木材が挿入配置されている鋼管短柱の圧縮特性に関する基礎研究 Compressive Behavior of Steel Tube Short Column with Wood Inserted

最大圧縮力 グラウト 内接 CFT 短柱 相互作用 加算

1. はじめに

前報 1)に引き続き,木材が挿入配置されている鋼管短 柱の圧縮特性について実験的に検討をしている。なお, 本報では,円柱木材が中央に配置されている鋼管短柱(以 下,木材配置型短柱),角柱木材が内接されている鋼管短 柱(以下,木材内接型短柱),木材内接型の隙間にグラウト を施した合成構造型短柱を対象としている。

2. 実験概要

2.1 使用材料

木材は市販の国産スギとした。なお、芯材と辺材を用 いている。鋼管は STK400-101.6x4.0, STK400-101.6x3.2 を 用いている。グラウトは水道水と普通ポルトランドセメ ント(密度: 3.15g/cm³)を使用した。

2.2 試験体作製

図-1 に,作製した木材配置型短柱,木材内接型短柱 および合成構造型短柱の断面の概略を示す。試験体高さ は鋼管公称径の3倍である。

木材配置型短柱は STK400-101.6×3.2 の中央に公称径 80mm の木材を配置している。また、木材の位置ずれを 防止するため、鋼管と木材の隙間に木屑を詰めている。 なお、芯材と辺材を配置した試験体を各1体作製した。

木材内接型短柱は,STK400-101.6×4.0 に角柱木材を内 接させている。なお,内接するようにカンナで削いだ角 材を使用している。また,芯材を使用した試験体を3体 作製した。

合成構造型短柱は、木材内接型の STK400-101.6x3.2 と 木材の隙間にグラウトを施している。木材を、吸水しな いようにラップフィルムを被覆している。グラウトの水 セメント比は 48%とした。

材料試験用に,木材配置型に用いている木材が切り出 された製材から公称高 180mm の円柱を木材縦圧縮試験 用として3体作製した。木材内接型および合成構造型に

会員外	〇猪原	健太郎,	Kentaro IHARA
同	渡邊	直也*	Naoya WATANABE
正会員	山本	貴正**	Takamasa YAMAMOTO

STK400-101.6x3.2 STK400-101.6x4.0 STK400-101.6x3.2 木材配置型短柱 木材内接型短柱 合成構造型短柱 図-1 試験体断面(概略)

用いている木材が切り出された製材から公称高 305mm の角柱を短柱圧縮試験用としてそれぞれ3体作製した。 グラウトの強度管理用試験体を,40×40×160 mmの3連型 枠(JISR 5201)で成形した。なお,合成構造型短柱の強度 試験実施日まで封緘養生している。

2.3 試験方法

短柱圧縮試験は,試験体の上下端の載荷板を固定とし, 変位を上下の支圧板間に設置した相対する 2 台の変位 計で見かけひずみ度を測定した。なお,鋼管および木材 配置鋼管短柱は,中央水平断面三等分点,木材内接鋼管 短柱は中央水平断面八等分点に二軸ストレインゲージを 貼付し,軸周ひずみ度を計測した。

木材短柱は、相対する一方向の側面にひずみゲージ, またその直交する側面にパイ型変位計を貼付し、軸ひず み度(以下,圧縮ひずみ度)を測定した。なお、圧縮ひずみ 度は、圧縮強度の40%に到達した以降、見かけひずみ度 の増分とした。各種鋼管短柱の圧縮ひずみ度を、鋼管の 降伏ひずみ度到達までは軸ひずみ度,その後は見かけひ ずみ度の増分とした。

木材の縦圧縮試験を、日本住宅木材・技術センターの 構造用木材の強度試験マニュアル²⁾に基づきを実施した。 ただし、試験体高さは 180mm とした(前述 2.2 節参照)。 圧縮ひずみ度を、木材との接点を皿頭ビスに置き換えた

* 愛知工業大学工学部建築学科 学部生

** 愛知工業大学工学部建築学科 准教授 博士(工学)

Undergraduate Student. Dept. of Architecture, Faculty of Engineering, Aichi Institute of Technology Assoc. Prof., Dept. of Architecture, Faculty of Engineering, Aichi Institute of Technology, Dr. Eng.

```
104
```

