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Abstract

This dissertation proposes several maintenance policies for extended cumulative
damage models in reliability theory and their applications to garbage collection
policies for a generational garbage collector in computer science. Using the tech-
niques of cumulative processes, the expected costs per unit of time, i.e., expected
cost rate models, are obtained, and optimal policies which minimize them are dis-
cussed analytically and computed numerically.

An initial chapter gives introduction which is constructed by review of liter-
atures and organization of dissertation. Extended cumulative damage models in
theory and their optimizations are proposed in the following chapters: Chapter 2
proposes two basic preventive maintenance policies for a used system with an initial
variable damage level. Chapter 3 considers three replacement policies that are com-
bined additive with independent damages. Chapter 4 takes up three maintenance
policies for an operating system which works at random times for jobs. Chapter 5
proposes a standard cumulative damage model in which the notion of “whichever
occurs last” is applied, which is called maintenance last. As applications, two
stochastic models based on the working schemes of a generational garbage collector
are proposed in Chapter 6. In the end of dissertation, the results are summarized
and future problems are given.

The models proposed in Chapters 2–5 are derived from practical systems as
introduced in every chapter and could be applied to them by suitable modifications
and extensions. The theoretical methods proposed in Chapter 6 could provide some
useful information to computer programmers to design more efficient collectors.
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Chapter 1

Introduction

1.1 Review of Literatures

Public infrastructures in advanced nations are now becoming obsolete (Hudson, et
al., 1997), and the number of aged plants in Japan is increasing greatly in the near
future (Nakagawa and Ito, 2008). A deliberate maintenance plan is indispensable
to operate such systems without serious trouble caused by failures. That is, systems
should undergo suitable maintenances at adequate times by considering both profits
of operations and losses of unexpected failures or maintenances (Zhao, et al., 2012a).
We call that maintenances after failure and before failure are corrective maintenance
(CM) and preventive maintenance (PM), respectively (Nakagawa, 2005, p.2). CM
may be costly, and sometimes requires a long time, so that how to determine the
schedule of PM becomes an important problem for an operating system. However,
it is not wise to maintain a system with unnecessary frequency.

A methodical survery of maintenance policies in reliability theory was done
(Nakagawa, 2005). The recent published books (Osaki, 2002; Wang and Pham,
2007; Kobbacy and Murthy, 2008; Nakagawa, 2008, 2011; Manzini, et al., 2010)
collected many maintenance models in theory and their applications in industrial
systems. On the other hand, most systems might fail due to the damage stored
within them by shocks such as jolt, stress, or environment change. This is well-
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1.1. Review of Literatures

known as the cumulative damage model (Cox, 1962) which plays an important role
in reliability theory: The model is considered as a sequence of shocks which occur
randomly in time as an event in accordance with a stochastic process and give some
amount of damage to a system. The damage suffered for the system is accumulated
to the current damage level and weakens the system gradually. The system fails
when the total damage exceeds a failure level.

Some reliability quantities of cumulative damage models have already been
obtained (Cox, 1962; Esary, et al., 1973; Nakagawa and Osaki, 1974). The first
research book (Bogdanoff and Kozin, 1985) introduced some probabilistic models
which are related to cumulative damage, however, the case studies for the models
are few and the analyses might be too difficult theoretically to apply them to practi-
cal models. To build a bridge between theory and practice, book (Nakagawa, 2007)
summarized sufficiently PM policies and their optimization problems for shock and
damage models, using the techniques of stochastic processes. A variety of PM mod-
els subjected to shocks were studied extensively (Wortman, et al., 1994; Sheu, et
al., 1996, 1998, 2002, 2004, 2012; Qian, et al., 2005; Zhao, et al., 2010a, 2011a,
2012a, 2012b). The damage models have been applied to garbage collection models
(Satow, et al., 1996a, 1196b) by replacing shock by update and damage by garbage,
backup models of database systems (Qian, et al., 1999, 2002a, 2002b, 2010; Naka-
mura, et al., 2003) by replacing shock by update and damage by dumped file, and
software rejuvenation models (Zhao, et al., 2009) in computer sciences by replacing
shock by aging-related fault and damage by consumption of physical memory.

In the computer science community, the technique of garbage collection (Jones
and Lins, 1996) is one automatic process of memory recycling, which refers to
that objects in the memory no longer referenced by programs are called garbage
and should be thrown away. A garbage collector determines which objects are
garbage and makes the heap space occupied by such garbage available again for
the subsequent new objects. Garbage collection plays an important role in Java’s
security strategy, however, it adds a large overhead that can deteriorate the program
performances. From related studies which are summarized in (Jones and Lins,
1996), a garbage collector spends between 25 and 40 percent of execution time of
programs for its work in general, and delays caused by such a garbage collection
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1.2. Organization of Dissertation

are obtrusive.
With regarding to garbage collection modeling and optimization, there have

been very few research papers that studied analytical expressions of optimal policies
for a garbage collector. The modeling methods (Satow, et al., 1996a, 1196b) did
not consider the theoretical point of garbage collection working schemes essentially.
Most problems in other literatures were concerned with several ways to introduce
garbage collection methods in techniques and how to tune the garbage collector by
simulations, which is more complex and time consuming due to the random accesses
of programs in the memory in practice (Ungar and Jackson, 1992; Kaldewaĳ and
Vries, 2001; Lee and Chang, 2004; Clinger and Rojas, 2006; Soman and Krintz,
2007). We propose that garbage collection is a stochastic decision making process
and should be analyzed by the theory of stochastic processes from the viewpoints
of management. Optimal policies for a generational garbage collector with tenuring
threshold and major collection times according to practical working schemes (Zhao,
et al., 2010b, 2011b, 2012c) were studied recently.

1.2 Organization of Dissertation

The main body of this dissertation is divided into Introduction, Chapters 2–6,
Conclusions, and Bibliography.

Chapter 2 gives a definition of a used system with an initial variable damage
level Y0, and proposes two basic imperfect PM policies which are done at a planned
time T or at a shock number N . Furthermore, two extended models, by considering
increasing inspection costs suffered for shocks, are formulated.

Chapter 3 proposes that the system would fail by both additive and inde-
pendent damages, and considers three replacement policies with such two kinds of
damages: The unit is replaced at a planned time and undergoes minimal repair
when independent damage occurs. First, a standard cumulative damage model
where the unit is replaced at a planned time T is considered. Second, the total
damage is measured only at periodic times nT0. Third, the total damage increases
linearly with time t approximately.

Chapter 4 takes up three maintenance policies for an operating system which
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1.2. Organization of Dissertation

works at random times for jobs. First, PM is made at the Nth completion of
working time, and the system fails with probability p(x) when the total damage
is x. Second, the system is maintained at the first completion of some working
times over time T . Third, when a limit number N of working times are considered,
maintenance is made at a planned time T or at a damage level Z.

Chapter 5 gives two definitions of maintenance first (MF) and maintenance
last (ML), where MF has been discussed widely in literatures, and MF denotes
that PM is done before failure at a planned time T , at a damage level Z, or at
a shock number N , whichever occurs last. To derive the optimization problems,
two alternative policies which combined time-based with condition-based PM are
discussed, i.e., optimal policies of T ∗L for N , Z∗

L for T , and N∗
L for T are obtained.

Comparison methods between such a ML and the conventional MF are explored.
Chapter 6 proposes two application models of cumulative damage processes to

garbage collection policies in computer science, according to the practical working
schemes of a generational garbage collector. We suppose that garbage collections
occur at a nonhomogeneous Poisson process, and divide the collections into minor,
tenuring, and major collections, respectively. Minor collections are made when the
garbage collector begins to work, tenuring collection is made at a planned time T

or at the first collection time when surviving objects have exceeded K, and major
collection is made at time T or at the Nth collection.

In Chapters 2–6, expected cost rates for all policies are obtained, by using
the techniques of cumulative processes in reliability theory. Optimal policies are
discussed analytically, and numerical examples are computed when a Poisson pro-
cess and exponential or normal distributions are adopted. The models proposed in
Chapters 2–5 can also be applied to practical systems: Chapter 2 could be modified
in garbage collection or defragmentation models in software systems when collection
or defragment is imperfect. Chapter 3 could be used in reorganization models of
a structural database. When the operating system is executing jobs or computer
procedures successively, Chapters 4 and 5 could provide new topics and methods as
practical policies.

Finally, chapter 7 summaries the results that have been obtained in this dis-
sertation.
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Chapter 2

Maintenance for a Used System

In some practical situations, it may be more economical to operate a used system
than to do a new one. From this viewpoint, this chapter proposes two basic pre-
ventive maintenance policies for a used system: The system with an initial variable
damage Y0 begins to operate at time 0, and suffers damage due to shocks. It fails
when the total damage exceeds a failure level K and corrective maintenance is made
immediately. To prevent such a failure, it undergoes preventive maintenance at a
planned time T or at a shock number N , but maintenances are imperfect. Further-
more, increasing inspection cost that is suffered for every shock is applied to the
above policies in the extended models. Using the theory of cumulative processes
in reliability, expected cost rate models are obtained, and optimal policies which
minimize them are derived analytically and discussed numerically.

2.1 Introduction

As introduced in Chapter 1, maintenances after failure and before failure are called
corrective maintenance (CM) and preventive maintenance (PM), respectively. When
CM is done, it may require much more time and higher cost, so we need to do PM
to prevent failure. Even so, we should not to do it too often from the viewpoints
of time and cost. In this case, various PM policies and their optimizations, which
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2.2. Expected Cost Rate

make the system as good as new, including some minimal repairs, were summarized
in (Nakagawa, 2005). However, CM and PM would not make a system like new but
younger, i.e., maintenances are imperfect in general. Some imperfect PM models
have been considered in (Chan and Downs, 1978; Murthy and Nguyen, 1981; Brown
and Proschan, 1983; Wang and Pham, 2003; Nakagawa, 2005, 2007). In some prac-
tical situations, it may be more economical to operate a used system than to do a
new one. Optimal replacement policies for a used system were studied in (Muth,
1977; Nakagawa, 1979; Qian, et al., 2005). However, an initial damage level of
the system at time 0 or after imperfect PM may be a variable and its distribu-
tion function may be different from those of damage caused by shocks during its
operation.

We suppose that a used system begins to operate at time 0, and its initial
damage is a random variable Y0 (0 ≤ Y0 ≤ K). Shocks occur at a nonhomogeneous
Poisson process and each shock causes a random amount of damage to the system.
These damages are accumulated to the current damage level. The system undergoes
imperfect preventive maintenance (IPM) at a planned time T (0 < T ≤ ∞), at a
shock number N (N = 1, 2, · · · ), or imperfect corrective maintenance (ICM) is
done when the total damage exceeds a failure level K, whichever occurs first. The
expected cost rates are obtained by using the techniques of cumulative damage
models (Nakagawa, 2007), and optimal maintenance policies which minimize them
are discussed analytically. Furthermore, increasing inspection cost that is suffered
for every shock is applied to the above policies in extended models, the expected
cost rates are obtained and computed numerically.

2.2 Expected Cost Rate

Suppose that shocks occur at a nonhomogeneous Poisson process with an intensity
function λ(t) and a mean-value function R(t) ≡

∫ t

0
λ(u)du, i.e., λ(t) ≡ R′(t). Then,

the probability that shocks occur exactly j times in the interval [0, t] is (Nakagawa,
2007, p.21)

Hj(t) ≡
[R(t)]j

j!
e−R(t) (j = 0, 1, 2, · · · ).
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2.2. Expected Cost Rate

It is assumed that the system with an initial damage Y0 begins to operate at
time 0, where Y0 is a random variable and has a distribution function G0(x) =

Pr{Y0 ≤ x} for x ≤ K and G0(x) ≡ 1 for x > K with mean µ0 ≡
∫ K

0
G0(x)dx < K,

i.e.,
∫ K

0
G0(x)dx = K − µ0. Further, an amount Yj of damage due to the jth shock

has an distribution function G(y) ≡ Pr{Yj ≤ y} (j = 1, 2, · · · ), these damages are
accumulated to the current damage level. We call the system as a used system.
Then, the total damage Zj ≡ Y0 +

∑j
i=1 Yi (j = 1, 2, · · · ) up to the jth shock, where

Z0 ≡ Y0, has a distribution function

Pr{Zj ≤ w} =

∫ w

0

G(j)(w − x)dG0(x) (j = 0, 1, 2, · · · ), (2.1)

where G(j)(x) represents the j-fold Stieltjes convolution of G(x) with itself, and
G(0)(x) ≡ 1 for x ≥ 0.

Let Z(t) be the total damage at time t. Then, the distribution function of Z(t)

is

Pr{Z(t) ≤ w} =
∞∑

j=0

Hj(t)

∫ w

0

G(j)(w − x)dG0(x). (2.2)

Suppose that the system undergoes ICM when the total damage exceeds a
failure level K, and undergoes IPM at a planned time T (0 < T ≤ ∞) or at a shock
number N (N = 1, 2, · · · ), whichever occurs first. The damage level decreases
to Y0 by either IPM or ICM, i.e., the system becomes an identical system with
an initial damage level Y0 which has a general distribution G0(x). However, the
cost for ICM would be higher than that for IPM, because the system might suffer
serious damage when the total damage has exceeded a failure level K. Furthermore,
the maintenance cost might be affected by the amount of total damage when the
system undergoes ICM and IPM. From the above reasons, we introduce the following
maintenance costs: Cost cT and cN are the respected fixed costs for IPM at time
T and at shock N , and cK is the fixed cost for ICM, where cT < cK and cN < cK .
In addition, c0(x) (0 ≤ x ≤ K) is an additional cost when the total damage is x at
maintenance time.

For the above system, the probability that the system undergoes IPM at time
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2.2. Expected Cost Rate

T is

PT =
N−1∑
j=0

Hj(T )

∫ K

0

G(j)(K − x)dG0(x), (2.3)

and the probability that it undergoes IPM at shock N is

PN =

∫ T

0

HN−1(t)λ(t)dt

∫ K

0

G(N)(K − x)dG0(x). (2.4)

Thus, the expected cost when IPM is done is

CIPM =
N−1∑
j=0

Hj(T )

∫ K

0

∫ K−x

0

[cT + c0(x + y)]dG(j)(y)dG0(x)

+

∫ T

0

HN−1(t)λ(t)dt

∫ K

0

∫ K−x

0

[cN + c0(x + y)]dG(j)(y)dG0(x). (2.5)

The probability that the system undergoes ICM when the total damage exceeds
a failure level K is

PK =
N−1∑
j=0

∫ T

0

Hj(t)λ(t)dt

∫ K

0

∫ K−x

0

G(K − x− y)dG(j)(y)dG0(x), (2.6)

where Φ(x) ≡ 1− Φ(x) for any function Φ(x), and the probability that the system
undergoes ICM when the total damage exceeds K at shock N is included in (2.6)
because it has become the failure state. Note that PT + PN + PK ≡ 1. Thus, the
expected cost when ICM is done is

CICM = [cK + c0(K)]
N−1∑
j=0

∫ T

0

Hj(t)λ(t)dt

∫ K

0

∫ K−x

0

G(K − x− y)dG(j)(y)dG0(x).

(2.7)

The mean time to maintenance is

E(L) =T

N−1∑
j=0

Hj(T )

∫ K

0

G(j)(K − x)dG0(x)

+

∫ T

0

tHN−1(t)λ(t)dt

∫ K

0

G(N)(K − x)dG0(x)

+
N−1∑
j=0

∫ T

0

tHj(t)λ(t)dt

∫ K

0

∫ K−x

0

G(K − x− y)dG(j)(y)dG0(x)
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=
N−1∑
j=0

∫ T

0

Hj(t)dt

∫ K

0

G(j)(K − x)dG0(x). (2.8)

Therefore, the expected cost rate is, from (2.5), (2.7), and (2.8),

C(T, N) =

cK + c0(K)− (cK − cT )
∑N−1

j=0 Hj(T )
∫ K

0
G(j)(K − x)dG0(x)

−(cK − cN)
∫ T

0
HN−1(t)λ(t)dt

∫ K

0
G(N)(K − x)dG0(x)

−
∑N−1

j=0 Hj(T )
∫ K

0

∫ K

x
G(j)(u− x)dc0(u)dG0(x)

−
∫ T

0
HN−1(t)λ(t)dt

∫ K

0

∫ K

x
G(N)(u− x)dc0(u)dG0(x)∑N−1

j=0

∫ T

0
Hj(t)dt

∫ K

0
G(j)(K − x)dG0(x)

. (2.9)

2.3 Optimal Policies

2.3.1 Planned Time

Suppose that the system undergoes IPM only at time T (0 < T ≤ ∞) and ICM
when the total damage exceeds a failure level K, whichever occurs first. Then,
putting that N = ∞ in (2.9), the expected cost rate is

C(T ) =

cK + c0(K)− (cK − cT )
∑∞

j=0 Hj(T )
∫ K

0
G(j)(K − x)dG0(x)

−
∑∞

j=0 Hj(T )
∫ K

0

∫ K

x
G(j)(u− x)dc0(u)dG0(x)∑∞

j=0

∫ T

0
Hj(t)dt

∫ K

0
G(j)(K − x)dG0(x)

. (2.10)

We seek an optimal time T ∗ that minimizes C(T ) in (2.10). Differentiating
C(T ) with respect to T and setting it equal to zero,

λ(T ){(cK − cT )[1−Q(T )] + P (T )}
∞∑

j=0

∫ T

0

Hj(t)dt

∫ K

0

G(j)(K − x)dG0(x)

+ (cK − cT )
∞∑

j=0

Hj(T )

∫ K

0

G(j)(K − x)dG0(x)

+
∞∑

j=0

Hj(T )

∫ K

0

∫ K

x

G(j)(u− x)dc0(u)dG0(x) = cK + c0(K), (2.11)

where

P (T ) ≡
∑∞

j=0 Hj(T )
∫ K

0

∫ K

x
[G(j)(u− x)−G(j+1)(u− x)]dc0(u)dG0(x)∑∞

j=0 Hj(T )
∫ K

0
G(j)(K − x)dG0(x)

,
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Q(T ) ≡
∑∞

j=0 Hj(T )
∫ K

0
G(j+1)(K − x)dG0(x)∑∞

j=0 Hj(T )
∫ K

0
G(j)(K − x)dG0(x)

.

If there exists T ∗ which minimizes C(T ), it must be satisfied (2.11).
It is assumed that shocks occur in a Poisson process with rate λ, the amount

of damage due to each shock has an exponential distribution with mean µ, and
c0(x) is proportional to the total damage x, i.e., Hj(t) = [(λt)j/j!]e−λt, G(j)(x) =∑∞

i=j[(x/µ)i/i!]e−x/µ, and c0(x) = c0x. Then, P (T ) = c0µQ(T ), and (2.11) becomes

λ[(cK − cT )− (cK − cT − c0µ)Q1(T )]
∞∑

j=0

∫ T

0

Hj(t)dt

∫ K

0

G(j)(K − x)dG0(x)

+ (cK − cT )
∞∑

j=0

Hj(T )

∫ K

0

G(j)(K − x)dG0(x)

+ c0

∞∑
j=0

Hj(T )

∫ K

0

∫ K

x

G(j)(u− x)dudG0(x) = cK + c0K. (2.12)

Denote the left-hand side in (2.12) be U(T ), because
∫ K

0
G0(x)dx = K − µ0,

lim
T→0

U1(T ) = cK − cT + c0(K − µ0) < cK + c0K,

and M(x) ≡
∑∞

j=1 G(j)(x) = x/µ and limT→∞Q(T ) = 1,

lim
T→∞

U(T ) = (cK − cT )

∫ K

0

[1 + M(K − x)]dG0(x)

= (cK − cT )

[
1 +

1

µ

∫ K

0

G0(x)dx

]
= (cK − cT )

(
1 +

K − µ0

µ

)
.

Differentiating U(T ) with respect to T ,

U ′(T )

λ
= −(cK − cT − c0µ)Q′(T )

∞∑
j=0

∫ T

0

Hj(t)dt

∫ K

0

G(j)(K − x)dG0(x).

Thus, if Q′(T ) < 0 and cK − cT − c0µ > 0, U(T ) is a strictly increasing function
of T , and hence, if a solution T ∗ to (2.12) exists, it is unique. It is clear that the
necessity of optimal maintenance policy is that cost cK for ICM should be greater
than cT +c0µ for IPM, which represents the total cost of a fixed cost for IPM and the
maintenance cost for a mean initial damage. Note that 1−Q(T ) means physically
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the probability of failure at the (j + 1)th (j = 0, 1, 2, · · · ) shock in time T , given
that the system has not failed at the jth shock. Thus, the condition that a finite
T ∗ satisfies (2.12) is that 1−Q(T ) increases strictly, i.e., Q′(T ) < 0.

In particular, when Y0 = z0 (0 < z0 < K), i.e., G0(x) ≡ 1 for x ≥ z0, 0 for
x < z0, it is proved that Q′(T ) < 0. Thus, if cK − cT > µ(cT + c0K)/(K − z0), then
there exists a finite and unique T ∗ (0 < T ∗ < ∞) which satisfies (2.12), and the
resulting cost rate is

C(T ∗)

λ
= (cK − cT )− (cK − cT − c0µ)Q(T ∗). (2.13)

Next, suppose that G0(x) = (1− e−x/z0)/(1− e−K/z0) for x ≤ K, 1 for x > K,
i.e., µ0 = z0 −Ke−K/z0/(1 − e−K/z0). It can be proved from Appendix that Q(T )

decreases strictly with T , and so that, U(T ) increases strictly with T . Therefore,
we have the following optimal policy:

1. If cK − cT > µ(cT + c0K)/(K − µ0) , then there exists a finite and unique
T ∗ (0 < T ∗ < ∞) which satisfies (2.12), and the resulting cost rate is given in
(2.13).

2. If cK − cT ≤ µ(cT + c0K)/(K − µ0), then T ∗ = ∞, and

C(∞)

λ
=

cK + c0K

1 + (K − µ0)/µ
. (2.14)

2.3.2 Shock Number

Suppose that the system undergoes IPM only at shock N (N = 1, 2, · · · ) and ICM
when the total damage exceeds a failure level K, whichever occurs first. Then,
putting that T = ∞ in (2.9), the expected cost rate is

C(N) =

cK + c0(K)− (cK − cN)
∫ K

0
G(N)(K − x)dG0(x)

−
∫ K

0

∫ K

x
G(N)(u− x)dc0(u)dG0(x)∑N−1

j=0

∫∞
0

Hj(t)dt
∫ K

0
G(j)(K − x)dG0(x)

(N = 1, 2, · · · ).

(2.15)
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We seek an optimal number N∗ that minimizes C(N) in (2.15). From the
inequality C(N + 1)− C(N) ≥ 0,

{(cK − cN)[1−Q(N)] + P (N)}
∑N−1

j=0

∫∞
0

Hj(t)dt
∫ K

0
G(j)(K − x)dG0(x)∫∞

0
HN(t)dt

+ (cK − cN)

∫ K

0

G(N)(K − x)dG0(x)

+

∫ K

0

∫ K

x

G(N)(u− x)dc0(u)dG0(x) ≥ cK + c0(K), (2.16)

where

P (N) ≡
∫ K

0

∫ K

x
[G(N)(u− x)−G(N+1)(u− x)]dc0(u)dG0(x)∫ K

0
G(N)(K − x)dG0(x)

,

Q(N) ≡
∫ K

0
G(N+1)(K − x)dG0(x)∫ K

0
G(N)(K − x)dG0(x)

.

If there exists N∗ which minimizes C(N), it must be satisfied (2.16). It is clear
that the necessity of optimal maintenance policy is that cost cK for ICM should be
greater than cN +c0µ for IPM. Note that 1−Q(N) means physically the probability
of failure at the (N + 1)th shock, given that the system has not failed at the Nth
shock. Thus, the condition that a finite N∗ satisfies (2.16) is that 1−Q(N) increases
strictly.

The failure rate plays an important role of deriving analytically optimal policies
for maintenance models (Nakagawa, 2005). The functions 1 − Q(T ) in (2.11) and
1 − Q(N) in (2.16) correspond to the failure rates with continuous and discrete
times, respectively, and would increase strictly when finite T ∗ and N∗ exist.

We make the similar assumptions in Section 2.3.1, then P (N) = c0µQ(N), and
(2.16) becomes

[(cK − cN)− (cK − cN − c0µ)Q2(N)]
N−1∑
j=0

∫ K

0

G(j)(K − x)dG0(x)

+ (cK − cN)

∫ K

0

G(N)(K − x)dG0(x) + c0

∫ K

0

∫ K

x

G(N)(u− x)dudG0(x)

≥ cK + c0K. (2.17)
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Denote the left-hand side in (2.17) be U(N),

lim
N→∞

U(N) =(cK − cN)

∫ K

0

[1 + M(K − x)]dG0(x)

=(cK − cN)

(
1 +

K − µ0

µ

)
,

U(N + 1)− U(N) =− (cK − cN − c0µ)[Q(N + 1)−Q(N)]

×
N−1∑
j=0

∫ K

0

G(j)(K − x)dG0(x).

Thus, if Q(N) is a decreasing function of N and cK − cN − c0µ > 0, U(N) is a
increasing function of N , and hence, if a solution N∗ to (2.17) exists, its minimum
is unique.

In particular, when Y0 = z0 (0 < z0 < K), i.e., G0(x) ≡ 1 for x ≥ z0, 0 for
x < z0, it is proved that Q(N) is a decreasing function of N . Thus, if cK − cN >

µ(cN + c0K)/(K− z0), there exists a finite and unique minimum N∗ (1 ≤ N∗ < ∞)

which satisfies (2.17), and the resulting cost rate is

(cK − cN − c0µ)Q(N∗) ≤ (cK − cN)− C(N∗)

λ
< (cK − cN − c0µ)Q(N∗ − 1).

