、二酸化窒素を絶ち2時間程度放置するとpHは6前後に戻る)、一方、反応溶液中に NO_3 および NO_2 を検出することができる。なお、溶液は、最初、pH8 (10%) お

25℃,10%の場合に最も進み難いことが窺われる。

表 1 中の反応比(q/p)を通覧するとその値にバラつきが見られるが,これはヨウ素遊離量(q)の測定値にバラつきがあるからで,これについて一例をあげると図 4 , 5 で通りである。このために反応温度別に各経過時間毎の平均を求めた後,さらにこれらの平均を求めると表 4 の如くで,温度15~25°C,時間60分以内の反応比として溶液濃度 1 %の場合 $0.12(\pm 0.01)$ および10%の場合 $0.57(\pm 0.03)$ が,それぞれ,得られる。従って環境空気中の二酸化窒素濃度を10%溶液で測定し,0.3 ppm程度 *9 の結果が得られた場合にはオキシダント(オゾン)が見掛け上 0.3×0.57=0.17ppm と測定され,これは愛知県のオキシダント情報発令レベル(予報0.10,注意報0.15,警報0.30ppmなど)に入るので注意報が発令されることになる。

表5 y'=a'x' $(y':q\times10^8, x':A)$ の a'の値 1 %浴液

温度	温度 時間(分)					平均
(℃)	3	15	30	45	60	7 19
15		0.026	0.026	0.027	0.027	0.027
20		0.030	0.031	0.032	0.029	0.031
25		0.030	0.029	0.030	0.027	0.029
						0.029

10%溶液

温度		平均				
(\mathbb{G})	3	15	30	45	60	7 19
15	(0.13)	0.11	0.11	0.11	0.10	0.11
20	(0.11)	0.11	0.11	0.11	0.11	0.11
25	(0.11)	0.11	0.11	0.11	0.11	0.11
						0.11

なお,図 4 , 5 に見られる通りョウ素遊離量($q \times 10^8$ モル)と二酸化窒素出発濃度(Appm)の間に直線関係 y=a'x'($y':q \times 10^8$ モル,x':Appm)が存在するのでその傾き a'を読取ると表 5 の如くで,これと a(表 2)

よび 6 (1%) で, 共に無色。

*9 例えば名古屋市内50年度最高値(10%溶液)として守山保健所(守山区) 0.33oppm(1時間値), 51年度千竈観測所(南区) 0.23ppm(1時間値)が記録されている。因みに,国内50年度最高値は0.50ppm程度(1時間値)である(大気汚染研究全国協議会,大気汚染ニュース,No.98(昭52.1月)を参照のこと)。

とから次式

$$\frac{q}{p} = \frac{a' \times 10^{-8}}{\frac{a \times (V - 15) \times 273}{22.4 \times (273 + t)} \times 10^{-9}} = \frac{a'}{a \times \frac{1}{4}}$$

に従って反応比を算定すると,表6の通り,表4と良く 一致した値が得られる。

表6 aとa'から求めた反応比 1%溶液

温度		時 間(分)				
(°C)	3	15	30	45	60	平均
15		0.11	0.11	0.12	0.12	0.12
20		0.14	0.13	0.14	0.13	0.14
25		0.14	0.13	0.13	0.12	0.13
						0.13±0.01

10%溶液

温度時間(分)						平均
(℃)	3	15	30	45	60	+ 4
15	(0.68)	0.54	0.54	0.54	0.49	0.53
20	(0.62)	0.56	0.54	0.54	0.54	0.55
25	(0.60)	0.56	0.54	0.53	0.54	0.54
						0.54 ± 0.01

附記 前回 $^{1)}$ の実験結果では溶液 1%, 温度18.5~38.0° $^{\circ}$ の下で反応比が0.37であったが,今回は溶液 1%, 温度15~25° $^{\circ}$ 0の下で0.12と得られている(表 4, 7)。 この違いの原因は明らかでないが,今回の実験法は謂わば

表7 反応比の二,三の測定値

Name .	Set-	反	応	比
溶	液	(1)*	(2)	(3)
10	%	0.18		0.57
1 %		0.035	0.37	0.12
比		5.14		4.75

*愛知県環境部:環境大気測定法(第2編 汚染物質の 測定法)、昭47.3、P.50、図6·5 より筆者の読取り 値。なお、図の詳細については 東京都公害研究所:東 京光化学スモッグに関する調査研究(第一報)、昭46.7、 東京都 を参照のこと。

*10 なお、前回の実験法では壁面やスターラーによる 二酸化窒素の吸着の可能性があり、このために(A -B)の値に対しその影響分を考慮しなければなら ない場合も生じ得るが、今回の実験法ではこれを考 慮する必要は全くない。 密閉法で反応系の体積も小さいので(75ml),実際上,平衡が成立し易いのに対し,前回の実験法も,やはり,密閉法であるが反応系の体積が大きいので(18l)系内,とくに溶液内の均一化に万全でないと平衡の成立し難い虞れがあり,従って実験の精度が十分でない場合もあろうかと思われるが,これらの条件の違いが反応比の差となって現われたのであろう*10。

表7の(1)の欄は流通法による結果で、この測定法は環境行政上からは最も実践的であろうが、平衡成立前の値である可能性が強く真相を語っていないように思われる。ただし、相対値的に妥当であることは(1)および(3)欄の溶液間の反応比の比が共に5前後であることから察知できるところであろう。

引用文献

- 1) 佐野 惈・太田 洋・上野 純一:光化学スモッグ に関する基礎研究―ヨウ化カリウム水溶液と窒素酸化 物の反応性2), 愛工大研究報告, No.11 (1976), 167.
- 2) J. W. Mellor: A Comprehensive Treatise on Inorg. Theoret. Chem., Vol. VII (1958), 536.