コンプレッソメータで計測している¹⁾。

グラウトの強度管理用試験は,JIS R 5201 に準拠して 実施した。なお,強さ試験は,20kN 級の万能試験機で実 施してる。

3. 実験結果·考察

3.1 材料試験結果

(a) 木材

表-1 に、木材の縦圧縮試験結果を示す。ヤング係数 は、コンプレッソメータ(準拠規格:JISA1149)で計測し ている。なお、最終破壊状況は、全サンプルともに屈曲 のみが生じていた。

表-2(a) (b)に、木材短柱の圧縮試験結果を示す。同表 (b)には、ε(ストレイン)ゲージおよびπ(パイ)型変位計で 計測したヤング係数および強度時ひずみ度がそれぞれ示 してある。表中に示すストレインゲージおよびパイ型変 位計で計測したヤング係数および強度時ひずみ度それぞ れの平均値は、対応のある t 検定(有意水準[α]0.05)によ ると差があるとは言えない。このことから、木材の圧縮 試験に、パイ型変位計を適用できると考えられる。

写真-1に、木材短柱の圧縮試験体の最終破壊状況の例 を示す。木材の破壊は、次の3つに分別できる。i)屈曲の みが生じる[同写真(a)], ii)節近傍で発生したひび割れが 繊維方向に進行する[同写真(b)], iii)屈曲が生じた後に、

表-1 円柱木材の縦圧縮試験結果

	+++45	最大荷重		圧縮強度		ヤング係数	
ID	(笛)	m	S	m	s/m	m	s/m
_	(1)	(kN)	(kN)	(N/mm^2)		(kN/mm^2)	
1	芯材(無)	79.1	1.494	15.6	0.663	10.3	0.117
2	辺材(無)	97.6	3.180	19.0	0.942	16.6	0.069
ヤ	ング係数	: = :	ノプレ	ッソメー	ータで言	十測	
m	:標本平	均 s	:標本	標準偏	差		

表-2	角柱木材の短柱圧縮試験結果	1
	(a) 圧縮強度	

	+++1任	心称岠	最大荷重		圧縮強度	
ID	(四小小田	m	S	m	s/m
	(1)	(mm)	(kN)	(kN)	(N/mm ²)
3 7	芯材(有)	68	120	6.047	27.4	0.046
4 7	芯材(有)	66	95.7	2.556	20.9	0.027
ID3	:木材内打	妾型用 I	D4:合	·成構造	步型用	
	(b) $+$	マング係	数•站	度時7	トずみ度	

				1. 24	JA JZ FIJ	0,0,	1×	
,	ヤング係数				強度時ひずみ度			
TD	εゲ	ージ	π型変	で位計	εゲ、	ージ	π型変	位計
τD	m	s/m	m	s/m	m	s/m	m	s/m
	(kN/m	m^2)	(kN/m	m^2)	(%)		(%)	
3	7.672	0.249	7.52	0.14	0.687	0.101	0.688	0.102
4	4.470	0.067	4.051	0.023	0.927	0.035	0.946	0.026

節近傍でひび割れが繊維方向に進行する。

(b) 鋼管

表-3 に、鋼管短柱の圧縮試験結果を示す。表中の降 伏応力度・荷重は、0.2% off-set 法で算出している。なお、 ここでは鋼材のヤング係数を 205kN/mm² としている。 (c) グラウト

表-4 に、グラウト材の曲げ・折片圧縮試験結果を示 す。同表より、曲げ強度の標本変動係数は、それぞれ良 好な管理がなされているかの目安となる上限値10%を超 えていることがわかる^{注1)}。

3.2 木材配置型

図-2 に、芯材と辺材を有する木材配置型短柱の圧縮 カー圧縮ひずみ度関係をそれぞれ併せて示す。図中には、 鋼管短柱についても併せて示してある。また、表-5 に、 木材配置型短柱の圧縮試験結果が示してある。表中の加 算最大圧縮力[Nmax]では次式である。

$$N_{max} = N_{max-s} + N_{max-w} \tag{1}$$

ここに Nmax-s, Nmax-w: 鋼管短柱, 木材圧縮試験体または

写真−1 木材短柱の試験体の最終破壊状況

表-3 鋼管の短柱圧縮試験結果

		降伏荷重		降伏师	与力度	最大圧縮力		
ID	径厚比	m	S	m	s/m	m	S	
		(kN)		(N/mm^2)		(kN)		
Ι	33.8	348	4.284	374	0.012	395	0.707	
Π	25.7	446	12.40	369	0.028	521	1.989	
路在	降伏・0.2%off-set法 ヤング係数・205kN/mm ²							