(2.18)

Next, suppose that G0(x) = (1− e−x/z0)/(1− e−K/z0) for x ≤ K, 1 for x > K.
It can be proved from Appendix that Q(N) decreases strictly with N , and so that,
U(N) increases strictly with N . Therefore, we have the following optimal policy:

1. If cK − cN > µ(cN + c0K)/(K − µ0) , then there exists a finite and unique
minimum N∗ (1 ≤ N∗ < ∞) which satisfies (2.17), and the resulting cost rate
is given in (2.18).

2. If cK − cN ≤ µ(cN + c0K)/(K − µ0), then N∗ = ∞, and the resulting cost
rate is given in (2.14).

2.3.3 Numerical Examples

Suppose that G(x) = 1 − e−x/µ and G0(x) = (1 − e−x/z0)/(1 − e−K/z0) for x ≤ K.
We compute the optimal policies numerically when µ = 1, c0 = 0 and K = 20.
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Table 2.1 presents optimal λT ∗ and C(T ∗)/(λcT ) for cK/cT = 5, 10, 20, 50

and z0 = 1, 5, 10. This indicates that T ∗ decreases when cK/cT or z0 increases,
C(T ∗) increases when cK/cT or z0 increases. Table 2.2 presents optimal N∗ and
C(N∗)/(λcN) for cK/cN = 5, 10, 20, 50 and z0 = 1, 5, 10. This shows the similar
tendencies to Table 2.1 for N∗ and C(N∗). It is of interest that the order of the
expected cost rates is C(T ∗) > C(N∗) for the same value of z0 and cT = cN .

Table 2.1: Optimal λT ∗ and C(T ∗)/(λcT ) for cK/cT and z0.

cK/cT
z0 = 1 z0 = 5 z0 = 10

λT ∗ C(T ∗)/(λcT ) λT ∗ C(T ∗)/(λcT ) λT ∗ C(T ∗)/(λcT )

5 11.2 0.1139 8.8 0.1498 7.6 0.1839
10 9.4 0.1336 7.3 0.1805 6.1 0.2267
20 8.2 0.1542 6.1 0.2135 4.9 0.2739
50 6.7 0.1840 4.9 0.2638 4.0 0.3481

Table 2.2: Optimal N∗ and C(N∗)/(λcN ) for cK/cN and z0.

cK/cN
z0 = 1 z0 = 5 z0 = 10

N∗ C(N∗)/(λcN ) N∗ C(N∗)/(λcN ) N∗ C(N∗)/(λcN )

5 12 0.0952 10 0.1241 8 0.1510
10 11 0.1060 8 0.1405 7 0.1741
20 10 0.1169 7 0.1593 6 0.1981
50 9 0.1322 6 0.1843 5 0.2334

We could explain the optimal policies as follows: (1) When cost cK for ICM
increases, we should advance the time of IPM, that is, T ∗ and N∗ should be de-
creased, in order to reduce the probability of failure. (2) When z0 increases, i.e., a
used system begins to operate at time 0 with a higher damage, then, its life will be
shorter due to shocks, and so that, T ∗ and N∗ should be advanced. (3) Compare the
numerical examples above, concrete performances of two policies would be depend
on maintenance costs, system structures and environment, maintenance engineers,
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and so on. Take into such considerations, we would adopt which policy is suitable
for an actual system. That is, from the viewpoint of economy, the policy N∗ is
better than that of T ∗. However, from the viewpoint of simplicity of operation, the
policy T ∗ would be better because we do not need to count the number of shocks.

2.4 Extended Models

2.4.1 Expected Cost Rates

Introduce the cost cM i suffered for the ith shock, where 0 < cM 1 ≤ cM 2 ≤ · · · ≤
cM i ≤ · · · . For example, this would be the inspection cost of measuring total
damage level or the cost of some treatment for each shock, and would be usually
much smaller compared to PM costs cT and cN .

First, consider that the system undergoes IPM at time T (0 < T ≤ ∞) and
ICM when the total damage exceeds a failure level K, whichever occurs first. Then,
the total expected cost for each shock before any maintenance is

CM =
∞∑

j=1

j∑
i=1

cM iHj(T )

∫ K

0

G(j)(K − x)dG0(x)

+
∞∑

j=1

j∑
i=1

cM i

∫ T

0

Hj(t)λ(t)dt

∫ K

0

∫ K−x

0

G(K − x− y)dG(j)(y)dG0(x)

=
∞∑

j=0

cM j+1

∫ T

0

Hj(t)λ(t)dt

∫ K

0

G(j+1)(K − x)dG0(x), (2.19)

From (2.10) and (2.19), the expected cost rate is

Ĉ(T ) =

cK + c0(K)− (cK − cT )
∑∞

j=0 Hj(T )
∫ K

0
G(j)(K − x)dG0(x)

−
∑∞

j=0 Hj(T )
∫ K

0

∫ K

x
G(j)(u− x)dc0(u)dG0(x)

+
∑∞

j=0 cM j+1

∫ T

0
Hj(t)λ(t)dt

∫ K

0
G(j+1)(K − x)dG0(x)∑∞

j=0

∫ T

0
Hj(t)dt

∫ K

0
G(j)(K − x)dG0(x)

. (2.20)

Second, consider that the system undergoes IPM at shock N (N = 1, 2, · · · )
and ICM when the total damage exceeds a failure level K, whichever occurs first.
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Then, the total expected cost for each shock before any maintenance is

CM =
N−1∑
i=1

cM i

∫ K

0

G(N)(K − x)dG0(x)

+
N−1∑
j=1

j∑
i=1

cM i

∫ K

0

∫ K−x

0

G(K − x− y)dG(j)(y)dG0(x)

=
N−1∑
j=1

cM j

∫ K

0

G(j)(K − x)dG0(x), (2.21)

where
∑0

j=1 = 0. From (2.15) and (2.21), the expected cost rate is

Ĉ(N) =

cK + c0(K)− (cK − cN)
∫ K

0
G(N)(K − x)dG0(x)

−
∫ K

0

∫ K

x
G(N)(u− x)dc0(u)dG0(x)

+
∑N−1

j=1 cM j

∫ K

0
G(j)(K − x)dG0(x)∑N−1

j=0

∫∞
0

Hj(t)dt
∫ K

0
G(j)(K − x)dG0(x)

(N = 1, 2, · · · ).

(2.22)

2.4.2 Numerical Examples

Suppose that c0(x) = 0, cM j = jcM , Hj(t) = [(λt)j/j!]e−λt, G(x) = 1 − e−x/µ and
G0(x) = (1 − e−x/z0)/(1 − e−K/z0). Then, we compute optimal T̂ ∗ and N̂∗, and
Ĉ(T̂ ∗)/cT and Ĉ(N̂∗)/cN numerically when K = 20, z0 = 1, λ = 1, µ = 1.

Table 2.3 presents optimal T̂ ∗ and Ĉ(T̂ ∗)/cT for cM/cT = 0.01, 0.02, 0.1 and
cK/cT = 5, 10, 20, 50. This indicates that T̂ ∗ decreases when cK/cT or cM/cT in-
creases, Ĉ(T̂ ∗) increases when cK/cT or cM/cT increases. Table 2.4 presents optimal
N̂∗ and Ĉ(N̂∗)/cN for cM/cN = 0.01, 0.02, 0.1 and cK/cN = 5, 10, 20, 50. This
shows the similar tendencies to Table 2.3 for N̂∗ and Ĉ(N̂∗), but if cM/cN is very
larger, when cK/cN increases, N̂∗ and Ĉ(N̂∗)/cN will be stable. It is of interest that
the order of the expected cost rates is Ĉ(T̂ ∗) > Ĉ(N̂∗) for the same parameters.

It could be explained as follows: (1) Compared with those in Section 2.3.3,
optimal maintenance times are advanced due to shocks. (2) When cost cK for ICM
increases, we should advance the time of IPM, the reason is the same as that in
Section 2.3.3. (3) When cM/cT or cM/cN increases, it means unit cost for shocks
will increase, so that IPM should be advanced to reduce the total expected cost for
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shocks. (4) When the inspection cost for shocks is large, cost for ICM will have no
effect on the optimal policies. It is interest of that for the two policies, both optimal
policies and resulting cost rates are stable at the similar level when the inspection
cost for shocks is large.

Table 2.3: Optimal T̂ ∗ and Ĉ(T̂ ∗)/cT for cM/cT and cK/cT .

cK/cT
cM/cT = 0.01 cM/cT = 0.02 cM/cT = 0.1

T̂ ∗ Ĉ(T̂ ∗)/cT T̂ ∗ Ĉ(T̂ ∗)/cT T̂ ∗ Ĉ(T̂ ∗)/cT

5 9.7 0.1752 8.5 0.2309 4.6 0.5527
10 8.5 0.1882 7.9 0.2391 4.6 0.5533
20 7.6 0.2032 7.0 0.2499 4.3 0.5545
50 6.4 0.2271 6.1 0.2688 4.3 0.5574

Table 2.4: Optimal N̂∗ and Ĉ(N̂∗)/cN for cM/cN and cK/cN .

cK/cN
cM/cN = 0.01 cM/cN = 0.02 cM/cN = 0.1

N̂∗ Ĉ(N̂∗)/cN N̂∗ Ĉ(N̂∗)/cN N̂∗ Ĉ(N̂∗)/cN

5 11 0.1476 9 0.1928 4 0.4000
10 10 0.1530 9 0.1950 4 0.4000
20 9 0.1593 8 0.1986 4 0.4000
50 8 0.1693 8 0.1993 4 0.4000

2.5 Concluding Remarks

We have discussed two imperfect preventive maintenance policies for a used system
at a planned time T and at a shock number N for basic models and introduced
extra inspection cost for each shock as one of extended models. Expected cost rates
are obtained by using the techniques of cumulative processes in reliability theory.
Optimal policies of T ∗ and N∗ which minimize them are derived analytically for
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basic models, and optimal T̂ ∗ and N̂∗ are computed numerically for the extended
models. Useful discussions for such results are given.

From analytical discussions in optimizations, we have found that 1−Q(T ) and
1 − Q(N) which have the physical meanings of failure rates with continuous and
discrete times play an important role in deriving optimal policies, and the necessity
of optimizations is also that cost for ICM should be greater than that for the first
IPM which includes the maintenance cost for the initial damage. From numerical
analyses, it has been shown that how the initial damage level z0 and the inspection
cost cM affect the optimal times. By comparing numerical T ∗ with N∗ or T̂ ∗ with
N̂∗, if we adopt the policy from the viewpoint of economy, the policy N∗ is better
than that of T ∗, but if from the viewpoint of simplicity of operation, the policy T ∗

would be better because we do not need to count the number of shocks.
As introduced in Chapter 1, the damage models have been applied to garbage

collection models, backup models, and software rejuvenation models in computer
sciences. The method proposed in this chapter could be applied to garbage collection
or defragmentation models in software systems. As high information has been
developed in the modern society, software always has to work for 24 ∗ 7 hours with
non-stop service, application programs could not collect garbage or defragment in
software systems perfectly in time. The models with initial damage proposed in
this chapter could be applied to such models, by modifying and extending them
suitably.

Appendix

When G(j)(x) =
∑∞

i=j[(x/µ)i/i!]e−x/µ (j = 0, 1, 2, · · · ) and G0(x) = (1−e−x/z0)/(1−
e−K/z0) for x ≤ K, prove that: 1. 1 − Q(j) increases strictly with j; 2. Q(T )

decreases strictly with T , where

1−Q(j) =

∫ K

0
[G(j)(K − x)−G(j+1)(K − x)]dG0(x)∫ K

0
G(j)(K − x)dG0(x)

, (A.1)

Q(T ) =

∑∞
j=0

(λT )j

j!

∫ K

0
G(j+1)(K − x)dG0(x)∑∞

j=0
(λT )j

j!

∫ K

0
G(j)(K − x)dG0(x)

. (A.2)
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1. Prove that∫ K

0
(x/µ)j

j!
e−x/µex/z0dx∑∞

i=j

∫ K

0
(x/µ)i

i!
e−x/µex/z0dx

<

∫ K

0
(x/µ)j+1

(j+1)!
e−x/µex/z0dx∑∞

i=j+1

∫ K

0
(x/µ)i

i!
e−x/µex/z0dx

.

Denote

Φ(K) ≡
∫ K

0

(x/µ)j+1

(j + 1)!
e−x/µex/z0dx

∞∑
i=j

∫ K

0

(x/µ)i

i!
e−x/µex/z0dx

−
∫ K

0

(x/µ)j

j!
e−x/µex/z0dx

∞∑
i=j+1

∫ K

0

(x/µ)i

i!
e−x/µex/z0dx, (2.23)

where Φ(0) = 0. Differentiating Φ(K) with respect to K,

Φ′(K) =
∞∑
i=j

e−K/(µ−z0)

(j + 1)!(i + 1)!

∫ K

0

e−x/(µ−z0)
{

(i + 1)
[
(K/µ)j+1 (x/µ)i

+ (x/µ)j+1 (K/µ)i
]
− (j + 1)

[
(K/µ)j (x/µ)i+1 + (x/µ)j (K/µ)i+1

]}
dx

≥
∞∑
i=j

µe−2K/(µ−z0)

(j + 1)!(i + 1)!

{
(i + 1)

[
(K/µ)j+1 (K/µ)i+1

i + 1
+

(K/µ)i (K/µ)j+2

j + 2

]

−(j + 1)

[
(K/µ)j (K/µ)i+2

i + 2
+

(K/µ)i+1 (K/µ)j+1

j + 1

]}

=
∞∑
i=j

µe−2K/(µ−z0)Ki+j+2

(j + 1)!(i + 1)!

(
i + 1

j + 2
− j + 1

i + 2

)
> 0,

which completes that Q(j) decreases strictly with j.
2. Denote Fj(K) ≡

∫ K

0
G(j)(K − x)dG0(x). Differentiating Q(T ) with respect

to T ,

Q′(T ) =
λ{∑∞

j=0[(λT )j/j!]Fj(K)
}2

[
∞∑

j=0

(λT )j

j!
Fj+2(K)

∞∑
j=0

(λT )j

j!
Fj(K)

−
∞∑

j=0

(λT )j

j!
Fj+1(K)

∞∑
j=0

(λT )j

j!
Fj+1(K)

]

=
λ{∑∞

j=0[(λT )j/j!]Fj(K)
}2

[
∞∑

j=0

j
(λT )j

j!
Fj+1(K)

∞∑
j=−1

(λT )j

(j + 1)!
Fj+1(K)
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2.5. Concluding Remarks

−
∞∑

j=0

(λT )j

j!
Fj+1(K)

∞∑
j=0

(λT )j

j!
Fj+1(K)

]
.

Thus, the bracket on the right-hand side is
∞∑

j=0

j
(λT )j

j!
Fj+1(K)

∞∑
j=−1

(λT )j

(j + 1)!
Fj+1(K)−

∞∑
j=0

(λT )j

j!
Fj+1(K)

∞∑
j=0

(λT )j

j!
Fj+1(K)

=
∞∑
i=0

i
(λT )i

i!
Fi+1(K)

∞∑
j=−1

(λT )j

(j + 1)!
Fj+1(K)

−
∞∑
i=0

(λT )i

i!
Fi+1(K)

∞∑
j=−1

(j + 1)
(λT )j

(j + 1)!
Fj+1(K)

=
∞∑

j=−1

(λT )j

(j + 1)!
Fj+1(K)

{
j+1∑
i=0

(λT )i

i!
Fi+1(K)[i− (j + 1)]

+
∞∑

i=j+1

(λT )i

i!
Fi+1(K)[i− (j + 1)]

}

=
∞∑

j=0

(λT )j−1

j!
Fj(K)

j∑
i=0

(λT )i

i!
Fi+1(K)(i− j)

+
∞∑
i=0

(λT )i

i!
Fi+1(K)

i∑
j=0

(λT )j−1

j!
Fj(K)(i− j)

=
∞∑

j=0

(λT )j

j!

j∑
i=0

(λT )i−1

i!
Fi(K)Fj(K)(i− j)

(
Fi+1(K)

Fi(K)
− Fj+1(K)

Fj(K)

)
< 0,

which proves 2, because Fj+1(K)/Fj(K) decreases strictly with j from proof 1.
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Chapter 3

Additive and Independent Damages

Most systems would fail roughly with time by both causes of additive and inde-
pendent damages. From such a viewpoint, this chapter considers three combined
replacement policies with two kinds of damages: The unit is replaced at a planned
time or when the total additive damage exceeds a failure level, whichever occurs
first, and undergoes minimal repair when independent damage occurs. First, a
standard cumulative damage model where the unit suffers some damage due to
shocks and the total damage is additive is considered. Second, the total damage is
measured only at periodic times. Third, the total damage increases linearly with
time t approximately. Using the theory of cumulative processes, expected cost rates
are obtained, and optimal policies which minimize them are derived analytically.
Finally, optimal policies are computed and compared numerically, and useful dis-
cussions for such results are given.

3.1 Introduction

Most systems might fail due to the total damage stored within them by shocks such
as jolt, stress, or environment change, which is called cumulative damage process, as
introduced in Chapter 1. On the other hand, when the total damage is not additive,
the unit fails when the damage due to some shock has exceeded a failure level. This
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3.2. Age Replacement Model

is called the independent damage model, and its typical examples are the fracture
of brittle materials such as glasses (Esary, et al., 1973), and semiconductor parts
which have failed by some overcurrent or fault voltage. So that, in general, units
would fail roughly with time by both causes of additive and independent damages.

This chapter considers three replacement policies that are combined with ad-
ditive and independent damage, in which the unit is replaced at a planned time or
when the total damage exceeds a failure level, whichever occurs first, and undergoes
minimal repair when independent damage occurs. First, we take up a standard cu-
mulative damage model where the unit suffers some damage due to shocks and the
total damage is additive. However, it might be impossible to estimate and know
occurrences of shocks and the total damage every at each shock. Second, the to-
tal damage is measured only at periodic times. Third, the total damage increases
linearly with time approximately, and two continuous damage models whose to-
tal damage is distributed normally and exponentially are proposed. Expected cost
rates of the above three models are obtained by using the techniques of cumulative
processes in reliability theory, and optimal policies which minimize them are derived
analytically and computed numerically.

3.2 Age Replacement Model

Suppose that shocks occur at a renewal process with a general distribution F (t) with
finite mean 1/λ and a density function f(t) ≡ F ′(t). An amount Wj of damage due
to the jth shock has an identical distribution G(x) ≡ Pr{Wj ≤ x} with finite mean
µ, and the total damage is additive. We call it damage 1. It is assumed that the
unit fails when the total damage exceeds a failure level K (0 < K < ∞) at some
shock, and it is replaced at a planed time T (0 < T ≤ ∞) or at failure, whichever
occurs first. Then, the expected cost rate is, from (Nakagawa, 2007, p.42),

C̃1(T ) =
cK − (cK − cT )

∑∞
j=0[F

(j)(T )− F (j+1)(T )]G(j)(K)∑∞
j=0 G(j)(K)

∫ T

0
[F (j)(t)− F (j+1)(t)]dt

, (3.1)

where φ(j)(x) (j = 1, 2, · · · ) denotes the j-fold Stieltjes convolution of any function
φ(x) with itself and φ(0)(x) ≡ 1 for t ≥ 0, cK = replacement cost at failure and
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3.2. Age Replacement Model

cT = replacement cost at time T , where cK > cT .
Next, suppose that another damage 2 occurs at a nonhomogeneous Poisson

process with an intensity function h(t) and a mean-value function H(t) ≡
∫ t

0
h(u)du,

i.e., the probability of j occurrences of damage 2 during (0, t] is

Pj(t) ≡
[H(t)]j

j!
e−H(t) (j = 0, 1, 2, · · · ).

It is assumed that damage 2 occurs independently of damage 1, and also its
damage is not additive which is called independent damage (Nakagawa, 2007, p.21).
That is, when damage 2 occurs, the unit undergoes only minimal repair. Thus,
the expected number of occurrences of damage 2, i.e., minimal repairs, before the
replacement is

NM =H(T )
∞∑

j=0

[F (j)(T )− F (j+1)(T )]G(j)(K)

+
∞∑

j=0

[G(j)(K)−G(j+1)(K)]

∫ T

0

H(t)dF (j+1)(t)

=
∞∑

j=0

[G(j)(K)−G(j+1)(K)]

∫ T

0

[1− F (j+1)(t)]dH(t)

=
∞∑

j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)]dH(t). (3.2)

Therefore, adding the minimal repair cost to C̃1(T ) in (3.1),

C1(T ) =

cK − (cK − cT )
∑∞

j=0 G(j)(K)[F (j)(T )− F (j+1)(T )]

+cM

∑∞
j=0 G(j)(K)

∫ T

0
[F (j)(t)− F (j+1)(t)]dH(t)∑∞

j=0 G(j)(K)
∫ T

0
[F (j)(t)− F (j+1)(t)]dt

, (3.3)

where cM = minimal repair cost for damage 2. Clearly,

C1(0) ≡ lim
T→0

C1(T ) = ∞,

C1(∞) ≡ lim
T→∞

C1(T ) =
cK + cM

∑∞
j=0 G(j)(K)

∫∞
0

[F (j)(t)− F (j+1)(t)]dH(t)

[1 + M(K)]/λ
,

where M(K) ≡
∑∞

j=1 G(j)(K), and note that the denominator represents the mean
time to replacement when the total damage exceeds a failure level K. Thus, there
exists a positive T ∗1 (0 < T ∗1 ≤ ∞) which minimizes C1(T ) in (3.3).
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3.2. Age Replacement Model

We find an optimal T ∗1 which minimizes C1(T ) in (3.3). Differentiating C1(T )

with respect to T and setting it equal to zero,

(cK − cT )

{
Q1(T )

∞∑
j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)]dt

−
∞∑

j=0

F (j+1)(T )[G(j)(K)−G(j+1)(K)]

}

+ cM

∞∑
j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)][h(T )− h(t)]dt = cT , (3.4)

where

Q1(T ) ≡
∑∞

j=0 f (j+1)(T )[G(j)(K)−G(j+1)(K)]∑∞
j=0 G(j)(K)[F (j)(T )− F (j+1)(T )]

.

It can be clearly seen that if Q1(T ) is strictly increasing and h(t) is increasing,
or Q1(T ) is increasing and h(t) is strictly increasing, then the left-hand side of (3.4)
is strictly increasing from 0 to

cM

{
h(∞)

λ
[1 + M(K)]−

∞∑
j=0

G(j)(K)

∫ ∞

0

[F (j)(t)− F (j+1)(t)]h(t)dt

}

+ (cK − cT )

{
Q1(∞)

λ
[1 + M(K)]− 1

}
. (3.5)

Thus, if (3.5) is greater than cT , then there exists a finite and unique T ∗1 (0 < T ∗1 <

∞) which satisfies (3.4). In this case, the expected cost rate is

C1(T
∗
1 ) = (cK − cT )Q1(T

∗
1 ) + cMh(T ∗1 ). (3.6)

Furthermore, let T1 be a solution of equation

Q1(T )
∞∑

j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)]dt

−
∞∑

j=0

F (j+1)(T )[G(j)(K)−G(j+1)(K)] =
cT

cK − cT

, (3.7)

then T1 > T ∗1 , and let T2 be a solution of equation
∞∑

j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)][h(T )− h(t)]dt =
cT

cM

, (3.8)
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3.2. Age Replacement Model

then T2 > T ∗1 . Both T1 and T2 would be useful for computing an optimal T ∗1 as its
upper bounds.

On the other hand, when H(t) = αt, i.e., h(t) = α (α > 0), from (3.5), if
Q1(∞)[1 + M(K)] > λcK/(cK − cT ), then there exists a finite T ∗1 (0 < T ∗1 < ∞)

which satisfies (3.4). In addition, when F (t) = 1 − e−λt and G(x) = 1 − e−x/µ,
it was shown in (Nakagawa, 2007, p.48) that G(j)(x) =

∑∞
i=j[(x/µ)i/i!]e−x/µ and

M(x) = x/µ,

Q1(T ) =
λ
∑∞

j=0[(λT )j/j!][G(j)(K)−G(j+1)(K)]∑∞
j=0[(λT )j/j!]G(j)(K)

is strictly increasing from λe−K/µ to λ. Thus, if K/µ > cT /(cK − cT ), then there
exists a finite and unique T ∗1 (0 < T ∗1 < ∞) which satisfies (3.4).

In particular, when K →∞, the expected cost rate is, from (3.3),

C1(T ) =
cT + cMH(T )

T
, (3.9)

which agrees with that of the standard periodic replacement (Nakagawa, 2005,
p.102).

It might be better to do some maintenance only at each shock: The unit is
replaced before time T when the total damage has exceeded a failure level K, and
after T , it is replaced certainly at the next shock. Then, from (Nakagawa, 2007,
p.55), the mean time to replacement is

E(L) =
∞∑

j=0

[G(j)(K)−G(j+1)(K)]

{∫ T

0

[∫ ∞

T−u

(t + u)dF (t)

]
dF (j)(u)

+

∫ T

0

tdF (j+1)(t)

}
+

∞∑
j=0

G(j+1)(K)

∫ T

0

[∫ ∞

T−u

(t + u)dF (t)

]
dF (j)(u)

=
1

λ

∞∑
j=0

G(j)(K)F (j)(T ),

and the expected number of occurrences of damage 2 before replacement is

NM =
∞∑

j=0

[G(j)(K)−G(j+1)(K)]

{∫ T

0

[∫ ∞

T−u

H(t + u)dF (t)

]
dF (j)(u)
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+

∫ T

0

H(t)dF (j+1)(t)

}
+

∞∑
j=0

G(j+1)(K)

∫ T

0

[∫ ∞

T−u

H(t + u)dF (t)

]
dF (j)(u)

=
∞∑

j=0

G(j)(K)

∫ T

0

[∫ ∞

0

[H(t + u)−H(u)]dF (t)

]
dF (j)(u).

