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Abstract

Computer systems have been required to operate normally and effectively, and also
hold high reliability as communication and information systems have been developed
and complicated. However, some errors often occur due to noises, human errors,
software bugs, hardware faults, computer viruses, and so on, and lastly, they might
become faults and incur system failures. To protect such faults, various kinds of fault
tolerant techniques such as the redundancy of processors and memories and the
configurations of systems have been provided. The high reliability and effective
performance of real systems can be achieved by the use of redundant techniques in
reliability theory.

Some faults due to errors may be detected after some time has passed. A system
consistency that may be lost by some faults should be restored by some recovery
techniques. The operation of taking copies of the normal state of the system is called
checkpoint. When faults have been occurred, the process goes back to the nearest
checkpoint time by rollback operation, and its re-execution is made, using a consistent
state stored in the checkpoint time.

An initial chapter gives the introduction which is constructed by redundant
techniques for improving reliability and achieving fault tolerance, failure detection and

recovery methods and the organization of Thesis. Chapter 2 proposes the checking
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model where the backup is carried out until the latest checking time when some failure
was detected. The expected cost is obtained by using the inspection policy in relidbility
theory and optimal policies, which minimize it for two cases of periodic and sequential
checking times, are derived.

Chapters 3 to 7 consider several checkpoint models when an original execution
time of one process or task is given, and discuss when and how to generate checkpoints
to reduce the total overhead of processes: Chapter 3 proposes two-level recovery
schemes of soft and hard checkpoints, and derives an optimal interval of soft
checkpoint between hard checkpoints. Chapter 4 adopts multiple modular redundant
systems as the recovery techniques of error detection and error masking, and derives
optimal checkpoint intervals. Chapter 5 considers the modified checkpoint model in
Chaptér 4 wheré checkpoints are placed at sequential times and error rates increase
with the number of checkpoints and with an original execution time. It is supported in
Chapters 6 that tasks with random processing times are executed successively, and two
types of checkpoints are placed at the end of tasks. Three schemes are considered and
are compared numerically. Chapter 7 proposes the extended checkpoint model where
error rates increase with the number of checkpoints as shown in Chapter 5.

The numerical examples are given in each chapter to understand the results easily.

The results are summarized in the end of thesis and future studies are described.
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Chapter 1

Introduction

In recent years, computers have been used not only to live our daily life, but also to
make and sell good products in industries. Most things have computers within them
and are moved by computers. Computers play more important role in a highly civilized
society. Especially, computer systems have been required to operate normally and
effectively as communication and information systems have been developed rapidly
and complicated remarkably. However, some errors due to noises, human errors,
hardware faults, computer viruses, and so on, occur certainty in systems. Lastly, those
errors might have become faults and incur system failures. Such failures have
sometimes caused a heavy damage to a human society and have fallen into general
disorder. To prevent such faults, various kinds of fault tolerant techniques such as the

redundancy of processors and memories and the configuration of systems have been



provided [12, 23, 42 ]. The high reliability and effective performance of real systems
can be achieved by fault tolerant techniques.

Partial data loss and operational errors in computer systems are generally called
error and fault caused by errors. Failure indicates that faults are recognized on the
exterior systems. Three different techniques of decreasing the possibility of fault
occurrences can be used [1]: Fault avoidance is to prevent fault occurrences by
improving qualities of structure parts and placing well surroundings. Fault masking is
to prevent faults by error correction codes and majority voting. Fault tolerance is that
systems continue to function correctly in the presence of hardware failures and
software errors. There techniques above are called simply fault tolerance into one
word.

Some faults due to operational errors may be detected after some time has passed
and a system consistency may be lost by them. Then, we should restore a consistent
state just before fault occurrences by some recovery techniques. The operation that
takes copies of the normal state of the system is called checkpoint. When faults have
been occurred, the process goes back to the nearest checkpoint time by rollback
operation [5, 14, 30], and its retry is made, using the copy of a consistent state stored in
the checkpoint time.