表-4	結合材	の強さ	試験結果
14 7	11 11 11	DEC	口八两大小口,

フロ	一值	十十步	かさ	曲げ強度*	折片圧縮強度**
0打	15打	小田	密度	標本平均	標本平均
(mm)	(mm)	(weeks)	(g/cm^3)	(N/mm^2)	(N/mm^2)
196	253	5	1.80	8.92	49.2
標本変	変動係	数 *:	0.105	**: 0.080	

図-2 木材配置型の圧縮カー圧縮ひずみ度関係

表-5 木材配置型の圧縮試験結果

図-3 試験終了後の木材配置型短柱から取り出した木材

木材短柱の最大圧縮力の標本平均

木屑充填率は、木屑の密度を「産業廃棄物の体積から質 量への換算係数」より0.55とて算出している。

同図より、最大圧縮力到達以降の圧縮力の劣化は、鋼 管短柱と同程度であることが認められる。これは木材の 破壊と鋼管の局部座屈の局所化が影響していると考えら れる。なお、木材配置型短柱の最終破壊状況は、目視に よると鋼管短柱との差は認められない。これらより、木 材かつ木屑による局部座屈抑制効果は期待できないと推 測される。また、同表より、芯材と辺材を有する試験体 ともに、木材配置型短柱の最大圧縮力は、式(1)の加算最 大圧縮力と一致し、木屑の影響を受けないと考えられる。

圧縮試験終了後に、鋼管内から取り出し、かつ破壊領 域を切断して除いた木材の短柱圧縮試験を実施した。そ の圧縮応力度-圧縮ひずみ度関係を図-2(a)(b)に示す。 図中の横実線は縦圧縮試験の標本平均値を、横破線、横

図-4 木材内接型の圧縮カー圧縮ひずみ度関係

表-6 木材内接型の各到達時ひずみ度の圧縮力

	0	加算是	E縮力	圧縮	i力*
	ع (%)	m (kN)	s (kN)	実測値 (kN)	z値
十世伝社の				573	-0.840
不材短社の最大圧縮力到達時	0.69	591	21.3	592	0.053
取771上前7月2011年前				587	-0.160
網営后社の				545	-0.208
斯官 湿性() 下縮降伏力到達時	0.42	555	48.9	542	-0.279
工作中代力工作				542	-0.274
御笠后社の				609	0.271
劃官 湿柱() 最大 下 縮力 到 達時	2.22	597	41.9	608	0.259
取八小小阳/J J 建南				614	0.407
土井市技利信持の				609	0.260
本村内接望短柱の 最大圧縮力到達時	1.88	602	27.5	613	0.392
取八小小时刀判连时				617	0.552

ε:各到達時の圧縮ひずみ度

*各到達時の木材内接型短柱の圧縮力

ー点破線および横点線は、それぞれ縦圧縮試験の標本平均値±1s,±2sおよび3±s(s:縦圧縮試験の標本標準偏差)である。同図より、芯材および辺材それぞれの圧縮強度は、縦圧縮試験の標本平均値±2sおよび±3s範囲内に存在していることがわかる。なお、最終破壊状況は、木材短柱と同様に、屈曲のみが生じた。

3.3 木材内接型

(a) 圧縮カー圧縮ひずみ度関係

図-4 に、木材内接型短柱の圧縮カー圧縮ひずみ度関係を示す。図中には、鋼管短柱と木材短柱についても併せて示してある。図中の横実線は式(1)の加算最大圧縮力、 横破線は式(1)-3s(s: N_{max-s} と N_{max-w}の標本標準偏差の二 重平方和)である。

同図より、木材内接型短柱の最大圧縮力は、全サンプ ルともに式(1)-3s に到達していないことがわかる。また CFT 短柱のように最大圧縮力到達後に圧縮力が収束して いないことも認められる。なお、同図を観察すると、木 材内接型短柱の最大圧縮力到達後の劣化勾配は、鋼管短

```
106
```