Therefore, the expected cost rate is

Ĉ1(T ) =

cK − (cK − cT )
∑∞

j=0 G(j+1)(K)[F (j)(T )− F (j+1)(T )]

+cM

∑∞
j=0 G(j)(K)

∫ T

0

[∫∞
0

[H(t + u)−H(u)]dF (t)
]

dF (j)(u)∑∞
j=0 G(j)(K)F (j)(T )/λ

. (3.10)

3.3 Periodic Replacement Model

It is assumed that each amount Wn (n = 1, 2, · · · ) of damage due to shocks is
measured only at periodic times nT0 (n = 1, 2, · · · ) for a given T0 (0 < T0 < ∞)

and has an identical distribution GT (x) ≡ Pr{Wn ≤ x} with mean µT . The other
assumptions are the same as those in the age replacement model. Suppose that
the unit is replaced at time NT0 or at failure, whichever occurs first. Then, the
expected cost rate is, from (Nakagawa, 2007, p.84),

C̃2(N) =
cK − (cK − cN)G

(N)
T (K)

T0

∑N−1
n=0 G

(n)
T (K)

(N = 1, 2, · · · ), (3.11)

where cN = replacement cost at time NT0.
The expected number of occurrences of minimal repairs due to damage 2 is

NM =
N−1∑
n=0

H[(n + 1)T0][G
(n)
T (K)−G

(n+1)
T (K)] + H(NT0)G

(N)
T (K)

=
N−1∑
n=0

[H((n + 1)T0)−H(nT0)]G
(n)
T (K). (3.12)

Therefore, adding the minimal repair cost to C̃2(N) in (3.11),

C2(N) =

cK − (cK − cN)G
(N)
T (K)

+cM

∑N−1
n=0 [H((n + 1)T0)−H(nT0)]G

(n)
T (K)

T0

∑N−1
n=0 G

(n)
T (K)

(N = 1, 2, · · · ).

(3.13)
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Clearly,

C2(1) =
cK − (cK − cN)GT (K) + cMH(T0)

T0

,

C2(∞) ≡ lim
N→∞

C2(N) =
cK + cM

∑∞
n=0[H((n + 1)T0)−H(nT0)]G

(n)
T (K)

T0[1 + MT (K)]
,

where MT (K) ≡
∑∞

n=1 G
(n)
T (K).

We find an optimal N∗
2 which minimizes C2(N) in (3.13). From the inequality

C2(N + 1)− C2(N) ≥ 0,

(cK − cN)

{
Q2(N + 1)

N−1∑
n=0

G
(n)
T (K)− [1−G

(N)
T (K)]

}

+ cM

{
[H((N + 1)T0)−H(NT0)]

N−1∑
n=0

G
(n)
T (K)

−
N−1∑
n=0

[H((n + 1)T0)−H(nT0)]G
(n)
T (K)

}
≥ cN (N = 1, 2, · · · ), (3.14)

where

Q2(N) ≡ G
(N−1)
T (K)−G

(N)
T (K)

G
(N−1)
T (K)

.

Denote the let-hand side in (3.14) be L2(N),

L2(N)− L2(N − 1) =
N−1∑
n=0

G
(n)
T (K)

(
(cK − cN)[Q2(N + 1)−Q2(N)]

+cM{[H((N + 1)T0) + H((N − 1)T0)− 2H(NT0)]}
)
.

Therefore, if Q2(N) is strictly increasing and h(t) is increasing, or Q2(N) is
increasing and h(t) is strictly increasing, then the left-hand side of (3.14) is strictly
increasing to L2(∞). Thus, if L2(∞) > cN , then there exists a finite and unique
minimum N∗

2 (1 ≤ N∗
2 < ∞) which satisfies (3.14). Furthermore, let N1 be a

solution of the equation

Q2(N + 1)
N−1∑
n=0

G
(n)
T (K)− [1−G

(N)
T (K)] ≥ cN

cK − cN

, (3.15)
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then N1 ≥ N∗
2 , and let N2 be a solution of the equation

[H((N + 1)T0)−H(NT0)]
N−1∑
n=0

G
(n)
T (K)

−
N−1∑
n=0

[H((n + 1)T0)−H(nT0)]G
(n)
T (K) ≥ cN

cM

, (3.16)

then N2 ≥ N∗
2 .

When G
(j)
T (x) =

∑∞
i=j[(x/µT )i/i!]e−x/µT ,

Q2(N) =
(K/µT )N−1/(N − 1)!∑∞

n=N−1(K/µT )n/n!

is strictly increasing from e−K/µT to 1 (Nakagawa, 2007 p.24). Thus, if K/µT >

cN/(cK − cN), then there exist a finite and unique minimum N1 which satisfies
(3.15). On the other hand, when H(t) = αt, if Q2(∞)[1+MT (K)] > cK/(cK − cN),
then there exists a finite N∗

2 (1 ≤ N∗
2 < ∞) which satisfies (3.16). In addition,

when G(x) = 1− e−x/µT , N∗
2 = N1.

In particular, when K →∞, the expected cost rate is

C2(N) =
cN + cMH(NT0)

NT0

, (3.17)

which agrees with that of the periodic replacement (Nakagawa, 2005, p.238).

3.4 Continuous Models

The hypothesis of the cumulative damage models discussed in the above two sections
may be so strong that they are not so practicable for some applications: (1) It is
more practical that the total damage stored within the unit will increase with time
itself and fail eventually, but not be in a constant level until next shock occurs.
(2) Referring to these applications of backup models or garbage collection models,
due to the high frequency of computer processes in the modern society, it may
be not so valid to assume that update of data or garbage occurrence follows an
nonhomogeneous Poisson process, because the time intervals of events might be
very short and unclear enough. In this section, we consider two continuous damage
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models where the total damage Z(t) increases linearly with time t according two
probabilistic laws (Nakagawa, 2007, p.26).

3.4.1 Model 1

It is assumed that the total amount of damage increases with t, i.e., the total
damage at time t is Z(t) = At, where A is a random variable whose distribution is
WA(x) ≡ Pr{A ≤ x}. Then, the probability that the unit does not fail in (0, t] is

Pr{Z(t) ≤ K} = Pr{At ≤ K} = Pr{A ≤ K/t} = WA(K/t). (3.18)

Suppose that the unit is replaced at time T or when the total damage exceeds
K, whichever occurs first. Then, the mean time to replacement is

TWA(K/T ) +

∫ T

0

td[1−WA(K/t)] =

∫ T

0

WA(K/t)dt. (3.19)

Thus, by the similar method of obtaining (3.3), the expected cost rate is

C3(T ) =
cK − (cK − cT )WA(K/T ) + cM

∫ T

0
WA(K/t)dH(t)∫ T

0
WA(K/t)dt

. (3.20)

Let rA(t) be the failure rate of WA(t), i.e., rA(t) ≡ −W ′
A(t)/WA(t). Differenti-

ating C3(T ) with respect to T and setting it equal to zero,

(cK − cT )

{
rA(K/T )

∫ T

0

WA(K/t)dt− [1−WA(K/T )]

}
+ cM

∫ T

0

WA(K/t)[h(T )− h(t)]dt = cT . (3.21)

Thus, if rA(t) is strictly increasing and h(t) is increasing or rA(t) is increasing and
h(t) is strictly increasing, if a solution T ∗3 to (3.21) exists, it is unique.

Next, suppose that the unit is replaced at time NT0 for T0 > 0 and when the
total damage exceeds K, whichever occurs first. Then, by the similar method of
obtaining (3.20), the expected cost rate is

C4(N) =

cK − (cK − cN)WA(K/NT0)

+cM

∑N−1
n=0 [H((n + 1)T0)−H(nT0)]WA(K/nT0)

T0

∑N−1
n=0 WA(K/nT0)

(N = 1, 2, · · · ),

(3.22)
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where define that when n = 0, WA(K/nT0) ≡ 1. From the inequality C4(N + 1)−
C4(N) ≥ 0,

(cK − cN)

{
Q4(N)

N−1∑
n=0

WA(K/nT0)− [1−WA(K/NT0)]

}

+ cM

{
[H((N + 1)T0)−H(NT0)]

N−1∑
n=0

WA(K/nT0)

−
N−1∑
n=0

[H((n + 1)T0)−H(nT0)]WA(K/nT0)

}
≥ cN (N = 1, 2, · · · ), (3.23)

where

Q4(N) ≡ WA(K/NT0)−WA(K/(N + 1)T0)

WA(K/NT0)
.

Thus, if Q4(N) is strictly increasing and h(t) is increasing, or Q4(N) is increasing
and h(t) is strictly increasing, if a solution N∗

4 to (3.23) exists, its minimum is
unique.

3.4.2 Model 2

It is assumed that Z(t) = µAt+Bt, where Bt has a probability distribution Pr{Bt ≤
x} ≡ WB(x), which is called a Brownian motion with drift (Ross, 1983, p.197).
Then, the probability that the unit does not fail in (0, t] is

Pr{Z(t) ≤ K} = Pr{Bt ≤ K − µAt} = WB(K − µAt).

Thus, by replacing formally WA(K/t) in (3.20) with WB(K − µAt), the expected
cost rate is

C5(T ) =
cK − (cK − cT )WB(K − µAT ) + cM

∫ T

0
WB(K − µAt)dH(t)∫ T

0
WB(K − µAt)dt

. (3.24)

Let rB(t) be the failure rate of WB(t), i.e., rB(t) ≡ −W ′
B(t)/WB(t). Differen-

tiating C5(T ) with respect to T and setting it equal to zero,

(cK − cT )

{
rB(K − µAT )

∫ T

0

WB(K − µAt)dt− [1−WB(K − µAT )]

}
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+ cM

∫ T

0

WB(K − µAt)[h(T )− h(t)]dt = cT . (3.25)

Thus, if rB(t) is strictly increasing and h(t) is increasing or rB(t) is increasing and
h(t) is strictly increasing, if a solution T ∗5 to (3.25) exists, it is unique.

3.5 Numerical Examples

It is assumed that F (t) = 1− e−λt and H(t) = αtm (m ≥ 1), and G(x) = 1− e−x/µ

for the standard model, GT (x) = 1− e−x/µT for the periodic model, A has a normal
distribution N(µA, σ2/t) for Model 1, and WB(x) = 1− e−x/σ

√
t for Model 2 of the

continuous model.
Furthermore, we set that the mean and variance of the total damage at any

time nT0 are equal approximately for all models,

E{Z(nT0)} = λµnT0 = nµT = µAnT0,

V {Z(nT0)} = 2λµ2nT0 = nµ2
T = σ2nT0.

Thus, we have

λ =
2

T0

, µ =
µT

2
, µA =

µT

T0

, σ2 =
µ2

T

T0

.

Table 3.1: Optimal T ∗1 and C1(T ∗1 )/cT when T0 = 1, µT = 1 and K = 20.

m cK/cT
cMα/cT = 0.01 cMα/cT = 0.05 cMα/cT = 0.1

T ∗
1 C1(T ∗

1 )/cT T ∗
1 C1(T ∗

1 )/cT T ∗
1 C1(T ∗

1 )/cT

5 12.81 0.0999 12.81 0.1399 12.81 0.1899
1.0 10 11.59 0.1085 11.59 0.1485 11.59 0.1985

20 10.61 0.1166 10.61 0.1567 10.61 0.2067
5 9.63 0.2033 4.55 0.4572 3.25 0.6526

2.0 10 9.33 0.2044 4.55 0.4572 3.25 0.6526
20 8.97 0.2061 4.55 0.4572 3.25 0.6526
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Table 3.2: Optimal N∗
2 and C2(N∗

2 )/cN when T0 = 1, µT = 1 and K = 20.

m cK/cN
cMα/cN = 0.01 cMα/cN = 0.05 cMα/cN = 0.1

N∗
2 C2(N∗

2 )/cN N∗
2 C2(N∗

2 )/cN N∗
2 C2(N∗

2 )/cN

5 13 0.0992 13 0.1392 13 0.1892
1.0 10 12 0.1095 12 0.1495 12 0.1995

20 10 0.1195 10 0.1595 10 0.2095
5 10 0.2020 4 0.4500 3 0.6333

2.0 10 9 0.2032 4 0.4500 3 0.6333
20 9 0.2055 4 0.4500 3 0.6333

When T0 = 1 and µT = 1, i.e., λ = 2, µ = 1/2, µA = 1, σ2 = 1, H(t) = αtm.
Tables 3.1-3.5 present the optimal T ∗1 , N∗

2 , T ∗3 , N∗
4 , T ∗5 and their resulting expected

cost rates C1(T
∗
1 )/cT , C2(N

∗
2 )/cN , C3(T

∗
3 )/cT , C4(N

∗
4 )/cN , C5(T

∗
5 )/cT , respectively,

for m, cMα/ci and cK/ci (i = T,N) when T0 = 1, µT = 1 and K = 20. These
indicate that all optimal times and cost rates have similar tendencies for the same
given parameters: (1) When cK/cT or cK/cN increases, optimal times decrease and
cost rates increase. (2) When m increases, optimal times decrease and cost rates
increase, however, they become more stable as m become larger. (3) When cMα/cT

or cMα/cN increases, optimal times decrease and cost rate increase, however, when
m = 1, optimal times are not changed.

Table 3.3: Optimal T ∗3 and C3(T ∗3 )/cT when T0 = 1, µT = 1 and K = 20.

m cK/cT
cMα/cT = 0.01 cMα/cT = 0.05 cMα/cT = 0.1

T ∗
3 C3(T ∗

3 )/cT T ∗
3 C3(T ∗

3 )/cT T ∗
3 C3(T ∗

3 )/cT

5 12.97 0.0958 12.97 0.1358 12.97 0.1858
1.0 10 11.93 0.1018 11.93 0.1418 11.93 0.1918

20 11.17 0.1071 11.17 0.1471 11.17 0.1971
5 9.85 0.2013 4.53 0.4522 3.21 0.6425

2.0 10 9.71 0.2016 4.53 0.4522 3.21 0.6425
20 9.51 0.2020 4.53 0.4522 3.21 0.6425
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Table 3.4: Optimal N∗
4 and C4(N∗

4 )/cN when T0 = 1, µT = 1 and K = 20.

m cK/cN
cMα/cN = 0.01 cMα/cN = 0.05 cMα/cN = 0.1

N∗
4 C4(N∗

4 )/cN N∗
4 C4(N∗

4 )/cN N∗
4 C4(N∗

4 )/cN

5 13 0.0951 13 0.1351 13 0.1851
1.0 10 12 0.1012 12 0.1412 12 0.1912

20 11 0.1067 11 0.1467 11 0.1967
5 10 0.2003 5 0.4500 3 0.6333

2.0 10 10 0.2007 5 0.4500 3 0.6333
20 9 0.2014 5 0.4500 3 0.6333

Table 3.5: Optimal T ∗5 and C5(T ∗5 )/cT when T0 = 1, µT = 1 and K = 20.

m cK/cT
cMα/cT = 0.01 cMα/cT = 0.05 cMα/cT = 0.1

T ∗
5 C5(T ∗

5 )/cT T ∗
5 C5(T ∗

5 )/cT T ∗
5 C5(T ∗

5 )/cT

5 10.95 0.1283 10.95 0.1683 10.95 0.2183
1.0 10 9.21 0.1487 9.21 0.1887 9.21 0.2387

20 7.87 0.1708 7.87 0.2108 7.87 0.2608
5 8.41 0.2119 4.36 0.4391 3.01 0.6035

2.0 10 7.64 0.2209 4.33 0.4398 3.01 0.6036
20 6.88 0.2330 4.28 0.4410 3.01 0.6037

We could explain the optimal policies as following: (1) When the replacement
cost cK at failure increases, we should advance the time of replacement, that is,
T ∗1 , N∗

2 , T ∗3 , N∗
4 , T ∗5 should be decreased, in order to reduce the probability of

failures. (2) When m and cMα/cT or cMα/cN increase, i.e., the frequency and
cost of minimal repair increase, the replacement time should be advanced to reduce
the total minimal repair cost. (3) When m and cMα/cT or cMα/cN are both or
either very larger, the replacement cost cK have no effect on the optimal time. (4)
When m = 1, that is, minimal repair occurs at a homogeneous Poisson process, the
minimal repair cost cM also have no effect on the optimal time. (5) Compared to
T ∗1 with N∗

2 and T ∗3 with N∗
4 , all results are almost the same. Thus, if we could not

33/116



3.6. Concluding Remarks

estimate the total damage at each shock, then it would be sufficient to estimate it at
periodic times. (6) Clearly, T ∗5 is less than T ∗3 because E{Z(t)} = µAt for Model 1 is
smaller than E{Z(t)} = µAt+σ

√
t for Model 2. Model 2 could be applied practically

to the continuous damage model where the total damage usually increases linearly
with time t, however, it might change randomly on some additional accidents.

3.6 Concluding Remarks

We have discussed three kinds of replacement policies which are combined with ad-
ditive and independent damages. The expected cost rates are obtained by using the
techniques of cumulative processes in reliability theory. Optimal policies are derived
analytically, optimal T ∗1 , N∗

2 , T ∗3 , N∗
4 , T ∗5 and the resulting cost rates C1(T

∗
1 )/cT ,

C2(N
∗
2 )/cN , C3(T

∗
3 )/cT , C4(N

∗
4 )/cN , C5(T

∗
5 )/cT are computed and compared nu-

merically. By setting the mean and variance of the total damage at any time nT0

are equal approximately for all models, all optimal times and cost rates have similar
tendencies for the same given parameters in numerical analyses. However, the mini-
mal repair cost cM may be a variable and some damage caused by damage 1 may be
reduced by some maintenance using the opportunity time of minimal repair. The
obtained results and used methods in this paper would be applied in practise by
modifying them suitably, as referred in Section 3.4, the continuous models could be
applied in garbage collection models. For an another example of the applications,
we could discuss a reorganization model of structural database (William and Tuel,
1978; Goda and Kitsuregawa, 2006) by replacing shock by update, and damage 1
by structural deterioration and damage 2 by split data deterioration.
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Chapter 4

Random Working Times

This chapter takes up three maintenance policies for an operating system which
works at random times for jobs. Each job causes some damage to the system and
these damage are additive, and the system fails when the total damage has exceeded
a failure level K. First, preventive maintenance is made at the Nth completion of
working time for the standard model, and the system fails with probability p(x)

when the total damage is x for the minimal repair model. Second, the system is
maintained at the first completion of some working times over time T . Third, when a
limit number N of working times are introduced, maintenance is made at a planned
time T or at a damage level Z. Using techniques of cumulative damage models,
expected cost rates are obtained and optimal maintenance policies are discussed
analytically and computed numerically.

4.1 Introduction

Most system deteriorate with age and use, and eventually, fail from either or both
causes in random environment. If their failure rates increase with age and use, it
may be wise to make some suitable maintenance at periodic times or at a certain
number of failures. The policy with two variables would be effective where units
suffer great deterioration due to both age and use. For example, some parts of
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aircraft have to be maintained at a specified number of flights and at a planned
time since the last major overhaul (Nakagawa, 2008, p.149). This could also be
applied to the maintenance of some parts of large complex systems such as switching
devices and parts of transportation equipment, computers and plants (Nakagawa,
2005, p.95).

Some units in offices and industries execute jobs or computer procedures succes-
sively. For such units, it would be impossible or impractical to maintain or replace
them in a strict periodic fashion, because the sudden suspension of the job may
suffer losses of production in different degrees if there is no sufficient preparation in
advance (Barlow and Proschan 1965, p.72; Nakagawa, 2005, p.245). When a job has
a variable working cycle or processing time, it would be better to do maintenance or
replacement after the job is completed (Sugiura et al., 2004). A representative ex-
ample is to maintain a database or to perform a backup of data when a transaction
is processing its sequences of operations, because it is necessary to guarantee ACID
(atomicity, consistency, isolation, durability) properties of database transactions,
especially for a distributed transaction across a distributed database (Haerder and
Reuter, 1983; Gray and Reuter, 1992; Lewis, et al., 2002). In addition, some sched-
ules of jobs that have random processing times were summarized (Pinedo, 2002).
The properties of replacement times between two successive failed units, when the
unit is replaced at such random times, were investigated (Stadje, 2003). A com-
parative study between periodic and random replacement was done (Nakagawa, et
al., 2011). Furthermore, such a notion of “random maintenance" was applied to a
parallel system with random number of units (Nakagawa and Zhao, 2012).

On the other hand, in crack growth models (Scarf, et al., 1996; Hopp and Kuo,
1998; Sobczyk and Trebicki, 2003) for aircrafts, it has been well-known that the
unit fails when the size of one crack in it exceeds a failure level or the total sizes of
all cracks attain to its certain level. For examples, rivets are normally adopted for
jointing skin to stringers, ribs in aircraft structures and fatigue cracks are known to
initiate at rivet holes. Although one crack may be not dangerous because its force
decreases when it enlarges, cracks at several following rivets may be dangerous
because they can cause multi-site damage (MSD). The MSD has been defined as
the simultaneous occurrence of many tiny fatigue cracks at multiple locations in the
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same structural element and has become recently a major issue of aging aircrafts
since the Aloha Airlines affair in 1988 (Schĳve, 1995). If such small fatigue cracks
would be of enough scale and density, the aircraft structure could no longer have
sufficient strength. In case of riveted lap joints, small cracks of following rivet link
up and cause the widespread fatigue damage. We must avoid such fatigue damage
as much as one can, because it might cause the catastrophic aircraft disaster.

This chapter considers an operating system which works at successive random
times for jobs and its maintenance policies, using the cumulative process (Nakagawa,
2007) by replacing shock by work: Each work causes some damage to the system
and these damage are additive, and the system fails when the total damage has
exceeded a failure level K. Maintenance is made at the Nth completion of working
time for the standard model and the system fails with probability p(x) when the
total damage is x at some completion of working times for the minimal repair model.
It might be useless to maintain an operating system even when a planned time T

comes and be wise to maintain it at the completion of the some working times. We
sometimes want to use the system as long as possible. From such a viewpoint, we
propose the overtime policy where the system is maintained at the first completion
of the some working times over time T for the overtime model. When the cumulative
damage models are applied to crack growth models, a limit number N of working
times are introduced, and maintenance is made at a planned time T or at a damage
level Z for the last model. Expected cost rates of each model are obtained and
optimal maintenance policies are discussed analytically and computed numerically.

4.2 Nth Working Time

4.2.1 Standard Policy

It is assumed that Xj (j = 1, 2, · · · ) is the working time of an operating system
and is independent and has an identical distribution F (t) ≡ Pr

{
Xj ≤ t

}
with finite

mean 1/λ. That is, the system works at a renewal process with its distribution F (t).
It is also assumed that each work of a job incurs some damage to the system and the
total damage is additive, which is called a cumulative damage model (Nakagawa,
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2007). That is, suppose that the jth work causes some damage to the system in the
amount Yj (j = 1, 2, · · · ) according to an identical distribution G(x) ≡ Pr

{
Yj ≤ x

}
with finite mean 1/µ. Then, the probability that j times of works are completed in
(0, t] is, from (Nakagawa, 2007, p.17),

Pr{N(t) = j} = F (j)(t)− F (j+1)(t) (j = 0, 1, 2, · · · ),

and the distribution of the total damage Z(t) at time t is

Pr{Z(t) ≤ x} =
∞∑

j=0

G(j)(x)
[
F (j)(t)− F (j+1)(t)

]
,

where Φ(j)(t) denotes the j-fold Stieltjes convolution of Φ(t) with itself and Φ(0)(t) ≡
1 for t > 0 for any function Φ(t), and M(x) ≡

∑∞
j=1 G(j)(x) which is the renewal

function of G(x).
The operating system fails when the total damage has exceeded a failure level

K, and its failure is detected and maintenance is made at the completion of working
time. As the preventive maintenance policy, the system is maintained before failure
at Nth (N = 1, 2, · · · ) working time. Then, the mean time to maintenance is

E(L) =
N−1∑
j=0

[
G(j)(K)−G(j+1)(K)

] ∫ ∞

0

[
1− F (j+1)(t)

]
dt

+ G(N)(K)

∫ ∞

0

[
1− F (N)(t)

]
dt

=
N−1∑
j=0

G(j)(K)

∫ ∞

0

[
F (j)(t)− F (j+1)(t)

]
dt =

1

λ

N−1∑
j=0

G(j)(K). (4.1)

Furthermore, let cK and cN be the respective maintenance costs at failure and
the Nth working time with cK > cN . Then, the expected cost rate is (Nakagawa,
2007, p.44)

C1(N)

λ
=

cK −
(
cK − cN

)
G(N)(K)∑N−1

j=0 G(j)(K)
(N = 1, 2, · · · ). (4.2)

We find an optimal number N∗
1 which minimizes the expected cost rate C1(N)

in (4.2). From the inequality C1(N + 1)− C1(N) ≥ 0,

L1(N)
N−1∑
j=0

G(j)(K)−
[
1−G(N)(K)

]
≥ cN

cK − cN

(N = 1, 2, · · · ), (4.3)
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where

L1(N) ≡ G(N)(K)−G(N+1)(K)

G(N)(K)
.

If L1(N) increases strictly with N , then the left-hand side of (4.3) also increases
strictly with N . Therefore, if L1(∞)

[
1 + M(K)

]
> cK/

(
cK − cN

)
, then there

exists a finite and unique minimum N∗
1 (1 ≤ N∗

1 < ∞) which satisfies (4.3), and
the resulting cost rate is(

cK − cN

)
L(N∗

1 ) <
C1(N

∗
1 )

λ
≤
(
cK − cN

)
L(N∗

1 + 1).

If L1(N) increases with N , then we have two inequalities:

L1(N)
N−1∑
j=0

G(j)(K)−
[
1−G(N)(K)

]
≥ L1(N)− [1−G(K)], (4.4)

L1(N)
N−1∑
j=0

G(j)(K)−
[
1−G(N)(K)

]
≥ L1(N)

∞∑
j=0

G(j)(K)− 1, (4.5)

which are proved as follows: For (4.4),

L1(N)
N−1∑
j=1

G(j)(K)−
N−1∑
j=1

[
G(j)(K)−G(j+1)(K)

]
=

N−1∑
j=1

G(j)(K)[L1(N)− L1(j)] ≥ 0,

and for (4.5),

L1(N)
∞∑

j=N

G(j)(K)−
∞∑

j=N

[
G(j)(K)−G(j+1)(K)

]
=

∞∑
j=N

G(j)(K)[L1(N)− L1(j)] ≤ 0.

Let Ñ1 and Ñ2 be the respective solutions of the equations

L1(N) + G(K) ≥ cK

cK − cN

,

L1(N)[1 + M(K)] ≥ cK

cK − cN

,

39/116



4.2. Nth Working Time

then N∗
1 ≤ Ñ1 and N∗

1 ≤ Ñ2. The upper bounds Ñ1 and Ñ2 would be useful for
computing an optimal N∗

1 approximately when N is small and large, respectively.
In particular, when G(x) = 1 − e−µx, i.e., G(j)(x) =

∑∞
i=j

[
(µx)i/i!

]
e−µx, from

Example 2.2 (Nakagawa, 2007, p.24), L1(N) = [(µK)N/N !]/
∑∞

i=N [(µK)i/i!] which
increases from e−µK to 1. Thus, if µK > cN/

(
cK − cN

)
, then there exists a finite

and unique minimum N∗
1 (1 ≤ N∗

1 < ∞) which satisfies (4.3).
Table 4.1 presents optimal N∗

1 which satisfy (4.3) and C1(N
∗
1 )/(λcN) for dif-

ferent µK and cK/cN . Clearly, N∗
1 increase with µK and decrease with cK/cN .

That is, to control effectively a high cost suffered for failure, we must make the
maintenance time earlier as a failure level K is lower or a failure maintenance cost
cK is higher.

Table 4.1: Optimal N∗
1 and C1(N∗

1 )/(λcN ) for µK and cK/cN .

cK/cN
µK = 10 µK = 15 µK = 20

N∗
1 C1(N∗

1 )/(λcN ) N∗
1 C1(N∗

1 )/(λcN ) N∗
1 C1(N∗

1 )/(λcN )

2 8 0.1561 11 0.1009 15 0.0734
5 5 0.2129 8 0.1282 12 0.0892
10 4 0.2533 7 0.1455 11 0.0995
15 4 0.2827 7 0.1567 10 0.1047
20 3 0.2993 6 0.1637 9 0.1095

4.2.2 Minimal Repair

It is assumed that the system fails with probability p(x) with p(0) ≡ 0 when the total
damage becomes x at the completion of working times, and undergoes only minimal
repairs at failures, i.e., the total damage remains undisturbed by any minimal repair.
Suppose that the system is maintained at the Nth working time. Then, the expected
number of minimal repairs before maintenance is

NM =
N−1∑
j=1

∫ ∞

0

p(x)dG(j)(x). (4.6)
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Thus, the expected cost rate is,

C2(N)

λ
=

1

N

[
cM

N−1∑
j=1

∫ ∞

0

p(x)dG(j)(x) + cN

]
(N = 1, 2, · · · ), (4.7)

where cM is the minimal repair cost at each failure.
We find an optimal number N∗

2 which minimizes the expected cost rate C2(N)

in (4.7). From the inequality C2(N + 1)− C2(N) ≥ 0,

N−1∑
j=0

[∫ ∞

0

p(x)dG(N)(x)−
∫ ∞

0

p(x)dG(j)(x)

]
≥ cN

cM

(N = 1, 2, · · · ). (4.8)

Thus, if
∫∞

0
p(x)dG(j)(x) increases strictly with j, then the left-hand side of (4.8)

also increases strictly. When p(x) = 1− e−βx,∫ ∞

0

[
1− e−βx

]
dG(j)(x) = 1− [G∗(β)]j ,

where G∗(β) ≡
∫∞

0
e−βxdG(x) < 1, which represents the Laplace-Stieltjes transform

of G(x). Hence, (4.8) becomes

[1−G∗(β)]
N∑

j=1

j [G∗(β)]j−1 ≥ cN

cM

, (4.9)

whose left-hand side increases strictly from 1−G∗(β) to 1/
[
1−G∗(β)

]
. Therefore,

if cM > cN

[
1 − G∗(β)

]
, then there exists a finite and unique minimum N∗

2 (1 ≤
N∗

2 < ∞) which satisfies (4.9). Clearly, if cM ≥ cN/[1−G∗(β)], then N∗
2 = 1.

Next, it is assumed that a probability function p(x) is the degenerate distribu-
tion, i.e., p(x) = 0 for x < K and 1 for x ≥ K. Then, the system fails certainly
when the total damage has exceeded a failure level K and undergoes minimal repair.
Then, the expected number of failures before maintenance is

NF =
N−1∑
j=1

[
1−G(j)(K)

]
. (4.10)

Thus, the expected cost rate is,

C̃2(N)

λ
=

1

N

[
cM

N−1∑
j=1

[
1−G(j)(K)

]
+ cN

]
(N = 1, 2, · · · ). (4.11)
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From C̃2(N + 1)− C̃2(N) ≥ 0,

N−1∑
j=0

[
G(j)(K)−G(N)(K)

]
≥ cN

cM

. (4.12)

Because G(j)(K) decreases with j, the left-hand side of (4.12) increases from 1 −
G(K) to 1+M(K). Therefore, if cM > cN/[1+M(K)], then there exists a finite and
unique minimum Ñ∗

2 (1 ≤ Ñ∗
2 < ∞) which satisfies (4.12). If cM ≥ cN/[1−G(K)],

then Ñ∗
2 = 1.

Table 4.2: Optimal N∗
2 and C2(N∗

2 )/(λcM ) for G∗(β) and cN/cM .

cN/cM
G∗(β) = 0.90 G∗(β) = 0.95 G∗(β) = 0.99

N∗
2 C2(N∗

2 )/(λcM ) N∗
2 C2(N∗

2 )/(λcM ) N∗
2 C2(N∗

2 )/(λcM )

0.5 3 0.2663 5 0.1951 10 0.0938
1.0 5 0.3801 7 0.2809 15 0.1337
1.5 7 0.4689 9 0.3449 18 0.1639
2.0 8 0.5381 10 0.3975 21 0.1892
5.0 16 0.8033 19 0.6077 35 0.2956

Table 4.3: Optimal Ñ∗
2 and C̃2(Ñ∗

2 )/(λcM ) for µK and cN/cM .

cN/cM
µK = 10 µK = 15 µK = 20

Ñ∗
2 C̃2(Ñ∗

2 )/(λcM ) Ñ∗
2 C̃2(Ñ∗

2 )/(λcM ) Ñ∗
2 C̃2(Ñ∗

2 )/(λcM )

0.5 6 0.0871 9 0.0567 13 0.0414
1.0 7 0.1550 10 0.1033 14 0.0764
1.5 7 0.2175 11 0.1463 15 0.1094
2.0 8 0.2734 12 0.1877 15 0.1406
5.0 10 0.5683 14 0.4047 18 0.3118

Table 4.2 presents optimal N∗
2 and C2(N

∗
2 )/(λcM) for different G∗(β) and

cK/cM . It is shown that N∗
2 increase with both G∗(β) and cK/cM . Table 4.3

presents optimal Ñ∗
2 and C̃2(Ñ

∗
2 )/(λcM) for different µK and cK/cM . This shows
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similar tendencies to Table 4.2. From these two tables, we can know that the opti-
mal maintenance times become longer as the minimal repair cost cM is lower and
the failure level K is larger.

4.3 Overtime Policy

It may be wasteful to maintain an operating system at planned times even if it
is working. For example, when the system is functioning for jobs with a variable
working cycle and processing time, it would be better to be maintained after it has
completed the work and process. It is assumed that the system is maintained before
time T (0 ≤ T ≤ ∞) when the total damage has exceeded a failure level K, and
after T , it is maintained at the first completion of some working times. Then, the
mean time to maintenance is (Nakagawa, 2007, p.55),

E(L) =
∞∑

j=0

[
G(j)(K)−G(j+1)(K)

]{∫ T

0

[∫ ∞

T−u

(t + u)dF (t)

]
dF (j)(u)

+

∫ T

0

tdF (j+1)(t)

}
+

∞∑
j=0

G(j+1)(K)

∫ T

0

[∫ ∞

T−u

(t + u)dF (t)

]
dF (j)(u)

=
1

λ

∞∑
j=0

G(j)(K)F (j)(T ). (4.13)

Therefore, the expected cost rate is

C3(T )

λ
=

cK −
(
cK − cT

)∑∞
j=0 G(j+1)(K)

[
F (j)(T )− F (j+1)(T )

]∑∞
j=0 G(j)(K)F (j)(T )

, (4.14)

where cT is the maintenance cost at the completion of working time after T .
We find an optimal time T ∗3 which minimizes the expected cost rate C3(T ) in

(4.13) when F (t) = 1− e−λt and G(x) = 1− e−µx, i.e., F (j)(t) =
∑∞

i=j

[
(λt)i/i!

]
e−λt

and G(j)(x) =
∑∞

i=j

[
(µx)i/i!

]
e−µx. Then, differentiating C3(T ) with respect to T

and setting it equal to zero,

Q3(T )
∞∑

j=0

G(j)(K)F (j)(t)−
∞∑

j=0

(λT )j

j!
e−λT

[
1−G(j+1)(K)

]
=

cT

cK − cT

, (4.15)
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where

Q3(T ) ≡
∑∞

j=0(λT )j/j!
[
(µK)j+1/(j + 1)!

]
/e−µK∑∞

j=0(λT )j/j!G(j+1)(K)
.

Because Q3(T ) increases strictly with T from µK/
(
eµK −1

)
to 1, the left-hand side

of (4.15) also increases strictly from

D ≡ µK − 1 + e−µK

eµK − 1
≤ µK

2

to µK. Therefore, we have the following optimal policies:

1. If D ≥ cT /
(
cK − cT

)
, then T ∗3 = 0, i.e., the system is maintained at the first

completion of working time, and the expected cost rate is

C1(0)

λ
= cK −

(
cK − cT

)
G(K).

2. If D < cT /
(
cK − cT

)
< µK, then there exists a finite and unique T ∗3 (0 <

T ∗3 < ∞) which satisfies (4.15), and the resulting cost rate is

C3(T
∗
3 )

λ
=
(
cK − cT

)
Q(T ∗3 ).

3. If µK < cT /
(
cK − cT

)
, then, T ∗3 = ∞, i.e., the system is maintained only at

failure, and the resulting cost rate is

C3(∞)

λ
=

cK

1 + M(K)
.

Table 4.4 presents optimal λT ∗3 which satisfy (4.15) and C3(T
∗
3 )/(λcT ) for dif-

ferent µK and cK/cT . It is shown that T ∗3 have the same tendencies with N∗
1 for

the same parameters and λT ∗3 ≈ N∗
1 in Table 4.1. That is, optimal number and

time are almost the same for two polices, however, from the economical point, the
policy made at Nth working time is better than that at time T . However, from
the convenient point, the policy at time T would be easier than that at number N ,
because it is not necessary to count the number of working times.
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Table 4.4: Optimal λT ∗3 and C3(T ∗3 )/(λcT ) for µK and cK/cT .

cK/cT
µK = 10 µK = 15 µK = 20

λT ∗
3 C3(T ∗

3 )/(λcT ) λT ∗
3 C3(T ∗

3 )/(λcT ) λT ∗
3 C3(T ∗

3 )/(λcT )

2 8.89 0.1667 12.21 0.1087 15.80 0.0795
5 4.71 0.2528 7.73 0.1512 10.86 0.1048
10 3.39 0.3179 6.09 0.1808 9.04 0.1216
15 2.83 0.3588 5.39 0.1986 8.22 0.1314
20 2.51 0.3894 4.98 0.2117 7.73 0.1386

4.4 Limit Number of Working Times

4.4.1 Expected Cost Rate

Some systems fail when the size of one crack in them exceeds a failure level or the
total sizes of all cracks attain to its certain level, as introduced in crack growth
models for aircrafts in Chapter 1. This section takes up the maintenance model
where the system fails when the total damage has exceeded a failure level K or
the total number of working time reaches to N (N = 1, 2, · · · ). As preventive
maintenance, the system is maintained before failure at a planned time T (0 <

T ≤ ∞) or at a damage level Z (0 < Z ≤ K), whichever occurs first. Then, the
probability that the system is maintained at time T is

PT =
N−1∑
j=0

[F (j)(T )− F (j+1)(T )]G(j)(Z), (4.16)

the probability that the system is maintained at damage Z is

PZ =
N−1∑
j=0

F (j+1)(T )

∫ Z

0

[G(K − x)−G(Z − x)] dG(j)(x), (4.17)

and probability that the system is maintained at failure is

PF = F (N)(T )G(N)(Z) +
N−1∑
j=0

F (j+1)(T )

∫ Z

0

G(K − x)dG(j)(x). (4.18)
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Note that PT +PZ +PF ≡ 1, and the mean time to maintenance is, from (Nakagawa,
2007, p.41),

E(L) =
N−1∑
j=0

G(j)(Z)

∫ T

0

[F (j)(t)− F (j+1)(t)]dt. (4.19)

Therefore, the expected cost rate is

C4(T, Z)

λ
=

cK − (cK − cT )
∑N−1

j=0 [F (j)(T )− F (j+1)(T )]G(j)(Z)

−(cK − cZ)
∑N−1

j=0 F (j+1)(T )
∫ Z

0
[G(K − x)−G(Z − x)] dG(j)(x)∑N−1

j=0 G(j)(Z)
∫ T

0
[F (j)(t)− F (j+1)(t)]dt

,

(4.20)

where cT , cZ , and cK are the maintenance cost at time T , damage level Z, and at
failure with cT < cK and cZ < cK .

4.4.2 Optimal Planned Time

When the system is maintained only at time T before failure, the expected cost
rate is, from (4.20),

C4(T ) ≡ lim
Z→K

C4(T, Z) =
cK − (cK − cT )

∑N−1
j=0 [F (j)(T )− F (j+1)(T )]G(j)(K)∑N−1

j=0 G(j)(K)
∫ T

0
[F (j)(t)− F (j+1)(t)]dt

.

(4.21)

We find an optimal T ∗4 which minimizes C4(T ) in (4.21). In particular, when
N = 1,

C4(T ) =
cK − (cK − cT )F (T )∫ T

0
F (t)dt

. (4.22)

which corresponds to the expected cost rate of a standard age replacement policy
(Nakagawa, 2005, p.72). It is assumed that the failure rate h(t) ≡ f(t)/F (t) in-
creases strictly and h(∞) ≡ limt→∞ h(t). Then, from (Nakagawa, 2005, p.73), if
h(∞) > λcK/(cK − cT ), then there exists a finite and unique T ∗4 (0 < T ∗4 < ∞)

which satifies

h(T )

∫ T

0

F (t)dt + F (T ) =
cK

cK − cT

, (4.23)
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and the resulting cost rate is

C4(T
∗
4 ) = (cK − cT )h(T ∗4 ). (4.24)

Note that if F (t) = 1− eλt, then h(t) = λ, and hence, T ∗4 = ∞, i.e., the system
is maintained after the first working time, and the expected cost rate is

C4(∞) = lim
T→∞

C4(T ) = λcK . (4.25)

Clearly, from (4.21),

C4(0) = lim
T→0

C4(T ) = ∞,

C4(∞) = lim
T→∞

C4(T ) =
λcK∑N−1

j=0 G(j)(K)
.

Thus, there exists a positive T ∗4 (0 < T ∗4 < ∞) which minimizes (4.21).
Differentiating C4(T ) with respect to T and setting it equal to zero,

Q4(T )
N−1∑
j=0

G(j)(Z)

∫ T

0

[F (j)(t)− F (j+1)(t)]dt

+
N−1∑
j=0

[F (j)(T )− F (j+1)(T )]G(j)(K) =
cK

cK − cT

, (4.26)

where

Q4(T ) ≡
−
∑N−1

j=0 [f (j)(T )− f (j+1)(T )]G(j)(K)∑N−1
j=0 [F (j)(T )− F (j+1)(T )]G(j)(K)

.

Let L4(T ) be the left-hand side of (4.26),

L4(0) ≡ lim
T→0

L4(T ) = 1 <
cK

cK − cT

,

dL4(T )

dT
=

dQ4(T )

dT

N−1∑
j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)]dt.

Thus, if Q4(T ) increases strictly, then L4(T ) also increases strictly from 1 to

L4(∞) =
Q4(∞)

λ

N−1∑
j=0

G(j)(K).
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Therefore, if L4(∞) > cK/(cK − cT ), then there exits a finite and unique T ∗4 (0 <

T ∗4 < ∞) which satisfies (4.26), and the resulting cost rate is

C4(T
∗
4 ) = (cK − cT )Q4(T

∗
4 ). (4.27)

In particular, when F (t) = 1− e−λt for N ≥ 2,

Q4(T ) = λ

(
1−

∑N−2
j=0 [(λT )j/j!]G(j+1)(K)∑N−1

j=0 [(λT )j/j!]G(j)(K)

)
. (4.28)

Suppose that G(j+1)(K)/G(j)(K) decreases strictly. In this case, (4.26) becomes

Q4(T )

λ

N−1∑
j=0

G(j)(K)
∞∑

i=j+1

(λT )j

j!
e−λT +

N−1∑
j=0

(λT )j

j!
e−λT G(j)(K) =

cK

cK − cT

, (4.29)

whose left-hand side increases strictly to
∑N−1

j=0 G(j)(K), because of, from Appendix,
Q4(T ) increases strictly to λ . Therefore, if

∑N−1
j=0 G(j)(K) > cK/(cK − cT ), then

there exists a finite and unique T ∗4 (0 < T ∗4 < ∞) which satisfies (4.29), and the
resulting cost rate is given in (4.27).

If each damage is not additive, as introduced in Chapter 3, the expected cost
rate in (4.21) is rewritten as

C̃4(T ) =
cK − (cK − cT )

∑N−1
j=0 [F (j)(T )− F (j+1)(T )][G(K)]j∑N−1

j=0 [G(K)]j
∫ T

0
[F (j)(t)− F (j+1)(t)]dt

. (4.30)

We can make similar discussions for deriving analytically an optimal policy which
minimizes C̃4(T ).

4.4.3 Optimal Damage Level

When the system is maintained only at damage level Z before failure, the expected
cost rate is, from (4.20),

C4(Z)

λ
=

cK − (cK − cZ)
∑N−1

j=0

∫ Z

0
[G(K − x)−G(Z − x)] dG(j)(x)∑N−1

j=0 G(j)(Z)
, (4.31)
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We find an optimal level Z∗
4 which minimizes the expected cost rate C4(Z) in

(4.31). In particular, when N = 1, C4(Z) increases with Z, and hence, Z∗
4 = 0.

When N = ∞,

C4(Z)

λ
=

cK − (cK − cZ)
∫ Z

0
[G(K − x)−G(Z − x)]dM(x)

M(Z)
, (4.32)

where M(x) ≡
∑∞

j=0 G(j)(x). If M(K) > cZ/(cK − cZ), then there exists a finite
and unique Z∗

4 (0 < Z∗
4 < K) which satisfies∫ K

K−Z

M(K − x)dG(x) =
cZ

cK − cZ

. (4.33)

Denote g(x) be a density function of G(x). Differentiating C4(Z) in (4.31) with
respect to Z for N ≥ 2 and setting it equal to zero,

Q4(Z)
N−1∑
j=0

G(j)(Z) +
N−1∑
j=0

[∫ Z

0

[G(K − x)−G(Z − x)] dG(j)(x)

]
=

cK

cK − cZ

,

(4.34)

where

Q4(Z) ≡ g(N)(Z)∑N−1
j=1 g(j)(Z)

+ G(K − Z).

Let L4(Z) be the left-hand side of (4.34),

L4(0) = Q4(0), L4(K) = Q4(K)
N−1∑
j=0

G(j)(K),

L′4(Z) = Q′
4(Z)

N−1∑
j=0

G(j)(Z).

If Q4(Z) increases strictly with Z, then L4(Z) also increases from Q4(0) to
L4(K). In this case, we have the following optimal policies:

1. If Q4(0) ≥ cK/(cK−cZ), then Z∗
4 = 0 and the resulting cost rate is C4(0)/λ =

cK .
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2. If Q4(0) < cK/(cK − cZ) < Q4(K)
∑N−1

j=0 G(j)(K), then there exists a finite
and unique Z∗

4 (0 < Z∗
4 < K) which satisfies (4.34), and the resulting cost

rate is
C4(Z

∗
4)

λ
= (cK − cZ)Q4(Z

∗
4). (4.35)

3. If cK/(cK − cZ) > Q4(K)
∑N−1

j=0 G(j)(K), then Z∗
4 = K, and the resulting cost

rate is
C4(K)

λ
=

cK∑N−1
j=0 G(j)(K)

. (4.36)

In particular, when K = ∞, the expected cost rate is

C4(Z)

λ
=

cZ − (cN − cZ)G(N)(Z)∑N−1
j=0 G(j)(Z)

,

where cN represents the maintenance cost when the total number of working times
reaches to N . In this case, (4.34) is simplified as for N ≥ 2,

Q̃4(Z)
N−1∑
j=0

G(j)(Z)−G(N)(Z) =
cZ

cK − cZ

,

where

Q̃4(Z) ≡ g(N)(Z)∑N−1
j=1 g(j)(Z)

.

Furthermore, when K = ∞ and N = ∞, the expected cost rate is

C4(Z)

λ
=

cZ

M(Z)
,

and hence, Z∗
4 = ∞.

When G(x) = 1− e−µx for N ≥ 2,

Q4(Z) =
(µZ)N−1/(N − 1)!∑N−2

j=0 [(µZ)j/j!]
+ e−µ(K−Z),

and (4.34) becomes
N−1∑
j=0

{
Q4(Z)

∞∑
i=j

(µZ)i

i!
e−µZ +

[
1− e−µ(K−Z)

] (µZ)j

j!

}
=

cK

cK − cZ

,
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and when N = ∞,

µZe−µ(K−Z) =
cZ

cK − cZ

.

It can be easily seen that Q4(Z) increases with Z from e−µK to Q4(K). Therefore, if
cK/(cK−cZ) < Q4(K)

∑N−1
j=0 G(j)(K), then there exists a finite and unique Z∗

4 (0 <

Z∗
4 < K) which satisfies (4.34).

4.4.4 Numerical Examples

We compute numerically optimal T ∗4 and Z∗
4 which minimize C4(T ) in (4.21) and

C4(Z) in (4.31) for N ≥ 2, respectively, when F (t) = 1− e−λt and G(x) = 1− e−µx.
Then, an optimal T ∗4 satisfies

N−1∑
j=0

G(j)(K)
∞∑

i=j+1

(λT )i

i!
e−λT

(
1−

∑N−2
j=0 [(λT )j/j!]G(j+1)(K)∑N−1

j=0 [(λT )j/j!]G(j)(K)

)

+
N−1∑
j=0

(λT )j

j!
e−λT G(j)(K) =

cK

cK − cT

, (4.37)

and an optimal Z∗
4 satisfies

N−1∑
j=0

G(j)(Z)

(
(µZ)N−1/(N − 1)!∑N−2

j=0 [(µZ)j/j!]
+ e−µ(K−Z)

)

+
N−1∑
j=0

(µZ)j

j!
(e−µZ − e−µK) =

cK

cK − cZ

, (4.38)

In particular, as K →∞, i.e., the system is maintained only when the number
of working times reaches to N , (4.37) and (4.38) a rewritten as, respectively,

(λT )N−1/(N − 1)!∑N−1
j=0 [(λT )j/j!]

[
N −

N−1∑
j=0

(N − j)
(λT )j

j!
e−λT

]
+

N−1∑
j=0

(λT )j

j!
e−λT =

cK

cK − cT

,

(4.39)

(µZ)N−1/(N − 1)!∑N−2
j=0 [(µZ)j/j!]

[
N −

N−1∑
j=0

(N − j − 1)
(µZ)j

j!
e−µZ

]
+

N−1∑
j=0

(µZ)j

j!
e−µZ =

cK

cK − cZ

.

(4.40)
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Table 4.5 presents optimal λT ∗4 and µZ∗
4 for different N and µK when cK/ci (i =

T, Z). It shows that both λT ∗4 and µZ∗
4 increase with N and µK when N ≥ 5, and

are stable when N = 2, 3, 4 for different µK, because for small N , we must maintain
the system at earlier times before the number of working times reaches to N . When
N = ∞, it can be seen that µZ∗

4 > λT ∗4 for finite µK. When K = ∞, µZ∗
4 < λT ∗4 for

finite N because the left-hand side of 4.39 is less than 4.40 for λT = µZ and cT = cZ .
When N = ∞ and µK = ∞, then λT ∗4 = µZ∗

4 = ∞, because C4(T ) = cT /T and
C4(Z) = λcT /(1 + µZ).