柱のそれと同程度である。

(b) 各種圧縮力到達時の加算圧縮力

表-6に、木材短柱の最大圧縮力到達時、鋼管短柱の 圧縮降伏力到達時、鋼管短柱の最大圧縮力到達時および 木材内接形型短柱の最大圧縮力到達時における鋼管短柱 と木材短柱の加算圧縮力と木材内接型短柱の圧縮力の実 測値との比較を示す。各到達時の圧縮ひずみ度および圧 縮力の標本標準偏差は、それぞれ材料試験の標本平均お よび標本標準偏差としている。なお、基準化(z値)は、標 本平均を加算最大圧縮力[式(1)]、標本標準偏差[s]を鋼 管短柱の木材短柱の各圧縮力の標本標準偏差の二重平方 和としている。同表に示すように、各到達時の圧縮力の z値は、±1範囲内である。このことから、また前述 3.3(a) より、木材内接形鋼管の鋼管と木材の相互作用はないと 推測される。

3.4 合成構造型短柱

図-5 に、合成構造型短柱の圧縮力-圧縮ひずみ度関係を示す。鋼管短柱と木材短柱についても併せて示してある。図中の横実線は、次の加算最大圧縮力[Nmax]である。

$$N_{max} = N_{max-s} + N_{max-w} + A_c \cdot \sigma_{cu} \tag{2}$$

ここに *A_c*: グラウト部の原断面積, σ_{cu}: グラウトの折 片圧縮強度の標本平均

横破線は式(2)-3 $s(s: A_c \cdot \sigma_{cu}$ と折片圧縮強度の標本変動係数の積, N_{max-s} と N_{max-w} それぞれの標本標準偏差の二乗平方和)である。

同図より,合成構造短柱の最大圧縮力は,全サンプル ともに式(2)-3s に到達していないことがわかる。なお, CFT 短柱のように最大圧縮力到達後に圧縮力が収束して いることが認められる。

(b) 最大圧縮力到達時の加算圧縮力

表-7に,合成構造型短柱の最大圧縮力のz値を示す。 なお,合成構造型短柱の最大圧縮力到達時ひずみ度にお ける木材短柱の圧縮力および鋼管短柱の圧縮力,またグ ラウトの最大圧縮力[*A_c*・*σ_{cu}]それぞれの標本平均と標本 標準偏差を用いてz値を求めている。*

同表に示すように、各実測値の z 値は-1.04 である。こ れより、また最大圧縮力到達時の圧縮ひずみ度を踏まえ、 合成構造型短柱の木材と鋼管の相互作用はないが、木材 および鋼管によるグラウトの拘束効果があると考えられ る。

4. おわりに

本報で得られた知見を、次のように整理する。

1) 木材配置型短柱の最大圧縮力は、式(1)の加算最大圧 縮力と一致し、木屑の影響を受けないと考えられる。

図-5 合成構造型の圧縮カー圧縮ひずみ度関係

表-7 合成構造型の最大圧縮力到達時の加算圧縮力

木材短柱圧縮力		鋼管短柱圧縮力			最大圧	縮力*
m	S	m	S	3	実測値	- 店
(kN)	(kN)	(kN)	(kN)	(%)	(kN)	Z们且
05.5	286	272	7 0	0.963	561	- <mark>1.0</mark> 4
95.5	2.80	512	1.0	0.988	559	-1.04

ε:合成構造型短柱の最大圧縮力到達時の圧縮ひずみ度 *合成構造型短柱の最大圧縮力

- 2) 木材内接形鋼管の鋼管と木材の相互作用はないと推 測される。
- 3) 合成構造型短柱は、木材と鋼管の相互作用はないが、 CFT 短柱のように最大圧縮力到達後に圧縮力が収束 していることが認められることから、木材および鋼 管によるグラウトの拘束効果があると考えられる。

謝辞

本稿の研究成果は、令和2年度愛知工業大学耐震実験 センター研究助成の支援による。

注

注1) レディミクストコンクリートにおいて良好な管理 がなされている目安は, 圧縮強度の変動係数が10% 以下であるとされている。舗装コンクリートの実 態調査の結果,約80%の工事が曲げ強度の変動係 数が10%以下であると推定されている³³。

参考文献

- 1) 萩尾和輝,尾崎直哉,鈴木智也,山本貴正,中原浩 之:木材を内蔵したコンクリート充填鋼管短柱の圧 縮特性に関する基礎研究,日本建築学会東海支部研 究報告集, Vol.58, pp.73-76, 2020.2
- 2) 日本住宅木材・技術センター:構造用木材の強度試 験マニュアル, pp.13-14, 2011.3
- 3) 柳田力: 舗装用コンクリート, コンクリート工学, Vol. 14, No. 6, pp. 31-34, 1976. 6