Table 4.5: Optimal λT ∗4 and µZ∗4 for µK and N .

N
µK = 8 µK = 10 µK = ∞

λT ∗
4 µZ∗

4 λT ∗
4 µZ∗

4 λT ∗
4 µZ∗

4

2 1.305 0.226 1.305 0.226 1.305 0.226
3 1.512 0.779 1.512 0.779 1.512 0.779
4 1.956 1.371 1.956 1.374 1.957 1.375
5 2.462 1.973 2.472 1.984 2.476 1.986
6 2.986 2.576 3.021 2.606 3.037 2.611
7 3.489 3.161 3.580 3.236 3.628 3.249
8 3.934 3.699 4.124 3.867 4.242 3.899
9 4.284 4.154 4.624 4.486 4.874 4.560
10 4.513 4.498 5.050 5.068 5.522 5.232
20 4.695 5.004 5.750 6.709 12.549 12.373
∞ 4.695 5.004 5.750 6.709 ∞ ∞

4.5 Concluding Remarks

We have discussed three maintenance policies for an operating system which works
at successive random times for jobs, the system fails due to damage that can be
additive caused by jobs. Using the technique of cumulative damage models, the
expected cost rates have been obtained, and the optimal maintenance policies have
been discussed analytically. Numerical examples have been computed for all models
and some useful explanations have been given.
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For the Nth working time model, we first discussed the standard model where
maintenance is made at the Nth completion of working time, the model has been
given in (Nakagawa, 2007), we discussed the approximate upper bounds and for
computing the optimal policy when the number of working times are small and
large, respectively. Minimal repair is a important policy when a large and complex
system is operating, so we introduced such a repair to the above policy where
the system fails with probability p(x) when the total damage is x and undergoes
minimal repair at failure. Exponential and degenerate distributions are applied to
discuss the optimal minimal repair policies, respectively.

The overtime model is the simplest policy when we consider the random work-
ing times, that is, we can delay the maintenance time suitably in order to continue
the works until they are finished. Compared with the standard model, it is in-
teresting that the property of optimal polices for the standard model has similar
tendencies with that for the overtime model, however, the resulting cost rates of
the standard model is lower than that of the overtime model, because the overtime
policies increase the probability of failures when they are delayed.

The limit number of working times model is modified from (Nakagawa, 2007,
p.40), before discussion such a notion, we have introduced its applications in crack
growth models for aircrafts. In this chapter, a limitation N is considered, and
optimal operating time and damage level are discussed, it has been shown that two
optimal policies have the same variation properties when the same parameters are
given. As extended models, we can set the limitation is the operation time T or
damage level Z, and obtain other optimal policies.

Appendix

Prove that

Q̃4(T ) =

∑N−1
j=0 [(λT )j/j!]G(j+1)(K)∑N
j=0[(λT )j/j!]G(j+1)(K)

(A.1)
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decreases to 0 as T →∞. Differentiating Q̃4(T ) with respect to T ,

dQ̃4(T )

dT
=

1

{
∑N

j=0[(λT )j/j!]G(j)(K)}2

[
N−1∑
j=0

j
(λT )j−1

j!
G(j+1)(K)

N∑
i=0

(λT )i

i!
G(i)(K)

−
N−1∑
j=0

(λT )j

j!
G(j+1)(K)

N∑
i=0

i
(λT )i−1

i!
G(i)(K)

]
.

The numerator is
N−1∑
j=0

(λT )j

j!
G(j+1)(K)

N∑
i=0

(λT )i−1

i!
G(i)(K)(j − i)

=
N∑

i=0

(λT )i−1

i!
G(i)(K)

[
i∑

j=0

(λT )j

j!
G(j+1)(K)(j − i) +

N−1∑
j=i

(λT )j

j!
G(j+1)(K)(j − i)

]

=
N∑

j=0

(λT )j

j!
G(j+1)(K)

N∑
i=j

(λT )i−1

i!
G(i)(K)(j − i)

+
N∑

j=0

(λT )j−1

j!
G(j)(K)

N∑
i=j

(λT )i

i!
G(i+1)(K)(i− j)

<
N∑

j=0

(λT )j−1

j!
G(j)(K)

N∑
i=j

(λT )i

i!
G(i)(K)(i− j)

[
G(j+1)(K)

G(j)(K)
− G(i+1)(K)

G(i)(K)

]
.

Thus, if G(j+1)(K)/G(j)(K) decreases strictly, then Q̃4(T ) decreases strictly to 0,
and hence, Q4(T ) increases strictly to λ.
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Chapter 5

Maintenance Last Policies

From the economical viewpoint of several combined PM policies in reliability theory,
this chapter proposes a standard cumulative damage model in which the notion of
maintenance last is applied, i.e., the unit undergoes preventive maintenances before
failure at a planned time T , at a damage level Z, or at a shock number N , whichever
occurs last. Expected cost rate is detailedly formulated, and optimal problems of
two alternative policies which combined time–based with condition–based preven-
tive maintenances are discussed, i.e., optimal T ∗L for N , Z∗

L for T , and N∗
L for T are

rigorously obtained. Comparison methods between such a maintenance last and
the conventional maintenance first are explored. It is determined theoretically and
numerically which policy should be adopted, according to the different methods in
different cases when the time–based PM policy is optimized or the condition–based
PM polices are optimized.

5.1 Introduction

PM actions for damage models are generally grouped into time–based and condition–
based maintenances: If we have no information on the condition of a unit, its main-
tenance should be done at some age or usage period, e.g., at a planned time T

(Nakagawa, 2007, p.42). On the other hand, if we could monitor some selected
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measurement parameters such as fatigue, wear, crack, etc., its maintenance should
be done based on such conditions by periodic or random inspections, e.g., at a shock
number N or at a damage level Z (Nakagawa, 2007, p.44-45). Furthermore, it was
shown from numerical examples (Nakagawa, 2007, p.52-53) that optimal PM poli-
cies based on shock and damage conditions show more superiority than that based
on a planned time, i.e., from the viewpoint of expected maintenance cost rates, PM
done at Z is better than those at T and N , and PM done at N is better than that
at T in most cases.

It has been assumed in all policies until now that the unit is maintained pre-
ventively at some amount of quantities, e.g., age, operating period, usage number,
damage level, etc., or at failure, whichever occurs first, which is called maintenance
first (MF). These policies are reasonable in practical fields if a unique PM policy
in which to prevent failure is performed. However, this is especially the case when
several combined PM policies are done. Taking parts of an aircraft as an example,
appropriate maintenances are usually scheduled at a total hours of operation or at a
specified number of flights since the last major overhaul (Duchesne, Lawless, 2000).
Maintenance models with two PM policies, such as age and usage number, age and
failure number, etc., have been discussed (Nakagawa, 2008, p.149). However, it has
be found that such MF models would cause frequent and unnecessary maintenances
which may incur production losses, when two or more alternative PM policies are
adopted (Zhao and Nakagawa, 2012).

In addition, it has been assumed in all PM policies that the catastrophic failure
mode is supposed, i.e., the unit suffered for failures may incur heavy losses. If the
maintenance cost after failure would be estimated to be not so high, then the
unit should be operating as long as possible before failures, so that the notion
of “whichever occurs last” (Chen, et al., 2010a, 2010b) was proposed, i.e., the
unit is replaced preventively at a planned time or at a working number, whichever
occurs last. To motivate such a newly proposed notion more clearly, the policies
with “whichever occurs last and first” were defined as replacement last and first,
and their optimization problems, comparison methods, and real applications were
explored (Zhao and Nakagawa, 2012). Furthermore, such a replacement last was
applied to a shock model with damage level Z (Zhao, et al., 2011a).
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As the following studies of the notion “whichever occurs last", this chapter
takes up a standard cumulative damage model in which maintenance last (ML) is
applied, i.e., the unit undergoes PM before failure at a planned time T , at a damage
level Z, or at a shock number N , whichever occurs last. We detailedly formulate
the expected cost rate which has been given directly in (Zhao and Nakagawa, 2012).
Optimal problems which combine time–based with condition–based PM policies are
discussed, i.e., optimal T ∗L for N , Z∗

L for T , and N∗
L for T are rigorously obtained.

To compare such results of ML with those of MF, optimal T ∗F for N , Z∗
F for T , and

N∗
F for T are also derived by similar methods, and comparisons between optimal

ML and MF policies are demonstrated in detail.

5.2 Expected Cost Rate

It is assumed that random variables Xj (j = 1, 2, · · · ) are shock time intervals which
are independent and have an identical distribution F (t) ≡ Pr{Xj ≤ t} with a finite
mean 1/λ and a density function f(t) ≡ dF (t)/dt. Each shock causes a random
amount of damage Yj (j = 1, 2, · · · ) to a unit according to an identical distribution
G(x) ≡ Pr{Yj ≤ x} with a finite mean 1/µ and a density function g(x) ≡ dG(x)/dx,
and these damages are additive. The unit fails when the total damage exceeds a
threshold level K (0 < K < ∞), its failure is immediately detected, and then
corrective maintenance (CM) is done. Then, the probability that shocks occur j

times in [0, t] is (Nakagawa, 2007, p.17)

Pr{N(t) = j} = F (j)(t)− F (j+1)(t) (j = 0, 1, 2, · · · ),

and the distribution of the total damage Z(t) at time t is

Pr{Z(t) ≤ x} =
∞∑

j=0

G(j)(x)[F (j)(t)− F (j+1)(t)],

where Φ(j)(t) denotes the j–fold Stieltjes convolution of any function Φ(t) with itself
and Φ(0)(t) ≡ 1 for t > 0.

As preventive maintenance (PM) policies, the unit is maintained before failure
at a planned time T (0 ≤ T ≤ ∞), at a damage level Z (0 ≤ Z ≤ K), or at a shock
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number N (N = 0, 1, 2, · · · ), whichever occurs last, which is called maintenance last
(ML). We assume that the unit becomes as good as new at each CM or PM, i.e.,
any maintenance is perfect. Then, the probability PT that the unit is maintained
at time T is

PT =
∞∑

j=N

[F (j)(T )− F (j+1)(T )][G(j)(K)−G(j)(Z)], (5.1)

the probability PZ that it is maintained at damage Z is

PZ =
∞∑

j=N

F
(j+1)

(T )

∫ Z

0

[G(K − x)−G(Z − x)]dG(j)(x), (5.2)

where φ(t) ≡ 1− φ(t), and the probability PN that it is maintained at shock N is

PN = F
(N)

(T )[G(N)(K)−G(N)(Z)]. (5.3)

The probability PK that the unit is maintained at failure is divided into three cases:
The probability that the total damage exceeds K at some shock after T and N is

P1 =
∞∑

j=N

F
(j+1)

(T )

∫ Z

0

G(K − x)dG(j)(x),

the probability that the total damage exceeds K at some shock after T when the
total shock number is less than or equal to N is

P2 =
N−1∑
j=0

F
(j+1)

(T )[G(j)(K)−G(j+1)(K)],

and the probability that the total damage exceeds K at some shock before T is

P3 =
∞∑

j=0

F (j+1)(T )[G(j)(K)−G(j+1)(K)].

By summing up P1, P2, and P3,

PK ≡ P1 + P2 + P3 = 1−
∞∑

j=N

F
(j+1)

(T )

∫ K

Z

G(K − x)dG(j)(x), (5.4)
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where note that PZ + PN + PT + PK ≡ 1. Then, the mean time to maintenance is

E(L) =T

∞∑
j=N

[F (j)(T )− F (j+1)(T )][G(j)(K)−G(j)(Z)]

+ [G(N)(K)−G(N)(Z)]

∫ ∞

T

tdF (N)(t)

+
∞∑

j=N

∫ ∞

T

tdF (j+1)(t)

∫ Z

0

[G(K − x)−G(Z − x)]dG(j)(x)

+
∞∑

j=N

∫ ∞

T

tdF (j+1)(t)

∫ Z

0

G(K − x)dG(j)(x)

+
N−1∑
j=0

[G(j)(K)−G(j+1)(K)]

∫ ∞

T

tdF (j+1)(t)

+
∞∑

j=0

[G(j)(K)−G(j+1)(K)]

∫ T

0

tdF (j+1)(t)

=
∞∑

j=N

G(j)(Z)

∫ ∞

T

[F (j)(t)− F (j+1)(t)]dt

+
N−1∑
j=0

G(j)(K)

∫ ∞

T

[F (j)(t)− F (j+1)(t)]dt

+
∞∑

j=0

G(j)(K)

∫ T

0

[F (j)(t)− F (j+1)(t)]dt. (5.5)

Therefore, from (5.4) and (5.5), the expected cost rate is

CL(T, Z,N) =
cP + (cF − cP )[1−

∑∞
j=N F

(j+1)
(T )

∫ K

Z
G(K − x)dG(j)(x)]∑∞

j=N G(j)(Z)
∫∞

T
[F (j)(t)− F (j+1)(t)]dt

+
∑N−1

j=0 G(j)(K)
∫∞

T
[F (j)(t)− F (j+1)(t)]dt

+
∑∞

j=0 G(j)(K)
∫ T

0
[F (j)(t)− F (j+1)(t)]dt

, (5.6)

where cP is the PM cost at T , Z, or N , and cF is the CM cost at failure with
cF > cP .

In the following sections we find optimal PM time T ∗L, damage Z∗
L, and shock

N∗
L, which minimize CL(T ) ≡ limZ→0 CL(T, Z,N) for N , CL(Z) ≡ limN→0 CL(T, Z,N)

for T , and CL(N) ≡ limZ→0 CL(T, Z,N) for T , respectively, and compare them
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with the conventional PM policies discussed in (Nakagawa, 2007, p.42-46), when
F (t) = 1− e−λt, i.e., F (j)(t) =

∑∞
i=j[(λt)i/i!]e−λt (j = 0, 1, 2, · · · ). Clearly,

lim
T→∞

CL(T ) = lim
Z→K

CL(Z) = lim
N→∞

CL(N) =
λcF

1 + M(K)
, (5.7)

which is the expected cost rate when only CM is made, i.e., when the unit is
maintained only at failure, where M(K) ≡

∑∞
j=1 G(j)(K) presents the expected

number of shocks before the total damage exceeds a failure level K.
Furthermore, we define the following three policies, i.e., T−PM, Z−PM, and

N−PM, as the standard PM policies in cumulative damage models:

CS(T ) ≡ lim
Z→0,N→0

CL(T, Z,N) =
cF − (cF − cP )

∑∞
j=0[F

(j)(T )− F (j+1)(T )]G(j)(K)∑∞
j=0 F (j+1)(T )G(j)(K)dt/λ

,

(5.8)

which is the expected cost rate when T−PM is made, i.e., when the unit is main-
tained preventively at a planned time T ,

CS(Z) ≡ lim
T→0,N→0

CL(T, Z,N) =
cF − (cF − cP )[G(K)−

∫ Z

0
G(K − x)dM(x)]

[1 + M(Z)]/λ
,

(5.9)

which is the expected cost rate when Z−PM is made, i.e., when the unit is main-
tained preventively at a damage level Z, and

CS(N) ≡ lim
T→0,Z→0

CL(T, Z,N) =
cF − (cF − cP )G(N)(K)∑N−1

j=0 G(j)(K)/λ
, (5.10)

which is the expected cost rate when N−PM is made, i.e., when the unit is main-
tained preventively at a shock number N .

Optimal policies T ∗, Z∗, and N∗, which minimize CS(T ) in (5.8), CS(Z) in
(5.9), and CS(N) in (5.10), have been discussed (Nakagawa, 2007, p.42-46). From
the numerical examples (Nakagawa, 2007, p.52-53), it has been shown that the
standard policy made at Z is better than those at T and N , and the standard
policy made at N is better than that at T in most cases.
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5.3 Optimal Planned Time

Suppose that the unit is maintained before failure at T (0 ≤ T ≤ ∞) or at N (N =

0, 1, 2, · · · ), whichever occurs last. Then, putting that Z = 0 in (5.6),

CL(T )

λ
=

cP + (cF − cP ){1−
∑∞

j=N F
(j+1)

(T )[G(j)(K)−G(j+1)(K)]}∑N−1
j=0 F

(j+1)
(T )G(j)(K) +

∑∞
j=0 F (j+1)(T )G(j)(K)

. (5.11)

Differentiating CL(T ) with respect to T for N and setting it equal to zero,

RL(T, N)

[
N−1∑
j=0

F
(j+1)

(T )G(j)(K) +
∞∑

j=0

F (j+1)(T )G(j)(K)

]

+
∞∑

j=N

F
(j+1)

(T )[G(j)(K)−G(j+1)(K)]− 1 =
cP

cF − cP

, (5.12)

where

RL(t, N) ≡
∑∞

j=N f (j+1)(t)[G(j)(K)−G(j+1)(K)]∑∞
j=N f (j+1)(t)G(j)(K)

,

and f (j+1)(t) ≡ [λ(λt)j/j!]e−λt. From Appendix 1, when G(j)(K) =
∑∞

i=j[(µK)i/i!]

e−µK , it is proved that RL(t, N) increases strictly with t from 1−G(N+1)(K)/G(N)(K)

to 1. Denoting the left-hand side of (5.12) by VL(T,N) and rL(t, N) ≡ dRL(t, N)/dt,

dVL(T, N)

dT
= rL(T,N)

[
N−1∑
j=0

F
(j+1)

(T )G(j)(K) +
∞∑

j=0

F (j+1)(T )G(j)(K)

]
> 0,

(5.13)

which follows that VL(T, N) increases strictly with T from

VL(0, N) =
G(N)(K)−G(N+1)(K)

G(N)(K)

N−1∑
j=0

G(j)(K)−G
(N)

(K)

to VL(∞, N) = M(K).
Therefore, if VL(0, N) < cP /(cF − cP ) < M(K), then there exists a finite and

unique T ∗L (0 < T ∗L < ∞) that satisfies (5.12), and the resulting cost rate is
CL(T ∗L)

λ
= (cF − cP )RL(T ∗L, N). (5.14)

If M(K) ≤ cP /(cF − cP ), then T ∗L = ∞, and the resulting cost rate is given by
(5.7). If VL(0, N) ≥ cP /(cF − cP ), then T ∗L = 0, and the resulting cost rate is given
by (5.10).
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5.3.1 Comparison with Maintenance First

Suppose that the unit is maintained before failure at T (0 < T ≤ ∞) or at N (N =

1, 2, · · · ), whichever occurs first, which is called maintenance first (MF). Then, the
expected cost rate is, from (Nakagawa, 2007, p.42),

CF (T )

λ
=

cP + (cF − cP )
∑N−1

j=0 F (j+1)(T )[G(j)(K)−G(j+1)(K)]∑N−1
j=0 F (j+1)(T )G(j)(K)

. (5.15)

By the similar method above, we discuss optimal T ∗F as follows: Differentiating
CF (T ) with respect to T for N and setting it equal to zero,

RF (T, N)
N−1∑
j=0

F (j+1)(T )G(j)(K)−
N−1∑
j=0

F (j+1)(T )[G(j)(K)−G(j+1)(K)] =
cP

cF − cP

,

(5.16)

where

RF (t, N) ≡
∑N−1

j=0 f (j+1)(t)[G(j)(K)−G(j+1)(K)]∑N−1
j=0 f (j+1)(t)G(j)(K)

.

From Appendix 2, when G(j)(K) =
∑∞

i=j[(µK)i/i!]e−µK , it is approved that RF (t, N) =

1 − G(K) for N = 1 and increases strictly with t for 2 ≤ N < ∞ from 1 − G(K)

to 1−G(N+1)(K)/G(N)(K). Denoting the left-hand side of (5.16) by VF (T,N) and
rF (t, N) ≡ dRF (t, N)/dt,

dVF (T, N)

dT
= rF (T,N)

N−1∑
j=0

F (j+1)(T )G(j)(K) ≥ 0, (5.17)

which follows that VF (T,N) increases with T from 0 to

VF (∞, N) =
G(N)(K)−G(N+1)(K)

G(N)(K)

N−1∑
j=0

G(j)(K)−G
(N)

(K).

Therefore, if VF (∞, N) > cP /(cF − cP ), then there exists a finite and unique
T ∗F (0 < T ∗F < ∞) that satisfies (5.16), and the resulting cost rate is

CF (T ∗F )

λ
= (cF − cP )RF (T ∗F , N). (5.18)
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If VF (∞, N) ≤ cP /(cF − cP ), then T ∗F = ∞, and the resulting cost rate is given by
(5.10).

Let N∗ (1 ≤ N∗ < ∞) be an optimal shock number which minimizes CS(N)

in (5.10). Then, N∗ is a unique and minimum solution of the inequality, from
(Nakagawa, 2007, p.45),

R(N)
N−1∑
j=0

G(j)(K)−G
(N)

(K) ≥ cP

cF − cP

, (5.19)

where

R(j) ≡ G(j)(K)−G(j+1)(K)

G(j)(K)
(j = 0, 1, 2, · · · ).

Denoting the left-hand side of (5.19) by VS(N), it is easily shown that VS(N) =

VL(0, N) = VF (∞, N). Then, the following comparison results between ML and
MF can be given:

1. If a predetermined N < N∗, then T ∗F = ∞, and 0 < T ∗L < ∞ when M(K) >

cP /(cF − cP ), and T ∗L = ∞ when M(K) ≤ cP /(cF − cP ), i.e., ML should be
adopted when N < N∗.

2. If a predetermined N ≥ N∗, then T ∗L = 0, and 0 < T ∗F < ∞ when VS(N) >

cP /(cF − cP ) and T ∗F = ∞ when VS(N) ≤ cP /(cF − cP ), i.e., MF should be
adopted when N ≥ N∗ and VS(N) > cP /(cF − cP ), and the standard N−PM
should be adopted when N ≥ N∗ and VS(N) ≤ cP /(cF − cP ).

In addition, from Appendixes 3 and 4, both RL(t, N) and RF (t, N) increase
strictly with N , that is, VL(T, N) in (5.12) and VF (T, N) in (5.16) increase with N .
In other words, if finite T ∗L and T ∗F exist, they would decrease with N .

5.3.2 Numerical Example

Suppose that shock intervals Xj (j = 1, 2, · · · ) have an identical distribution F (t) =

1 − e−λt, and random amount of damage Yj (j = 1, 2, · · · ) have an exponential
distribution G(x) = 1 − e−µx. Table 5.1 presents optimal T ∗L, T ∗F , and their cost
rates CL(T ∗L) and CF (T ∗F ) for N and cP /(cF − cP ) when λ = 1, µ = 1 and K = 10.

Table 5.1 indicates:
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Table 5.1: Optimal T ∗L, T ∗F , and their cost rates when λ = 1, µ = 1, K = 10.

cP N = 2 N = 5 N = 8

cF − cP T ∗
L CL(T ∗

L) T ∗
F CF (T ∗

F ) T ∗
L CL(T ∗

L) T ∗
F CF (T ∗

F ) T ∗
L CL(T ∗

L) T ∗
F CF (T ∗

F ) N∗

0.1 4.00 0.034 ∞ 0.050 0.00 0.026 ∞ 0.026 0.00 0.041 4.75 0.033 5
0.2 5.20 0.055 ∞ 0.100 1.28 0.046 ∞ 0.046 0.00 0.054 6.84 0.052 6
0.3 6.07 0.073 ∞ 0.150 3.56 0.065 ∞ 0.066 0.00 0.067 9.49 0.066 6
0.4 6.78 0.089 ∞ 0.200 5.01 0.084 ∞ 0.086 0.00 0.080 14.09 0.079 7
0.5 7.42 0.104 ∞ 0.250 6.09 0.100 ∞ 0.106 0.00 0.093 28.35 0.092 7
0.6 8.00 0.118 ∞ 0.300 6.97 0.115 ∞ 0.126 0.00 0.106 ∞ 0.106 8
0.7 8.56 0.131 ∞ 0.350 7.75 0.129 ∞ 0.146 0.00 0.119 ∞ 0.119 8
0.8 9.09 0.144 ∞ 0.400 8.44 0.142 ∞ 0.166 0.00 0.131 ∞ 0.131 8
0.9 9.61 0.156 ∞ 0.450 9.07 0.155 ∞ 0.186 0.00 0.144 ∞ 0.144 8
1.0 10.12 0.168 ∞ 0.500 9.68 0.167 ∞ 0.206 2.62 0.157 ∞ 0.157 9

1. There exist three cases between T ∗L and T ∗F according to N∗: 0 < T ∗L < ∞
and T ∗F = ∞ for N < N∗, 0 < T ∗F < ∞ and T ∗L = 0 for N > N∗, and T ∗L = 0

and T ∗F = ∞ for N = N∗. That is, ML should be adopted for N < N∗, e.g.,
when N = 2 and cP /(cF − cP ) = 0.1, CL(T ∗L) = 0.034 < CF (T ∗F ) = 0.050; MF
should be adopted for N > N∗, e.g., when N = 8 and cP /(cF − cP ) = 0.1,
CF (T ∗F ) = 0.033 < CL(T ∗L) = 0.041; the standard N−PM should be adopted
when N = N∗, e.g., when N = 5 and cP /(cF −cP ) = 0.1, CF (T ∗F ) = CL(T ∗L) =

0.026.

2. When 0 < T ∗L < ∞ or 0 < T ∗F < ∞, both T ∗L and T ∗F increase with the
maintenance cost ratio cP /(cF − cP ), i.e., decrease with cF /cP . When cF /cP

increases, PM should be advanced to prevent a higher CM cost. In other
words, the unit can be operating for a longer time as cF /cP becomes smaller,
e.g., when N = 2 and cP /(cF − cP ) = 0.1, 0.5, T ∗L = 4.00, 7.42; when N = 8

and cP /(cF − cP ) = 0.1, 0.5, T ∗F = 0.033, 0.092.

3. When a predetermined N becomes smaller, ML shows more superior cases
than MF, not only because of comparison results between optimal cost rates
in Table 1, but also because ML can let the unit work as longer as possible.
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For example, µK = 10 means that the unit will be suffered failure around
10 shocks, when N = 2, PM is done at 2 shocks for MF, no matter whether
cF /cP is large or small; however, PM would be done around from λT ∗L ≈ 4 to
λT ∗L ≈ 10 shocks according to cF /cP . It seem more reasonable when ML is
adopted for such cases to avoid unnecessary maintenances.

5.4 Optimal Damage Level

Suppose that the unit is maintained before failure at T (0 ≤ T ≤ ∞) or at Z (0 ≤
Z ≤ K), whichever occurs last (Zhao, et al., 2011a). Then, putting that N = 0 in
(5.6),

CL(Z)

λ
=

cP + (cF − cP )[1−
∑∞

j=0 F
(j+1)

(T )
∫ K

Z
G(K − x)dG(j)(x)]∑∞

j=0 F
(j+1)

(T )G(j)(Z) +
∑∞

j=0 F (j+1)(T )G(j)(K)
. (5.20)

Differentiating CL(Z) with respect to Z for T and setting it equal to zero,
∞∑

j=0

F
(j+1)

(T )

∫ K

Z

[G(K − x)−G(K − Z)]dG(j)(x)

+ G(K − Z)
∞∑

j=0

G(j)(K)− 1 =
cP

cF − cP

. (5.21)

Denoting dG(x)/dx ≡ g(x) and the left-hand side of (5.21) by VL(Z, T ),

dVL(Z, T )

dZ
= g(K − Z)

[
∞∑

j=0

F
(j+1)

(T )G(j)(Z) +
∞∑

j=0

F (j+1)(T )G(j)(K)

]
> 0,

(5.22)

which follows that VL(Z, T ) increases strictly with Z from
∞∑

j=0

F (j+1)(T )

∫ K

0

[G(K)−G(K − x)]dG(j)(x) < 0

to M(K).
Therefore, if M(K) > cP /(cF−cP ), then there exists a unique Z∗

L (0 < Z∗
L < K)

that satisfies (5.21), and the resulting cost rate is
CL(Z∗

L)

λ
= (cF − cP )G(K − Z∗

L). (5.23)

If M(K) ≤ cP /(cF −cP ), then Z∗
L = K, and the resulting cost rate is given by (5.7).
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5.4.1 Comparison with Maintenance First

Suppose that the unit is maintained before failure at T (0 < T ≤ ∞) or at Z (0 <

Z ≤ K), whichever occurs first. Then, the expected cost rate is, from (Nakagawa,
2007, p.53),

CF (Z)

λ
=

cP + (cF − cP )
∑∞

j=0 F (j+1)(T )
∫ Z

0
G(K − x)dG(j)(x)∑∞

j=0 F (j+1)(T )G(j)(Z)
. (5.24)

Differentiating CF (Z) with respect to Z for T and setting it equal to zero,
∞∑

j=0

F (j+1)(T ))

∫ Z

0

[G(K − Z)−G(K − x)]dG(j)(x) =
cP

cF − cP

. (5.25)

Denoting the left-hand side of (5.25) by VF (Z, T ),

dVF (Z, T )

dZ
= g(K − Z)

∞∑
j=0

F (j+1)(T )G(j)(Z) > 0, (5.26)

which follows that VF (Z, T ) increases strictly with Z from 0 to

N(K) ≡
∞∑

j=1

F (j)(T )G(j)(K).

Therefore, if N(K) > cP /(cF−cP ), then there exists a unique Z∗
F (0 < Z∗

F < K)

that satisfies (5.25), and the resulting cost rate is

CF (Z∗
F )

λ
= (cF − cP )G(K − Z∗

F ). (5.27)

If N(K) ≤ cP /(cF −cP ), then Z∗
F = K, and the resulting cost rate is given by (5.8).

Because M(K) ≥ N(K), there exist both unique Z∗
L (0 < Z∗

L < K) and
Z∗

F (0 < Z∗
F < K) which satisfy (5.21) and (5.25) when N(K) > cP /(cF − cP ).

Compare the left-hand side of (5.21) and (5.25) by denoting

A(Z) ≡ VL(Z, T )− VF (Z, T ).

Then,

A(0) ≡ lim
Z→0

A(Z) =
∞∑

j=0

F (j+1)(T )

∫ K

0

[G(K)−G(K − x)]dG(j)(x) < 0,
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A(K) ≡ lim
Z→K

A(Z) = M(K)−N(K) =
∞∑

j=1

F
(j)

(T )G(j)(K) > 0.

From (5.22) and (5.26),

dA(Z)

dZ
= g(K − Z)

[
∞∑

j=0

F
(j+1)

(T )G(j)(Z) +
∞∑

j=0

F (j+1)(T )[G(j)(K)−G(j)(Z)]

]
> 0.

Thus, there exists a unique Z∗
A (0 < Z∗

A < K) which satisfies A(Z) = 0.
From (5.25), denoting that

L(Z∗
A) ≡ F (j+1)(T )

∫ Z∗
A

0

[G(K − Z∗
A)−G(K − x)]dG(j)(x). (5.28)

Then, the following comparison results can be given:

1. If L(Z∗
A) < cP /(cF − cP ), then Z∗

L < Z∗
F , and hence, from (5.23) and (5.27),

CL(Z∗
L) < CF (Z∗

F ), i.e., ML should be adopted.

2. If L(Z∗
A) > cP /(cF − cP ), then Z∗

F < Z∗
L, i.e., MF should be adopted.

3. If L(Z∗
A) = cP /(cF − cP ), then ML is the same with MF.

In addition, VL(Z, T ) in (5.21) decreases with T and VF (Z, T ) in (5.25) increases
with T , that is, optimal Z∗

L increases with T while Z∗
F decreases with T . It also

can be easily found that Z∗
A increases with T , in other words, MF would show more

superior cases than MF when a predetermined T becomes smaller.
Furthermore, let Z∗ (0 < Z∗ < K) be an optimal damage level which minimizes

CS(Z) in (5.9). Then, Z∗ is a unique solution of the equation, from (Nakagawa,
2007, p.45),∫ Z

0

[G(K − Z)−G(K − x)]dM(x) + G(K − Z)−G(K) =
cP

cF − cP

, (5.29)

and the resulting cost rate is

CS(Z∗)

λ
= (cF − cP )G(K − Z∗). (5.30)
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Denoting the left-hand side of (5.29) by VS(Z) and B1(Z) ≡ VS(Z)−VL(Z, T ),
then B1(0) > 0, B1(K) = 0, and

dB1(Z)

dZ
= g(K − Z)

∞∑
j=0

F (j+1)(T )[G(j)(Z)−G(j)(K)] < 0. (5.31)

Similarly, denoting B2(Z) ≡ VS(Z)− VF (Z, T ), then B2(0) = 0, B2(K) > 0, and

dB2(Z)

dZ
= g(K − Z)

∞∑
j=0

F
(j+1)

(T )G(j)(Z) > 0, (5.32)

which follows that Z∗ < Z∗
L and Z∗ < Z∗

F , from (5.23), (5.27), and (5.30), CS(Z∗) <

CL(Z∗
L) and CS(Z∗) < CF (Z∗

F ), i.e., the standard Z−PM should be adopted.

5.4.2 Numerical Example

Table 5.2 presents optimal Z∗
L and Z∗

F , their cost rates CL(Z∗
L) and CF (Z∗

F ), and
Z∗

A and L(Z∗
A) for T and cP /(cF − cP ) when λ = 1, µ = 1 and K = 10.

Table 5.2: Optimal Z∗L, Z∗F , and their cost rates when λ = 1, µ = 1, K = 10.

cP T = 2 T = 5 T = 8

cF − cP Z∗
L CL(Z∗

L) Z∗
F CF (Z∗

F ) Z∗
L CL(Z∗

L) Z∗
F CF (Z∗

F ) Z∗
L CL(Z∗

L) Z∗
F CF (Z∗

F ) Z∗

0.1 5.95 0.017 7.02 0.051 6.32 0.025 6.24 0.023 6.90 0.045 6.00 0.018 5.92
0.2 6.53 0.031 7.71 0.101 6.73 0.038 6.89 0.045 7.13 0.057 6.63 0.034 6.52
0.3 6.88 0.044 8.11 0.151 7.01 0.050 7.28 0.066 7.31 0.068 7.00 0.049 6.87
0.4 7.13 0.057 8.40 0.202 7.23 0.063 7.56 0.087 7.46 0.079 7.27 0.065 7.12
0.5 7.32 0.069 8.62 0.252 7.40 0.074 7.77 0.108 7.59 0.089 7.47 0.079 7.32
0.6 7.48 0.080 8.80 0.301 7.54 0.085 7.95 0.129 7.70 0.100 7.64 0.094 7.48
0.7 7.61 0.092 8.95 0.350 7.67 0.097 8.10 0.150 7.80 0.111 7.78 0.109 7.61
0.8 7.73 0.103 9.09 0.403 7.78 0.109 8.23 0.170 7.89 0.121 7.91 0.124 7.73
0.9 7.84 0.115 9.20 0.449 7.88 0.120 8.34 0.190 7.98 0.133 8.02 0.138 7.84
1.0 7.93 0.126 9.31 0.502 7.97 0.131 8.45 0.212 8.06 0.144 8.12 0.153 7.93
Z∗

A 3.74 6.43 7.85

L(Z∗
A) 0.003 0.123 0.751

Table 5.2 indicates:
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1. There exist two cases between Z∗
L and Z∗

F according to L(Z∗
A): When L(Z∗

A) <

cP /(cF − cP ), then Z∗
L < Z∗

F , i.e., ML should be adopted; when L(Z∗
A) >

cP /(cF − cP ), Z∗
F < Z∗

L, i.e., MF should be adopted. For example, when
T = 2, L(Z∗

A) = 0.003 which is less than all given cP /(cF−cP ), then CL(T ∗L) <

CF (T ∗F ); when T = 5, then L(Z∗
A) = 0.123 > cP /(cF − cP ) = 0.1, then

CF (T ∗F ) = 0.023 < CL(T ∗L) = 0.025.

2. Z∗
L and Z∗

F increase with the maintenance cost ratio cP /(cF−cP ), i.e., decrease
with cF /cP . The reason can be found as the same as that in Table 1. For
example, when T = 2 and cP /(cF − cP ) = 0.1, 0.5, Z∗

L = 5.95, 7.32 and
Z∗

F = 7.02, 8.62.

3. Z∗
L increases with T from Z∗ and Z∗

F decreases with T to Z∗, e.g., when
cP /(cF − cP ) = 0.1 and T = 2, 5, Z∗

L = 5.95, 6.32 and Z∗
F = 7.02, 6.24.

Z∗
L for T has different properties from T ∗L for N , nevertheless, it shows the

same tendencies with Table 1 that when a predetermined T becomes smaller,
ML shows more superior cases than MF from the viewpoint of both optimal
cost rates and unnecessary maintenances avoidance. For example, µK = 10,
when T = 2, CL(T ∗L) < CF (T ∗F ), and PM is done around λT = 2 shocks for
MF and around from µZ∗

L ≈ 6 to µZ∗
L ≈ 8 shocks for ML; when T = 5,

CL(T ∗L) < CF (T ∗F ) for 0.2 ≤ cP /(cF − cP ) ≤ 1.0 and CF (T ∗F ) < CL(T ∗L) for
cP /(cF−cP ) = 0.1, and PM is done around λT = 5 shocks for MF and around
from µZ∗

L ≈ 6 to µZ∗
L ≈ 8 shocks for ML.

5.5 Optimal Shock Number

We discuss an optimal N∗
L for T to minimize CL(N) which is given by (5.11).

Forming the inequality CL(N + 1)− CL(N) ≥ 0,

∞∑
j=N

F
(j+1)

(T )G(j)(K)[R(j)−R(N)] + R(N)
∞∑

j=0

G(j)(K)− 1 ≥ cP

cF − cP

, (5.33)

where R(j) (j = 0, 1, 2, · · · ) is given in (5.19).
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From (Nakagawa, 2007, p.24), G(j+1)(K)/G(j)(K) decreases strictly with j

when G(j)(K) =
∑∞

i=j[(µK)i/i!]e−µK , then R(j) increases strictly with j from e−µK

to 1. Denoting the left-hand side of (5.33) by VL(N, T ), then VL(N+1, T )−VL(N, T )

is

[R(N + 1)−R(N)]

[
∞∑

j=N

F (j+1)(T )G(j)(K) +
N−1∑
j=0

G(j)(K)

]
> 0, (5.34)

which follows that VL(N, T ) increases strictly with N from
∞∑

j=0

F (j+1)(T )

∫ K

0

[G(K)−G(K − x)]dG(j)(x) < 0

to M(K).
Therefore, if M(K) > cP /(cF − cP ), then there exists a unique and minimum

N∗
L (1 ≤ N∗

L < ∞) which satisfies (5.33), and the resulting cost rate is

(cF − cP )R(N∗
L − 1) <

CL(N∗
L)

λ
≤ (cF − cP )R(N∗

L). (5.35)

If M(K) ≤ cP /(cF −cP ), then N∗
L = ∞ and the resulting cost rate is given by (5.7).

5.5.1 Comparison with Maintenance First

An optimal N∗
F for T to minimize CF (N) in (5.15) is a unique and minimum solution

of the inequality
N−1∑
j=0

F (j+1)(T )G(j)(K)[R(N)−R(j)] ≥ cP

cF − cP

, (5.36)

Denoting the left-hand side of (5.36) by VF (N, T ), then VF (N + 1, T )−VF (N, T ) is

[R(N + 1)−R(N)]
N−1∑
j=0

F (j+1)(T )G(j)(K) > 0, (5.37)

which follows that VF (N, T ) increases strictly with N to N(K).
Therefore, if N(K) > cP /(cF − cP ), then there exists a unique and minimum

N∗
F (1 ≤ N∗

F < ∞) which satisfies (5.36), and the resulting cost rate is

(cF − cP )R(N∗
F − 1) <

CF (N∗
F )

λ
≤ (cF − cP )R(N∗

F ). (5.38)
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If N(K) ≤ cP /(cF − cP ), then N∗
F = ∞ and the resulting cost rate is given by (5.8).

There exist both unique N∗
L (1 ≤ N∗

L < ∞) and N∗
F (1 ≤ N∗

F < ∞) which
satisfy (5.33) and (5.36) when N(K) > cP /(cF − cP ). Compare the left-hand side
of (5.33) and (5.36) by denoting

A(N) ≡ VL(N, T )− VF (N, T ).

From (5.34) and (5.37), A(N + 1)− A(N) is

[R(N + 1)−R(N)]

[
N−1∑
j=0

F
(j+1)

(T )G(j)(K) +
∞∑

j=N

F (j+1)(T )G(j)(K)

]
> 0,

which follows that A(N) increases with N strictly to

A(∞) =
∞∑

j=0

F
(j)

(T )G(j)(K) > 0.

Thus, there exists a unique and minimum N∗
A (1 ≤ N∗

A < ∞) which satisfies
A(N) ≥ 0.

From (5.36), denoting that

L(N∗
A) ≡

N∗
A−1∑
j=0

F (j+1)(T )G(j)(K)[R(N∗
A)−R(j)]. (5.39)

Then, the following comparison results can be given:

1. If L(N∗
A) < cP /(cF − cP ), then N∗

L ≤ N∗
F , and CL(N∗

L) ≤ CF (N∗
F ), i.e., ML

should be adopted.

2. If L(N∗
A − 1) > cP /(cF − cP ), then N∗

F ≤ N∗
L, i.e., MF should be adopted.

3. If L(N∗
A − 1) ≤ cP /(cF − cP ) ≤ L(N∗

A), then either ML or MF may be better
than the other, or the same with each other.

In addition, similar properties can be found as those shown for Z∗
L and Z∗

F ,
that is, optimal N∗

L increases with T while N∗
F decreases with T , and MF would

show more superior cases than MF when a predetermined T becomes smaller.
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Furthermore, let N∗ (1 ≤ N∗ < ∞) be an optimal shock number which mini-
mizes CS(N) in (5.10). Then, N∗ is a unique and minimum solution of the inequality
(5.19), and the resulting cost rate is

(cF − cP )R(N∗ − 1) <
CS(N∗)

λ
≤ (cF − cP )R(N∗). (5.40)

Denoting the left-hand side of (5.19) by VS(N) and B1(N) ≡ VS(N)−VL(N, T ),
then B1(∞) = 0, and B1(N + 1)−B1(N) is

−[R(N + 1)−R(N)]
∞∑

j=N

F (j+1)(T )G(j)(K) < 0. (5.41)

Similarly, denoting B2(N) ≡ VS(N) − VF (N, T ), then B2(1) = F (T )[G(1)(K) −
G(2)(K)], and B1(N + 1)−B1(N) is

[R(N + 1)−R(N)]
N−1∑
j=0

F
(j+1)

(T )G(j)(K) > 0, (5.42)

which follows that N∗ ≤ N∗
L and N∗ ≤ N∗

F , then CS(N∗) ≤ CL(N∗
L) and CS(N∗) ≤

CF (N∗
F ), i.e., the standard N−PM should be adopted.

5.5.2 Numerical Example

Table 5.3 presents optimal N∗
L and N∗

F , their cost rates CL(N∗
L) and CF (N∗

F ), N∗
A,

and L(N∗
A) and L(N∗

A − 1) for T and cP /(cF − cP ) when λ = 1, µ = 1 and K = 10.
Table 5.3 indicates:

1. There exist three cases between N∗
L and N∗

F according to L(N∗
A−1) and L(N∗

A):
When L(N∗

A) < cP /(cF−cP ), then N∗
L ≤ N∗

F , i.e., ML should be adopted, e.g.,
when T = 2, L(N∗

A) = 0.012 which is less than all given cP /(cF − cP ), then
CL(N∗

L) < CF (N∗
F ); when L(N∗

A− 1) > cP /(cF − cP ), then N∗
F ≤ N∗

L, i.e., MF
should be adopted, e.g., when T = 5, L(N∗

A−1) = 0.142 > cP /(cF−cP ) = 0.1,
then CF (N∗

F ) = 0.029 < CL(T ∗L) = 0.032; when L(N∗
A − 1) ≤ cP /(cF − cP ) ≤

L(N∗
A), then N∗

L = N∗
F , and either ML or MF may be better than the other,

e.g., when T = 5 and cP /(cF − cP ) = 0.2, then N∗
L = N∗

F = 6 but CL(N∗
L) =

0.048 < CF (N∗
F ) = 0.052, and when T = 8 and cP /(cF − cP ) = 0.6, then
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Table 5.3: Optimal N∗
L, N∗

F , and their cost rates when λ = 1, µ = 1, K = 10.

cP T = 2 T = 5 T = 8

cF − cP N∗
L CL(N∗

L) N∗
F CF (N∗

F ) N∗
L CL(N∗

L) N∗
F CF (N∗

F ) N∗
L CL(N∗

L) N∗
F CF (N∗

F ) N∗

0.1 5 0.026 6 0.052 5 0.032 5 0.029 6 0.049 5 0.026 5
0.2 6 0.045 7 0.102 6 0.048 6 0.052 6 0.063 6 0.049 6
0.3 6 0.062 9 0.152 6 0.064 7 0.074 7 0.075 6 0.064 6
0.4 7 0.077 10 0.202 7 0.078 7 0.095 7 0.088 7 0.080 7
0.5 7 0.091 11 0.252 7 0.093 8 0.116 7 0.100 7 0.096 7
0.6 8 0.106 12 0.302 8 0.106 8 0.137 8 0.112 8 0.111 8
0.7 8 0.119 14 0.352 8 0.119 9 0.157 8 0.124 8 0.126 8
0.8 8 0.131 15 0.403 8 0.132 9 0.178 8 0.136 8 0.141 8
0.9 8 0.144 17 0.453 9 0.145 10 0.198 9 0.148 9 0.156 8
1.0 9 0.156 19 0.503 9 0.156 10 0.219 9 0.159 9 0.169 9
N∗

A 3 6 8

L(N∗
A) 0.012 0.270 0.821

L(N∗
A − 1) 0.003 0.142 0.547

N∗
L = N∗

F = 8 but CF (N∗
F ) = 0.111 < CL(N∗

L) = 0.112, it is interesting that
such a case number will increase when T becomes larger.

2. N∗
L and N∗

F and their cost rates CL(N∗
L) and CF (N∗

F ) show similar properties
with those in Table 5.2 but different from those in Table 5.1. For example, N∗

L

and N∗
F increase with the maintenance cost ratio cP /(cF − cP ), N∗

L increases
with T from N∗ and N∗

F decreases with T to N∗. So that analyses could be
obtained in a similar way, e.g., µK = 10, when T = 2, PM is done around
λT = 2 shocks for MF and at from N∗

L = 5 to N∗
L = 9 shocks for ML

3. Compare CL(iL) (i = T, Z,N) in Tables 5.1–5.3, ML done at Z∗
L is better

than those done at T ∗L and N∗
L, and ML done at N∗

L is better than that done
at T ∗L in most cases, when a predetermined T or N is in a moderate size, e.g.,
2 and 5; however, when T or N is large enough, e.g., 8, both PM done at
T ∗L and at Z∗

L are better than that done at N∗
L, and PM done at Z∗

L is better
than that done at T ∗L in most cases. In other words, if we could monitor
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the damage level at every shock time, then optimizing condition–based PM
policies would be better than time–based PM policy. For MF, by comparing
CF (iF ) (i = T, Z,N), the time–based PM policy shows more superior cases,
and the condition–based PM policies are in a position of weakness in most
cases.

5.6 Concluding Remarks

We have discussed the standard cumulative damage models with maintenance last
(ML) and maintenance first (MF), i.e., the unit undergoes preventive maintenances
(PM) before failure at a planned time T , at a damage level Z, or at a shock number
N , whichever occurs last and first. We have detailedly formulated the expected
cost rate of ML given in (Zhao and Nakagawa, 2012) and optimized three sub–PM
policies which combined time–based with condition–based polices, i.e., optimal T ∗L

for N , Z∗
L for T , and N∗

L for T . We also have optimized three sub–PM policies of MF
whose expected cost rates have been given in (Nakagawa, 2007) by similar methods,
i.e., optimal T ∗F for N , Z∗

F for T , and N∗
F for T . Comparisons between optimal

ML and MF policies have been demonstrated in detail. It has been determined
theoretically which policy should be adopted, according to the different methods in
different cases.

A representative example of such a cumulative damage model with maintenance
last is to maintain a database or to perform a backup of data. We can consider its
necessity and feasibility from the following viewpoints: (i) Normally, the database
is maintained at periodic times such as day, week, month, etc. However, when a
transaction is processing its sequences of operations, it is necessary to guarantee
ACID (atomicity, consistency, isolation, durability) properties of database transac-
tions (Haerder and Reuter, 1983; Gray and Reuter, 1992; Lewis, et al., 2002), so
that it is not advisable to suspend any transaction when it is under busy state.
That is, a strict periodic maintenance is not always effective, and sometimes a ran-
dom maintenance policy is performed by considering the idle states of the system.
(ii) Cumulative damage models have been successfully formulated the incremental
processes of updated data in a database, such as differential backup and cumulative
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backup (Qian, et al., 1999, 2002a, 2002b, 2010; Nakamura, et al., 2003), which have
become the most popular backup manners in the world. In other words, we can mon-
itor the cumulative updated data at any time. (iii) Replacing shock with random
idle states, damage with updated data, and failure level K with backup threshold,
we can modify such theoretical models into maintaining database or performing
backup polices by considering the fault recovery costs. Obviously, the catastrophic
failure mode is not sensible because the backup threshold K can be determined to
be not so high by the database management system (DBMS), especially when two
or more combined backup schedules are performed.

Appendix

1. When F (j)(t) =
∑∞

i=j[(λt)i/i!]e−λt, i.e., f (j+1)(t) = [λ(λt)j/j!]e−λt, prove
that RL(t, N) increases strictly with t from 1−G(N+1)(K)/G(N)(K) to 1, i.e., prove
that

1−RL(t, N) ≡
∑∞

j=N [(λt)j/j!]G(j+1)(K)∑∞
j=N [(λt)j/j!]G(j)(K)

(A.1)

decreases strictly with t from G(N+1)(K)/G(N)(K) to 0 when N = 0, 1, 2, · · · . In
particular, when N = 0, the process of the proof has been given in (Nakagawa,
2007, p.49). When N = 1, 2, · · · , differentiating 1−RL(t, N) with respect to t,

λA1(t, N)

[
∑∞

j=N [(λt)j/j!]G(j)(K)]2
,

where

A1(t, N) ≡
∞∑

i=N

(λt)i

i!
G(i)(K)

∞∑
j=N−1

(λt)j

j!
G(j+2)(K)

−
∞∑

i=N

(λt)i

i!
G(i+1)(K)

∞∑
j=N−1

(λt)j

j!
G(j+1)(K). (A.2)

We denote Gk ≡ G(k+1)(K)/G(k)(K), and Gk decreases strictly with k from G(K)

to 0 when G(j)(K) =
∑∞

i=j[(µK)i/i!]e−µK (Nakagawa, 2007, p.24), and (A.2) is
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rewritten as

A1(t, N) =
∞∑

i=N

(λt)i

i!

∞∑
j=N−1

(λt)j

j!
G(i)(K)G(j+1)(K)(Gj+1 −Gi)

=
∞∑

i=N

(λt)i

i!

i−1∑
j=N−1

(λt)j

j!
G(i)(K)G(j+1)(K)(Gj+1 −Gi)

+
∞∑

i=N

(λt)i

i!

∞∑
j=i

(λt)j

j!
G(i)(K)G(j+1)(K)(Gj+1 −Gi)

=
∞∑

i=N

i
(λt)i

i!

∞∑
j=i

(λt)j

(j + 1)!
G(i)(K)G(j+1)(K)(Gi −Gj+1)

+
∞∑

i=N

(λt)i

i!

∞∑
j=i

(j + 1)
(λt)j

(j + 1)!
G(i)(K)G(j+1)(K)(Gj+1 −Gi)

=
∞∑

i=N

(λt)i

i!

∞∑
j=i

(λt)j

(j + 1)!
G(i)(K)G(j+1)(K)(Gj+1 −Gi)(j − i + 1) < 0.

Furthermore,

lim
t→0

∑∞
j=N [(λt)j/j!]G(j+1)(K)∑∞

j=N [(λt)j/j!]G(j)(K)
=

G(N+1)(K)

G(N)(K)
.

For any N1 ≥ N ,

lim
t→∞

∑N1

j=N [(λt)j/j!]G(j+1)(K)∑N1

j=N [(λt)j/j!]G(j)(K)
=

G(N1+1)(K)

G(N1)(K)
.

Because N1 is arbitrary,

lim
t→∞

∑∞
j=N [(λt)j/j!]G(j+1)(K)∑∞

j=N [(λt)j/j!]G(j)(K)
= lim

N1→∞

G(N1+1)(K)

G(N1)(K)
= 0.

Thus, 1−RL(t, N) decreases with t from G(N+1)(K)/G(N)(K) to 0, which completes
the proof that RL(t, N) increases with t from 1−G(N+1)(K)/G(N)(K) to 1.

2. Prove that RF (t, N) increases with t from 1−G(K) to 1−G(N+1)(K)/G(N)(K),
i.e., prove that

1−RF (t, N) ≡
∑N−1

j=0 [(λt)j/j!]G(j+1)(K)∑N−1
j=0 [(λt)j/j!]G(j)(K)

(A.3)
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decreases strictly with t from G(K) to G(N+1)(K)/G(N)(K) when N = 1, 2, · · · . In
particular, when N = 1, RF (t, N) = 1−G(K). When N = 2, 3, · · · , differentiating
1−RF (t, N) with respect to t,

λA2(t, N)

[
∑N−1

j=0 [(λt)j/j!]G(j)(K)]2
,

where

A2(t, N) ≡
N−1∑
i=0

(λt)i

i!
G(i)(K)

N−2∑
j=0

(λt)j

j!
G(j+2)(K)

−
N−1∑
i=0

(λt)i

i!
G(i+1)(K)

N−2∑
j=0

(λt)j

j!
G(j+1)(K). (A.4)

By the similar method of Appendix 1,

A2(t, N) =
N−1∑
i=0

(λt)i

i!

N−2∑
j=i

(λt)j

(j + 1)!
G(i)(K)G(j+1)(K)(Gj+1 −Gi)(j − i + 1) < 0.

Furthermore,

lim
t→0

∑N
j=0[(λt)j/j!]G(j+1)(K)∑N

j=0[(λt)j/j!]G(j)(K)
= G(K),

and

lim
t→∞

∑N
j=0[(λt)j/j!]G(j+1)(K)∑N

j=0[(λt)j/j!]G(j)(K)
=

G(N+1)(K)

G(N)(K)
.

Thus, 1 − RF (t, N) decreases with t from G(K) to G(N+1)(K)/G(N)(K), which
completes the proof that RF (t, N) increases with t from 1−G(K) to 1−G(N+1)(K)/

G(N)(K).
3. Prove that RL(t, N) increases with N . From (A.1),

∞∑
j=N

(λt)j

j!
G(j+1)(K)

∞∑
j=N+1

(λt)j

j!
G(j)(K)−

∞∑
j=N+1

(λt)j

j!
G(j+1)(K)

∞∑
j=N

(λt)j

j!
G(j)(K)

=
(λt)N

N !

∞∑
j=N+1

(λt)j

j!
G(j)(K)G(N)(K)

[
G(N+1)(K)

G(N)(K)
− G(j+1)(K)

G(j)(K)

]
> 0. (A.5)
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For any N1 ≥ N ,

lim
N→∞

∑N1

j=N [(λt)j/j!]G(j+1)(K)∑N1

j=N [(λt)j/j!]G(j)(K)
=

G(N1+1)(K)

G(N1)(K)
.

Because N1 is arbitrary,

lim
N→∞

∑∞
j=N [(λt)j/j!]G(j+1)(K)∑∞

j=N [(λt)j/j!]G(j)(K)
= lim

N1→∞

G(N1+1)(K)

G(N1)(K)
= 0.

Thus, 1−RF (t, N) decreases with N from∑∞
j=0[(λt)j/j!]G(j+1)(K)∑∞

j=0[(λt)j/j!]G(j)(K)
(A.6)

to 0, which completes the proof that RL(t, N) increases with N .
4. Prove that RF (t, N) increases with N . From (A.3),

N−1∑
j=0

(λt)j

j!
G(j+1)(K)

N∑
j=0

(λt)j

j!
G(j)(K)−

N∑
j=0

(λt)j

j!
G(j+1)(K)

N−1∑
j=0

(λt)j

j!
G(j)(K)

=
(λt)N

N !

N−1∑
j=0

(λt)j

j!
G(j)(K)G(N)(K)

[
G(j+1)(K)

G(j)(K)
− G(N+1)(K)

G(N)(K)

]
> 0. (A.7)

Thus, 1 − RF (t, N) decreases with N from G(K) to (A.6), which completes the
proof that RF (t, N) increases with N .
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Chapter 6

Garbage Collection Policies

It is an important problem to determine the tenuring collection time or major
collection time to meet the pause time goal for a generational garbage collector.
From such a viewpoint, this chapter proposes two stochastic models based on the
working schemes of a generational garbage collector: Garbage collections occur at
a nonhomogeneous Poisson process. Minor collections are made when the garbage
collector begins to work, tenuring collection is made at a planned time T or at the
first collection time when surviving objects have exceeded K for the first model.
Major collection is made at time T or at the Nth collection for the second model.
Using the techniques of cumulative processes in reliability theory, expected cost
rates are obtained, and optimal policies of tenuring and major collection times
which minimize them are discussed analytically and computed numerically.

6.1 Introduction

In recent years, generational garbage collection (Ungar, 1984; Vengerov, 2009) has
been popular with programmers for the reason that it can be made more effi-
ciently. Compared with classical tracing collectors, e.g., reference counting collector,
mark-sweep collector, mark-compact collector and copying collector, a generational
garbage collector is effective in computer programs with the character that it is
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unnecessary to mark or copy all active data of the whole heap for every collec-
tion, i.e, the collector concentrates effort on those objects which are most likely to
be garbage. Based on the weak generational hypothesis (Ungar, 1984) which as-
serts that most objects are short-lived after their allocation, a generational garbage
collector segregates objects by age into two or more regions called generations or
multiple generations. The survival rates of younger generations are always much
lower than those of older ones, which means that younger generations are more likely
to be garbage and can be collected more frequently than older ones. Although such
generational collections cost much shorter time than that of a full collection, the
problems of pointers from older generations to younger ones and the size of root
sets for younger generations will become more complicated. For these reasons, many
generational collectors are limited to just two or three generations (Jones and Lins,
1996). This generational technique is now in widespread use for the memory man-
agement. For instance, the garbage collector, which is used in Sun’s HotSpot Java
Virtual Machine (JVM), manages heap space for both young and old generations
(Vengerov, 2009): New objects space Eden, two equal survivor spaces SS]1 and
SS]2 for surviving objects, and tenured objects space Old (Tenured), where Eden,
SS]1 and SS]2 are for younger generations, and Old is for older ones.

The generational garbage collector uses minor collection and tenuring collection
1 for younger generations and major collection for multi-generations (Jones and
Lins, 1996). Most generational garbage collectors are copying collectors, although
it is possible to use mark-sweep collectors. In this chapter, we concentrate on a
generational garbage collector using copying collection. However, for every garbage
collection, the manner of stop and copy pauses all application threads to collect
the garbage. The duration of time for which the collector has worked is called
pause time (Jones and Lins, 1996), which is an important parameter for interactive
systems, and depends largely upon the volume of surviving objects and the type
of collections. That is, pause time suffered for minor collection increases with the
number of collections and is less than that of tenuring collection, major collection

1Tenuring collection is also one kind of minor collections (Jones and Lins, 1996). We define
tenuring collection in distinction from minor collection because there may be some surviving
objects tenured from survivor space into Old.
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pause time is the longest among the three ones.
This chapter considers a pause time goal which is called time cost or cost for

simplicity, and our problem is to obtain optimal collection times which minimize
the expected cost rates. Using the techniques of cumulative processes and reliability
theory (Nakagawa, 2005; Nakagawa, 2007; Nakamura and Nakagawa, 2010), opti-
mal tenuring collection times and major collection times are discussed analytically
and computed numerically.

6.2 Working Schemes

In general, the frequency of garbage collections depends on whether the computer
processes are busy or not. So that, it is practical to assume that garbage collections
occur at a nonhomogeneous Poisson process with an intensity function λ(t) and a
mean-value function R(t) ≡

∫ t

0
λ(u)du. Then, the probability that collections occur

exactly j times in (s, t] is

Hj(s, t) ≡
[R(t)−R(s)]j

j!
e−[R(t)−R(s)] (j = 0, 1, 2, · · · ).

Denote Fj(s, t) (j = 1, 2, · · · ) be the probability that collections occur at least j

times in the time interval (s, t],

Fj(s, t) =

∫ t

s

Hj−1(s, u)λ(u)du =
∞∑
i=j

Hi(s, t), (6.1)

where F0(s, t) ≡ 1 and

Hj(t) ≡ Hj(0, t) =
[R(t)]j

j!
e−R(t),

Fj(t) ≡ Fj(0, t) =
∞∑
i=j

Hi(t).

The volume Xi of new objects in Eden at the ith collection has an identical
distribution G(x) ≡ Pr{Xi ≤ x} (i = 1, 2, · · · ). Further, compared with the method
of estimating object lifetimes (Vengerov, 2009), it would be more easier to estimate
the survivor rate of one group of objects using the statistical methods rather than
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focusing on every object. So that we suppose that survivor rate αi (0 ≤ αi < 1; i =

1, 2, · · · ), where 1 > α1 > α2 > · · · > αi > · · · ≥ 0, means that new objects will
survive 100αi percent at the ith minor collection.
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Figure 6.1: Working schemes of a generational garbage collector.

That is, detailed working schemes of a generational garbage collector which
have been introduced in (Jones and Lins, 1996; Vengerov, 2009; Zhao, et al., 2010b,
2011b, 2012c) are given as following steps (Figure 6.1):

1. New objects X1 are allocated in Eden.

2. When the first minor collection occurs, surviving objects α1X1 from Eden are
copied into SS]1.

3. When the second minor collection occurs, surviving objects α1X2 from Eden
and α2X1 from SS]1 are copied into SS]2.

4. In the fashions of 1-3, minor collections copy surviving objects between SS]1
and SS]2 until they become tenured, i.e., tenuring collection occurs when
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some parameter meets the tenuring threshold, and then, the older or the
oldest objects are copied into Old.

5. When Old fills up, major collection of the whole heap occurs, and surviving
objects from Old are kept in Old, while objects from Eden and survivor space
are kept in survivor space.

In practice, tenuring threshold mentioned in step 4 above is adaptive, which is
called adaptive tenuring (Jones and Lins, 1996) and can be modified at any time. In
this chapter, we propose two cases of working schemes according to the properties
of adaptive tenuring: Based on (Ungar, 1984), new objects can be tenured only if
they survive at least one minor collection, because objects that survive two minor
collections are much less than those that survive just one. In other words, surviving
objects are likely to reduce slightly with the number of minor collections beyond
the two. That is, for step 4:

4a. When tenuring collection occurs, surviving objects from Eden and survivor
space are copied into the other survivor space and Old, respectively. That is,
if tenuring collection is made at the jth (j = 1, 2, · · · ) collection, surviving
objects α1Xj and α2Xj−1 +α3Xj−2 + · · ·+αjX1 are copied into survivor space
and Old, respectively.

4b. After tenuring collection, the same collection cycle begins with step 1. The
collector works 1 → 2 → 3 → 4a → 4b → 1 → · · · . In this case, tenur-
ing collections can be consider as renewal points of the collection processes,
because Old will be filled with tenured objects slowly and major collection
occurs rarely, especially when the tenuring threshold is high and the survivor
rates are low. Modelings and optimizations of tenuring collection times are
discussed in Sections 6.3.

From (Vengerov, 2009), the oldest objects can be tenured from survivor space
into Old at every collection time when tenuring collection begins, i.e., for step 4:

4c. When tenuring collection occurs, the oldest objects from survivor space are
copied into Old, and the other surviving objects from Eden and survivor space
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are copied into the other survivor space. That is, if tenuring collection is made
at the jth (j = 1, 2, · · · ) collection, surviving objects α1Xj + α2Xj−1 + · · · +
αj−1X2 and αjX1 are copied into survivor space and Old, respectively.

4d. When the next collection occurs, the collector works as the same rule as
4c. That is, when the second tenuring collection occurs, surviving objects
α1Xj+1 + α2Xj + · · · + αj−1X3 and αjX2 are copied into the other survivor
space and Old, respectively. The collector works 1 → 2 → 3 → 4c → 4d →
5 → 1 → · · · . In this case, major collections can be consider as renewal
points of the collection processes, because there are always some surviving
objects tenured from survivor space into Old at every collection time when
tenuring collection begins, especially when the tenuring threshold is low and
the survivor rates are high. Related optimization problems of major collection
times are discussed in Section 6.4.

From the above discussions, if tenuring collection is made at the jth (j =

1, 2, · · · ) collection, surviving objects that should be copied at the ith (i = 0, 1, 2, · · · ,

j−1) minor collection, copied objects and tenured objects at the kth (k = 1, 2, · · · )
tenuring collection are, respectively,

i−1∑
n=0

αn+1Xi−n < K,

j∑
n=1

αnXj+k−n ≥ K and αjXk, (6.2)

where
∑−1

n=0 ≡ 0, and K is tenuring threshold in step 4, which means that the
total volume of surviving objects has exceeded level K. It could be easily seen
that copied objects increase with the number of minor collections and are relatively
stable with the number of tenuring collections. We define that the distribution of
the total surviving objects at the ith minor collection is

Gi(x) ≡ Pr

{
i−1∑
n=0

αn+1Xi−n ≤ x

}
(i = 0, 1, 2, · · · ), (6.3)

where Gi(x) deceases with i, and G0(x) ≡ 1 means that there are no objects in
the heap space at time 0. The probability that the total surviving objects exceed
exactly a threshold level K at the (i + 1)th (i = 0, 1, 2, · · · ) minor collection is

pi(K) ≡
∫ K

0

G(K − x)dGi(x) = Gi(K)−Gi+1(K), (6.4)
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where V (x) ≡ 1− V (x) for any distribution V (x).
Let cS + cM(x) be the cost suffered for every minor collection, where cS is

the constant cost of scanning surviving objects and x is the surviving objects that
should be copied, cM(x) increases with x and cM(0) ≡ 0. Then, the expected cost
of the ith minor collection is

C(i, K) ≡ 1

Gi(K)

∫ K

0

[cS + cM(x)] dGi(x) (i = 0, 1, 2, · · · ), (6.5)

where C(0, K) ≡ 0 and C(i, K) increases with i.

6.3 Tenuring Collection Time

6.3.1 Expected Cost Rate

Suppose that minor collections are made when the garbage collector begins to work,
tenuring collection is made at a planned time T (0 < T ≤ ∞) or at the first
collection time when surviving objects have exceeded a threshold level K (0 < K ≤
∞), whichever occurs first. Then, the probability that tenuring collection is made
at time T is

PT =
∞∑

j=0

Hj(T )Gj(K), (6.6)

and the probability that tenuring collection is made at level K is

PK =
∞∑

j=0

Fj+1(T )pj(K), (6.7)

where note that PT + PK ≡ 1. The mean time to tenuring collection is

E1(L) = T

∞∑
j=0

Hj(T )Gj(K) +
∞∑

j=0

pj(K)

∫ T

0

tdFj+1(t)

=
∞∑

j=0

Gj(K)

∫ T

0

Hj(t)dt. (6.8)

The expected cost suffered for minor collections until tenuring collection is

CM =
∞∑

j=1

j∑
i=1

C(i, K)Hj(T )Gj(K) +
∞∑

j=1

j∑
i=1

C(i, K)Fj+1(T )pj(K)
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=
∞∑

j=1

C(j, K)Fj(T )Gj(K). (6.9)

Then, the expected cost until tenuring collection is

E1(C) = cK − (cK − cT )
∞∑

j=0

Hj(T )Gj(K) +
∞∑

j=1

C(j, K)Fj(T )Gj(K), (6.10)

where cT and cK (cT , cK > cS+cM(K)) are the costs suffered for tenuring collections
at time T and when surviving objects have exceeded K, respectively. Therefore,
from (6.8) and (6.10), by using the theory of renewal reward process (Ross, 1983),
the expected cost rate is

C1(T, K) =

cK − (cK − cT )
∑∞

j=0 Hj(T )Gj(K)

+
∑∞

j=1 C(j, K)Fj(T )Gj(K)∑∞
j=0 Gj(K)

∫ T

0
Hj(t)dt

. (6.11)

6.3.2 Optimal Policies

When tenuring collection is made only at time T ,

C1(T ) ≡ lim
K→∞

C1(T,K) =
1

T

{
∞∑

j=1

Fj(T )

∫ ∞

0

[cS + cM(x)] dGj(x) + cT

}
. (6.12)

Let fj(t) be a density function of Fj(t), i.e., fj(t) ≡ dFj(t)/dt. Then, differentiating
C1(T ) with respect to T and setting it equal to zero,

∞∑
j=1

[Tfj(T )− Fj(T )]

∫ ∞

0

[cS + cM(x)] dGj(x) = cT . (6.13)

Let L1(T ) be the left-hand side of (6.13),

L1(0) ≡ lim
T→0

L(T ) = 0,

L′1(T ) =λ′(T )T
∞∑

j=0

Hj(T )

∫ ∞

0

[cS + cM(x)] dGj+1(x)

+ λ(T )2T
∞∑

j=0

Hj(T )

∫ ∞

0

pj+1(x)dcM(x).
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Thus, if λ(t) increases with t and L1(∞) > cT , then there exists a finite and unique
T ∗1 (0 < T ∗1 < ∞) which satisfies (6.13), and the resulting cost rate is

C1(T
∗
1 ) = λ(T ∗1 )

∞∑
j=0

Fj(T
∗
1 )

∫ ∞

0

pj(x)dcM(x).

In particular, when Hj(t) = [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ), i.e., garbage collec-
tions occur at a Poisson process with rate λ, (6.13) becomes

∞∑
j=1

jFj+1(T )

∫ ∞

0

pj(x)dcM(x) = cT . (6.14)

Differentiating the left-hand side of (6.14) with respect to T ,

λ
∞∑

j=1

jHj(T )

∫ ∞

0

pj(x)dcM(x) > 0.

Thus, if the left-hand side of (6.14) is greater than cT , then there exists a finite and
unique T ∗1 (0 < T ∗1 < ∞) which satisfies (6.14).

When tenuring collection is made only at level K,

C1(K) ≡ lim
T→∞

C1(T,K) =

∑∞
j=1

∫ K

0
[cS + cM(x)]dGj(x) + cK∑∞

j=0 Gj(K)
∫∞

0
Hj(t)dt

. (6.15)

Let gi(x) be a density function of Gi(x) in (6.3), i.e., gi(x) ≡ dGi(x)/dx. Differen-
tiating C1(K) with respect to K and setting it equal to zero,

Q1(K)
∞∑

j=0

Gj(K)

∫ ∞

0

Hj(t)dt−
∞∑

j=1

∫ K

0

[cS + cM(x)] dGj(x) = cK , (6.16)

where

Q1(K) ≡
[cS + cM(K)]

∑∞
j=1 gj(K)∑∞

j=1 gj(K)
∫∞

0
Hj(t)dt

.

Let L1(K) be the left-hand side of (6.16),

L1(0) ≡ lim
K→0

L1(K) = Q1(0)

∫ ∞

0

H0(t)dt,

L′1(K) = Q′
1(K)

∞∑
j=0

Gj(K)

∫ ∞

0

Hj(t)dt.
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Thus, if Q1(K) increases with K and L1(0) < cK < L1(∞), then there exists a
finite and unique K∗

1 (0 < K∗
1 < ∞) which satisfies (6.16), and the resulting cost

rate is

C1(K
∗
1) = Q1(K

∗
1).

In particular, when Hj(t) = [(λt)j/j!]e−λt, (6.16) becomes

cM(K) +

∫ K

0

[cM(K)− cM(x)] dM(x) = cK − cS, (6.17)

whose left-hand side increases with K from 0 to ∞, where M(x) ≡
∑∞

j=1 Gj(x).
Thus, there exists a finite and unique K∗

1 (0 < K∗
1 < ∞) which satisfies (6.17).

6.3.3 Numerical Examples

When λ(t) = λ, Xi (i = 1, 2, · · · ) has a normal distribution N(µ, σ2), αi = α/i (0 ≤
α < 1; i = 1, 2, · · · ) and cM(x) = cMx. Then

Fj(t) = 1−
j−1∑
i=0

(λt)i

i!
e−λt, Gj(x) = Φ

(
x− αµνj

ασ
√

ωj

)
, (6.18)

where Φ(x) is the standard normal distribution with mean 0 and variance 1, i.e.,
Φ(x) ≡ (1/

√
2π)

∫ x

−∞ e−u2/2du, and

νj ≡
j∑

n=1

1

n
, ωj ≡

j∑
n=1

1

n2
.

Tables 6.1 and 6.2 present λT ∗1 , C1(T
∗
1 )/λ, K∗

1 and C1(K
∗
1)/λ for cT = cK = 20,

30, 40, µ = 8, 10 and α = 0.40, 0.45, 0.50, 0.55, 0.60 when cS = 10, cM = 1 and
σ = 1. These show that optimal tenuring collection times λT ∗1 increase with cost
cT and decrease with both the volume of new objects in Eden at collection time µ

and the survivor rate α, optimal tenuring collection times K∗
1 increase with all of

cK , µ and α, and C1(T
∗
1 )/λ and C1(K

∗
1)/λ increase with all of cT or cK , µ and α.

We can explain all the results and obtain some interesting conclusions as fol-
lows:
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Table 6.1: Optimal λT ∗1 and C1(T ∗1 )/λ when cS = 10, cM = 1 and σ = 1.

µ α
cT = 20 cT = 30 cT = 40

λT ∗
1 C1(T ∗

1 )/λ λT ∗
1 C1(T ∗

1 )/λ λT ∗
1 C1(T ∗

1 )/λ

0.40 8.99 19.24 12.48 20.18 15.84 20.89
0.45 8.24 20.11 11.34 21.14 14.35 21.92

8 0.50 7.61 20.95 10.42 22.07 13.15 22.92
0.55 7.08 21.77 9.66 22.98 12.17 23.90
0.60 6.64 22.58 9.03 23.86 11.34 24.85
0.40 7.61 20.95 10.42 22.07 13.14 22.91
0.45 6.96 21.98 9.49 23.20 11.95 24.14

10 0.50 6.44 22.97 8.75 24.30 10.97 25.31
0.55 6.01 23.95 8.13 25.37 10.17 26.47
0.60 5.64 24.91 7.61 26.43 9.49 27.60

1. When tenuring collection cost cT or cK increases, it is not economical to make
tenuring collections frequently, then T ∗1 or K∗

1 should be postponed.

2. When µ or α increases, cost suffered for minor collections will increase in a
shorter time, because of faster increase in copied objects. If cost cT or cK is
constant in this case, T ∗1 should be advanced. For K∗

1 , it costs much shorter
time to increase copied objects until level K, then K∗

1 would increase suitably
to decrease both the frequency of tenuring collections and the total minor
collection cost.

3. The resulting cost rates C1(T
∗
1 ) or C1(K

∗
1) increase with all µ, α and cT or cK ,

because the total expected cost of one cycle increases but the expected time
decreases.

4. It is interesting that C1(K
∗
1) are always less than C1(T

∗
1 ) for the same param-

eters, i.e., tenuring collections at level K are better than those at time T . In
fact, from Tables 6.1 and 6.2, we can know that expected number of minor
collections until tenuring collection for two models are almost the same. That
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is, from the assumption of αi = α/i, we can derive

1 +
1

2
+

1

3
+ · · ·+ 1

[λT ∗1 ]
<

K∗
1

αµ
< 1 +

1

2
+

1

3
+ · · ·+ 1

[λT ∗1 ] + 1
, (6.19)

where [x] denotes the greatest integer contained in x. For example, when
cT = cK = 20, µ = 8 and α = 0.4, λT ∗1 = 8.99 and K∗

1 = 8.76, and hence

1 +
1

2
+ · · ·+ 1

8
= 2.55 <

8.76

0.4× 8
= 2.74 < 1 +

1

2
+ · · ·+ 1

9
= 2.83.

We can estimate approximate values K∗
1 from T ∗1 using the relationship of the

two policies in (6.19), and vice versa.

Table 6.2: Optimal K∗
1 and C1(K∗

1 )/λ when cS = 10, cM = 1 and σ = 1.

µ α
cK = 20 cK = 30 cK = 40

K∗
1 C1(K∗

1 )/λ K∗
1 C1(K∗

1 )/λ K∗
1 C1(K∗

1 )/λ

0.40 8.76 18.76 9.61 19.61 10.71 20.71
0.45 9.25 19.25 11.04 21.04 11.57 21.57

8 0.50 9.71 19.71 12.03 22.03 12.39 22.39
0.55 10.12 20.12 12.69 22.69 13.18 23.18
0.60 10.49 20.49 13.32 23.32 13.94 23.94
0.40 10.72 20.72 12.05 22.05 12.41 22.41
0.45 11.24 21.24 12.87 22.87 13.39 23.39

10 0.50 11.64 21.64 13.64 23.64 14.33 24.33
0.55 12.08 22.08 14.37 24.37 15.23 25.23
0.60 12.44 22.44 15.07 25.07 16.09 26.09

6.4 Major Collection Time

6.4.1 Including Minor and Tenuring Collections

6.4.1.1 Expected Cost Rate

Suppose that minor collections are made before surviving objects exceed a threshold
level K (0 < K < ∞), and when they have exceeded K, tenuring collections are
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always made. Further, major collection is made at time T (0 < T ≤ ∞) or at the
Nth (N = 1, 2, · · · ) collection including minor and tenuring collections (Figure 6.2),
whichever occurs first.

Time

T,N

Tenuring collectionMinor collection Major collection

Figure 6.2: Major collection including minor and tenuring collections.

Let ckT (k = 1, 2, · · · ) be the cost suffered for the kth tenuring collection, where
cS + cM(K) < c1T < c2T < · · · , and cF (cF > ckT ) be the cost suffered for major
collection. Then, the probability that major collection is made at time T is

PT =
N−1∑
j=0

Hj(T )G(j)(K) +
N−1∑
j=1

j−1∑
i=1

Hj(T )pi(K) = 1− FN(T ), (6.20)

and the probability that major collection is made at collection N is

PN = FN(T )G(N)(K) +
N−1∑
j=0

FN(T )pj(K) = FN(T ), (6.21)

where note that PT + PN ≡ 1. The mean time to major collection is

E2(L) =

∫ T

0

tdFN(t) + T
N−1∑
j=0

Hj(T ) =

∫ T

0

[1− FN(t)] dt. (6.22)

The expected costs suffered for minor collections and tenuring collections when
major collection is made at time T are, respectively,

CTM =
N−1∑
j=1

Hj(T )

[
j∑

i=1

C(i, K)G(j)(K) +

j−1∑
i=1

i∑
k=1

C(k,K)pi(K)

]

=
N−1∑
j=1

Hj(T )

j∑
i=1

C(i, K)G(i)(K), (6.23)

CTT =
N−1∑
j=1

Hj(T )

j−1∑
i=0

j−i∑
k=1

ckT pi(K)
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=
N−1∑
j=1

Hj(T )

j−1∑
i=0

[
c(i+1)T − c(j−i)T G(i+1)(K)

]
, (6.24)

and the expected costs suffered for minor collections and tenuring collections when
major collection is made at collection N are, respectively,

CNM = FN(T )

[
N∑

j=1

C(j, K)G(N)(K) +
N−1∑
j=1

j∑
i=1

C(i, K)pj(K)

]

= FN(T )
N∑

j=1

C(j, K)G(j)(K), (6.25)

CNT = FN(T )
N−1∑
j=0

N−j∑
i=1

ciT pj(K)

= FN(T )
N−1∑
j=0

[
c(j+1)T − c(N−j)T G(j+1)(K)

]
. (6.26)

Thus, the total expected cost until major collection is, summing up from (6.23)

to (6.26) and adding the cost cF of major collection,

E2(C) =cF +
N∑

j=1

C(j, K)Fj(T )G(j)(K)

+
N∑

j=1

Fj(T )

[
cjT −

j−1∑
i=0

G(j−i)(K)(c(i+1)T − ciT )

]
. (6.27)

Therefore, the expected cost rate is, from (6.22) and (6.27),

C2(T, N) =
cF +

∑N
j=1 Fj(T )Aj∫ T

0
[1− FN(t)]dt

, (6.28)

where

Aj ≡ cjT +

∫ K

0

[cS + cM(x)] dG(j)(x)−
j−1∑
i=0

G(j−i)(K)(c(i+1)T − ciT ).

It can be easily proved that Aj increases with j because

Aj+1 − Aj =(c1T − cS − cM(K))pj(K) +

∫ K

0

pj(x)dcM(x)

+

j∑
i=1

pj−i(K)(c(i+1)T − ciT ) > 0.
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6.4.1.2 Optimal Policies

When major collection is made only at time T ,

C2(T ) ≡ lim
N→∞

C2(T, N) =
1

T

[
∞∑

j=1

Fj(T )Aj + cF

]
. (6.29)

Differentiating C2(T ) in (6.29) with respect to T and setting it equal to zero,
∞∑

j=1

Aj [Tλ(T )Hj−1(T )− Fj(T )] = cF ,

that is,
∞∑

j=1

Aj

∫ T

0

td [λ(t)Hj−1(t)] = cF . (6.30)

Let L2(T ) be the left-hand side of (6.30),

L′2(T ) =
∞∑

j=0

Aj+1

∫ T

0

tλ′(t)Hj(t)dt +
∞∑

j=0

(Aj+2 − Aj+1)

∫ T

0

t[λ(t)]2Hj(t)dt,

L2(∞) =
∞∑

j=1

Aj

∫ ∞

0

td[λ(t)Hj−1(t)].

Thus, if λ(t) increases with t and L2(∞) > cF , then there exists a finite and unique
T ∗2 (0 < T ∗2 < ∞) which satisfies (6.30).

In particular, when λ(t) = λ,

L′2(T ) =
∞∑

j=0

(j + 1)Fj+2(T )(Aj+2 − Aj+1),

L2(∞) =
∞∑

j=1

(A∞ − Aj).

Therefore, if
∑∞

j=1(A∞ − Aj) > cF , then there exists a finite and unique T ∗2 (0 <

T ∗2 < ∞), and the resulting cost rate is

C2(T
∗
2 )

λ
=

∞∑
j=0

Hj(T
∗
2 )Aj+1.
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When major collection is made only at collection N ,

C2(N) ≡ lim
T→∞

C2(T, N) =

∑N
j=1 Aj + cF∫∞

0
[1− FN(t)]dt

(N = 1, 2, · · · ). (6.31)

From the inequality C2(N + 1)− C2(N) ≥ 0,

N−1∑
j=0

[
AN+1∫∞

0
HN(t)dt

∫ ∞

0

Hj(t)dt− Aj+1

]
≥ cF . (6.32)

Letting L2(N) be the left-hand side of (6.32),

L2(N + 1)− L2(N) =

[
AN+2∫∞

0
HN+1(t)dt

− AN+1∫∞
0

HN(t)dt

] ∫ ∞

0

[1− FN+1(t)] dt.

(6.33)

Thus, if AN+1/
∫∞

0
HN(t)dt increases with N and L2(∞) > cF , then there exists a

finite and unique minimum N∗
2 (1 ≤ N∗

2 < ∞) which satisfies (6.32).
In particular, when λ(t) = λ,

L2(N) =
N∑

j=1

(AN+1 − Aj),

L2(N + 1)− L2(N) = (N + 1)(AN+2 − AN+1) > 0.

It is assumed that A∞ ≡ limj→∞Aj < ∞. Then,

L2(∞) =
∞∑

j=1

(A∞ − Aj).

Further, because
∑N

j=1(AN+1 −Aj) ≥ AN+1 −A1 (N = 1, 2, · · · ), if A∞ = ∞, then
L2(∞) = ∞. Therefore, if

∑∞
j=1(A∞ − Aj) > cF , then there exists a finite and

unique minimum N∗
2 (1 ≤ N∗

2 < ∞), and the resulting cost rate is

AN∗
2
≤ C2(N

∗
2 )

λ
< AN∗

2 +1.

It is of interest that when collections occur at a Poisson process with rate λ, if∑∞
j=1(A∞ − Aj) > cF , then both finite and unique T ∗2 and N∗

2 exist.
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6.4.2 Including Tenuring Collections

6.4.2.1 Expected Cost Rate

Suppose that minor collections are made before surviving objects exceed a threshold
level K, and after they have exceeded K, tenuring collections are always made.
Further, major collection is made at time T (0 < T ≤ ∞) or at collection N

(N = 1, 2, · · · ) including tenuring collections (Figure 6.3), whichever occurs first.

Time

T,N

Tenuring collectionMinor collection Major collection

Figure 6.3: Major collection including tenuring collections.

Then, the probability that major collection is made at time T is

PT =
∞∑

j=0

N−2∑
i=0

pj(K)

∫ ∞

0

Hi(u, u + T )dFj+1(u), (6.34)

and the probability that major collection is made at collection N is

PN =
∞∑

j=0

∞∑
i=N−1

pj(K)

∫ ∞

0

Hi(u, u + T )dFj+1(u). (6.35)

The mean time to major collection is

E3(L) =
∞∑

j=0

pj(K)

∫ ∞

0

[∫ T

0

(u + t)dFN−1(u, u + t)

]
dFj+1(u)

+
∞∑

j=0

N−2∑
i=0

pj(K)

∫ ∞

0

(u + T )Hi(u, u + T )dFj+1(u)

=
∞∑

j=0

pj(K)

∫ ∞

0

udFj+1(u)

+
∞∑

j=0

pj(K)

∫ ∞

0

{∫ T

0

[1− FN−1(u, u + t)] dt

}
dFj+1(u). (6.36)
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The expected costs suffered for minor collections and tenuring collections when
major collection is made at time T are, respectively,

CTM =
∞∑

j=0

j∑
i=1

ciMpj(K)

∫ ∞

0

[1− FN−1(u, u + T )] dFj+1(u), (6.37)

CTT =
∞∑

j=0

N−2∑
i=0

i+1∑
k=1

ckT pj(K)

∫ ∞

0

Hi(u, u + T )dFj+1(u), (6.38)

and the expected costs suffered for minor collections and tenuring collections when
major collection is made at collection N are, respectively,

CNM =
∞∑

j=0

j∑
i=1

ciMpj(K)

∫ ∞

0

FN−1(u, u + T )dFj+1(u), (6.39)

CNT =
∞∑

j=0

N∑
i=1

ciT pj(K)

∫ ∞

0

FN−1(u, u + T )dFj+1(u). (6.40)

Thus, the total expected cost until major collection is, summing up from (6.37)

to (6.40) and adding the cost cF of major collection,

E3(C) =cF +
∞∑

j=1

j∑
i=1

ciMpj(K)

+
∞∑

j=0

N∑
i=1

ciT pj(K)

∫ ∞

0

Fi−1(u, u + T )dFj+1(u). (6.41)

Therefore, from (6.36) and (6.41), the expected cost rate is

C3(T,N) = E3(C)/E3(L). (6.42)

6.4.2.2 Optimal Policies

When major collection is made only at time T ,

C3(T ) ≡ lim
N→∞

C3(T, N) =

cF +
∑∞

j=1

∑j
i=1 ciMpj(K)

+
∑∞

j=0

∑∞
i=1 ciT pj(K)

∫∞
0

Fi−1(u, u + T )dFj+1(u)∑∞
j=0 pj(K)

∫∞
0

udFj+1(u) + T
.

(6.43)
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Differentiating C3(T ) with respect to T and setting it equal to zero,

∞∑
j=0

pj+1(K)

∫ ∞

0

Q3(u, T )dFj+1(u) = cF +
∞∑

j=1

cjMG(j)(K), (6.44)

where

Q3(u, T ) ≡
∞∑
i=1

ciT

∫ ∞

0

(l + x) d [λ(u + x)Hi−2(u, u + x)]

=
∞∑
i=1

ciT

∫ ∞

0

(l + x) λ′(u + x)Hi−2(u, u + x)dx

+
∞∑
i=1

(c(i+3)T − c(i+2)T )

∫ ∞

0

(l + x) [λ(u + x)]2Hi(u, u + x)dx,

and

l ≡
∞∑

j=1

pj(K)

∫ ∞

0

tdFj(t),

which represents the mean time until surviving objects have exceeded K. Letting
L3(T ) be the left-hand side of (6.44). Thus, if λ(t) increases with t, L3(T ) increases
with T . Therefore, if L3(∞) > cF +

∑∞
j=1 cjMG(j)(K), then there exists a finite and

unique T ∗3 (0 < T ∗3 < ∞) which satisfies (6.44).
In particular, when λ(t) = λ, then l = [1 + M(K)]/λ, and

Q3(u, T ) =[1 + M(K)]
∞∑

j=1

Fj(T )(c(j+2)T − c(j+1)T )

+
∞∑

j=1

jFj+1(T )(c(j+2)T − c(j+1)T ),

L3(∞) =
∞∑

j=1

(c∞T − c(j+1)T ) + [1 + M(K)](c∞T − c2T ).

Therefore, if

∞∑
j=1

(c∞T − c(j+1)T ) + [1 + M(K)](c∞T − c2T ) > cF +
∞∑

j=1

cjMG(j)(K),
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there exists a finite and unique T ∗3 (0 < T ∗3 < ∞), and the resulting cost rate is

C3(T
∗
3 )

λ
=

∞∑
j=0

Hj(T
∗
3 )c(j+2)T .

When major collection is made only at collection N ,

C3(N) ≡ lim
T→∞

C3(T,N) =
cF +

∑∞
j=1

∑j
i=1 ciMpj(K) +

∑N
j=1 cjT∑∞

j=0 pj(K)
∫∞

0
[1− Fj+N(t)]dt

(N = 1, 2, · · · ). (6.45)

From the inequality C3(N + 1)− C3(N) ≥ 0,

Q3(N)c(N+1)T −
N∑

j=1

cjT ≥ cF +
∞∑

j=1

cjMG(j)(K), (6.46)

where

Q3(N) ≡
∑∞

j=0 pj(K)
∫∞

0
[1− Fj+N(t)]dt∑∞

j=0 pj(K)
∫∞

0
Hj+N(t)dt

.

Letting L3(N) be the left-hand side of (6.46),

L3(N + 1)− L3(N) =
[
Q̃3(N + 1)− Q̃3(N)

] ∞∑
j=0

pj(K)

∫ ∞

0

[1− Fj+N+1(t)] dt,

where

Q̃3(i) ≡
c(i+1)T∑∞

j=0 pj(K)
∫∞

0
Hj+i(t)dt

.

Thus, if Q̃3(i) increases with i, L3(N) increases with N . Therefore, if L3(∞) > cF +∑∞
j=1 cjMG(j)(K), then there exists a finite and unique minimum N∗

3 (1 ≤ N∗
3 < ∞)

which satisfies (6.46).
In particular, when λ(t) = λ, then Q3(N) = M(K) + N , where M(x) ≡∑∞

j=1 G(j)(x) is the expected number of minor collections before surviving objects
exceed x, and

L3(N) =
N∑

j=1

(c(N+1)T − cjT ) + M(K)c(N+1)T ,
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L3(N + 1)− L3(N) = [M(K) + N + 1] (c(N+2)T − c(N+1)T ) > 0.

It is assumed that c∞T ≡ limj→∞ cjT < ∞. Then,

L3(∞) =
∞∑

j=1

(c∞T − cjT ) + M(K)c∞T .

Clearly, if c∞T = ∞, then L2(∞) = ∞. Therefore, if
∞∑

j=1

(c∞T − cjT ) + M(K)c∞T > cF +
∞∑

j=1

cjMG(j)(K),

then there exists a finite and unique minimum N∗
3 (1 ≤ N∗

3 < ∞) which satisfies
(6.46), and the resulting cost rate is

cN∗
3 T ≤

C3(N
∗
3 )

λ
< c(N∗

3 +1)T .

6.4.3 Numerical Examples

It is assumed that ckT = cT + kβ (β > 0; k = 1, 2, · · · ), and other assumptions
are the same as those in Section 6.3.3. Tables 6.3–6.6 present optimal λT ∗i and
Ci(T

∗
i )/λ (i = 2, 3), N∗

i and Ci(N
∗
i )/λ (i = 2, 3), when cF = 100, cT = cN = 20,

cS = 10, cM = 1, µ = 10 and σ = 1 for different α and β. These show that both
λT ∗2 and N∗

2 decrease with α or β, both λT ∗3 and N∗
3 increase with α and decrease

with β, all Ci(T
∗
i )/λ (i = 2, 3) and Ci(N

∗
i )/λ (i = 2, 3) increase with α or β.

Table 6.3: Optimal λT ∗2 and C2(T ∗2 )/λ for α and β.

α
β = 1 β = 2 β = 5

λT ∗
2 C2(T ∗

2 )/λ λT ∗
2 C2(T ∗

2 )/λ λT ∗
2 C2(T ∗

2 )/λ

0.3 17.98 24.4699 15.51 25.1134 13.14 26.0229
0.4 14.09 28.1939 10.66 31.5677 7.77 35.1867
0.5 13.80 31.6197 9.95 35.5256 6.60 42.2212
0.6 12.86 32.8499 9.86 37.6922 6.33 46.6393
0.7 12.86 33.6762 9.86 39.2143 6.27 50.0259

It can be explained as follows:
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Table 6.4: Optimal N∗
2 and C2(N∗

2 )/λ for α and β.

α
β = 1 β = 2 β = 5

N∗
2 C2(N∗

2 )/λ N∗
2 C2(N∗

2 )/λ N∗
2 C2(N∗

2 )/λ

0.3 17 24.1785 16 24.3642 15 24.7538
0.4 14 28.6941 11 30.5818 8 32.8485
0.5 14 31.1212 10 34.5257 7 39.7804
0.6 14 32.3506 10 36.6942 6 44.1853
0.7 14 33.1763 10 38.2160 6 47.5548

1. When α or β increases, it means that the total cost suffered for minor col-
lections or tenuring collections increases, then optimal major collection times
should be advanced, but even then the expected cost rates increase.

2. The differences between Tables 6.3 and 6.5, Tables 6.4 and 6.6, are that when
α increases, M(K) decreases, then optimal major collection times should be
postponed, because it is not economic to make major collection frequently.

3. Compared Tables 6.3 with 6.4, Tables 6.5 with 6.6, these show that C2(T
∗
2 ) >

C2(N
∗
2 ) and C3(T

∗
3 ) > C3(N

∗
3 ) for the same parameters, that is, major collec-

tions made at N2 or N3 are better than those at T2 or T3. It is interesting that
C2(N

∗
2 ) ≈ C3(N

∗
3 ) and C2(T

∗
2 ) ≈ C3(T

∗
3 ), that is, although the two policies

are different, the resulting expected cost rates are almost the same.

4. We can derive the relationship of the two polices, that is,

λT ∗2 ≈ 1 + M(K) + λT ∗3 , N∗
2 ≈ M(K) + N∗

3 .

For example, when α = 0.3 and β = 1, M(K) = 14.8, then

λT ∗2 = 17.98, 1 + M(K) + λT ∗3 = 1 + 14.8 + 1.95 = 17.75,

N∗
2 = 17, M(K) + N∗

3 = 14.8 + 3 = 17.8.

Therefore, the concrete performances of the two kinds of policies would be
depend on the program engineers and software system structures at the be-
ginning, and so on.
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Table 6.5: Optimal λT ∗3 and C3(T ∗3 )/λ for α and β.

α
β = 1 β = 2 β = 5

λT ∗
3 C3(T ∗

3 )/λ λT ∗
3 C3(T ∗

3 )/λ λT ∗
3 C3(T ∗

3 )/λ

0.3 1.95 23.9629 0.06 24.1471 0.01 24.3401
0.4 6.92 28.9179 3.42 30.8389 0.57 32.8532
0.5 9.45 31.4559 5.54 35.0679 2.10 40.4869
0.6 10.75 32.7357 6.69 37.3694 3.06 45.3683
0.7 11.60 33.5878 7.48 38.9639 3.80 49.0298

Table 6.6: Optimal N∗
3 and C3(N∗

3 )/λ for α and β.

β = 1 β = 2 β = 5

α N∗
3 C3(N∗

3 )/λ N∗
3 C3(N∗

3 )/λ N∗
3 C3(N∗

3 )/λ

0.3 3 23.9071 2 24.1387 1 24.3365
0.4 8 28.6662 5 30.5026 2 32.5947
0.5 10 31.1223 7 34.4997 3 39.6811
0.6 12 32.3455 8 36.6799 4 44.1223
0.7 13 33.1731 9 38.2105 5 47.4478

It has been shown from tables 6.1–6.6 that the policies at level K and N are
better than those at time T . However, from simple points, the policy at time T is
easier to operate than those at level K and N . For further studies, we can modify
the policy at time T from the viewpoint of operations. For example, it may be
wasteful to collect the garbage for an operating system at a planned time T even if
it is processing and would be better to do it after the process has been completed.
In this case, we suppose that collection is always made at the first collection time
after T , by using the overtime policy in Chapter 4. Then, C1(T ) becomes

C̃1(T ) =

∑∞
j=1 Fj(T )

∫∞
0

[c1 + c0(x)]dGj(x) + c2∑∞
j=0

∫ T

0

∫∞
T−u

(t + u)dF1(t)dFj(u)
, (6.47)
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and C3(T ) becomes

C̃3(T ) =

∑∞
j=1 Fj(T )(c3 − Aj) + c4∑∞

j=0

∫ T

0

∫∞
T−u

(t + u)dF1(t)dFj(u)
. (6.48)

It is feasible to discuss (6.47) and (6.48) analytically and compare them with C1(T )

and C3(T ) or with C2(K) and C4(N) numerically from the viewpoint of economy.
To choose a better policy, it would depend on the original structure and actual
operational scheme of a garbage collector.

6.5 Concluding Remarks

We have proposed the problems when to make tenuring collection and major col-
lection to minimize the total expected pause time which can disturb the process
of program in memory management. Two stochastic models based on the work-
ing schemes of a generational garbage collector have been discussed analytically:
Garbage collections occur at a nonhomogeneous Poisson process. Minor collections
are made when the garbage collector begins to work, tenuring collection is made
at a planned time T or at the first collection time when surviving objects have
exceeded K, major collection is made at time T or at the Nth collection. Using
the techniques of cumulative processes and reliability theory, expected cost rates
have been obtained, and optimal policies have been discussed analytically. Detailed
examples and analysis have been given and compared numerically. Such theoretical
methods could provide some useful information to computer programmers to design
more efficient collectors in the near future.
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Chapter 7

Conclusions

This dissertation has proposed several extended cumulative damage models and
their applications to garbage collection policies in computer science, based on the
standard cumulative processes (Cox, 1962; Nakagawa, 2007) in reliability theory.
With respect to optimizations for the extended models, policies of a planned time
T , shock, working, or periodic checking number N , and damage level Z have been
optimized. For the application models of the generational garbage collector, practi-
cal working schemes with tenuring collection at time T or object level K and major
collection at time T or collection N have been considered. The value contributions
of the proposed models in this dissertation could be summarized as follows:

In Chapter 2, it may be more practical to assume that the initial damage level of
a used system would be a random variable and the maintenances are imperfect. The
models have indicated that failure rates with continuous and discrete times play an
important role in deriving optimal policies and the necessity of optimizations also
includes that cost for ICM should be greater than that for the first IPM which
includes the maintenance cost for the initial damage. That is true because the
bathtub curve in reliability shows that the used system has avoided the earlier
failure problems period, and the higher damage level Y0 is, the earlier maintenances
should be made or the more wasteful operating a used system is.

In Chapter 3, if we take no account of failures caused by independent damage,
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the policies become the standard cumulative damage models, which is idealized in
theory. However, in practice, take the fracture of brittle materials such as glasses
for an example, maintenances for such a system should be more frequent because of
minimal repairs. By combining additive and independent damages, three replace-
ment policies with minimal repairs have been discussed from different viewpoints.

In Chapter 4, the damage has been defined as the results of works operated by
the system when the every work time is a random variable. The proposed models
have been formulated when every maintenance policy is made at the end of working
time, which is more economical to operate. Especially when the damage models are
applied to crack growth models for aircrafts, two failure facts have been considered,
and the proposed models are more reasonable for such systems.

In Chapter 5, as an application of the notion “whichever occurs last”, the main-
tenance last damage model provides new analytical methods when two preventive
maintenance policies are made, and the comparative studies between such a main-
tenance last and the conventional maintenance first have been shown that which
policy is better depends on different cases. From (Zhao and Nakagawa, 2012),
when a system is operating according to random working intervals, the policy with
“whichever occurs last” can let the system operate for a longer time and avoid un-
necessary maintenances. Such results are also suitable to the models when random
working times proposed in chapter 4 are considered.

In Chapter 6, the pause time goal of a generational garbage collector has been
selected to optimize tenuring and major collection times. The working schemes
firstly proposed by (Vengerov, 2009), which were supposed by estimating the life-
times of all objects, however, it would be more easier to estimate the survivor rate
of one group of objects using the statistical methods proposed in this chapter.

We have obtained many results analytically and numerically. It has been shown
in this dissertation that the optimal values are given by the unique and finite solution
of equations under some reasonable conditions. To understand the results easily, we
have given the numerical examples of each model, and have evaluated the results
for several parameters. If some parameters are estimated from actual data, we can
determine the best policy easily.
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