It is supposed that we have to complete the process of one task with a finite
execution time. A module is an element such as a logical circuit or a processor that
executes certain lumped parts of the task. Then, we consider the checkpoint models of

error detection and masking by redundancy, and propose their modified models. Using



reliability theory, we analyze these models and discuss analytically optimal checkpoint

intervals.

1.1 Redundant Techniques

High system reliability can be achieved by redundancy. A classical standard problem is
to determine how reliability can be improved by using redundant units. The results of
various redundant systems with repair were summarized as repairman problem, and
optimization problems of redundancy and allocation subject to some constrains were
solved and qualitative relationships for multicomponent structures obtained [2].
Further, some useful expressions of reliability measures of many redundant systems
were shown [3, 40]. The fundamentals and applications of system reliability and
reliability optimization in system design were well described [9]. Various
combinatorial reliability optimization problems with multiple constrains for different
system structures were considered [38] and their computational techniques were
surveyed [13].

Redundancy techniques of a system for improving reliability and achieving fault

tolerance are classified commonly into the following forms [1, 12, 23]:

(1) Hardware Redundancy



(a) Static hardware redundancy is fault masking technique in which effects of
faults are essentially hidden from the system with no specific indication of
their occurrence. Existing faults are not removed. A typical example is
triple modular redundancy.

(b) Dynamic hardware redundancy is fault tolerance technique in which the
system continues to function by detection and removing faults, replacing
faulty units, and making reconfiguration. Typical examples are standby
sparing system and graceful degrading system [6].

(c) Hybrid hardware redundancy is a combination of the advantages of static
and dynamic hardware redundancies.

(2) Software Redundancy
This technique is to use extra codes, small routines or possibly complete
program to check the correctness lor consistency of the results produced by
software. Typical examples are N-version programming and Ad-Hoc
technique.

(3) Information Redundancy
This technique adds redundant information to data to allow fault detection,
fault masking, and fault tolerance. Examples are error-detecting codes such
as parity codes and signatures, and watchdog processor.

(4) Time Redundancy
This technique is the repetition of a given computation at a number of times

and the comparison of results. This is used to detect transient of intermittent



faults, to mask faults and to recover the system. Typical examples are
retries and checkpoint schemes.
Redundancies (1), (2) and (3) are also called Space Redundancy because high
reliability is attained by providing multiple resources of hardware and software.
In this thesis, we take up several checkpoint schemes for redundant modular

systems as recovery techniques.

1.2 Failure Detection and Recovery

Methods

It is important to know useful techniques for failure detection because most systems
have become larger and more complex. Actually, several methods. to detect failures
have been proposed: O’Connor [24] surveyed widely the techniques related with tests
for electronic circuits. Lala [11] summarized fault-tolerant design techniques with
self-checking of digital circuits.

The methods of self-checking which involves fault-secure and self-testing are
required to design high reliable systems. Fault-secure means that a failed system
outputs codes except an assumed output code space. Self-testing means that a failed

system outputs codes except an assumed code space for at least one input code.



Another method for systems such as digital circuits is the comparison-checking
with outputs of double modular systems: Two modules execute the same process and
compare two states at checkpoint times. If two states of each module do not match with
each other, this means system failure. One extending system is a majority decision
system, i.e. , an (n+1)-out-of-(2n+1) system as an error masking system. If (n+1) or
more states of (2n+1) modules match, the system is correct.

On the other hand, when the logical consistency is lost by failures, the following
two operations of process recovery are performed: One is forward recovery which
keeps running forward in a fault status without backward. Such method is applied to
real time systems as weather satellite's picture and to forward the voice of IP telephony
system. The other is backward recovery which goes back before failure occurrence.

Typical three methods are usually used [1, 10, 12, 23]:

(a) Retry Recovery Method
Retry recovery method is very popular and easily method: If a fault occurs,
the procedure of retry is made immediately. But if the fault changes an
original data, the retry fails. This method is used for hard disk read,
memory read, and so on.

(b) Checkpoint Recovery Method
This is the most general method of backward recovery system. This method
records system states which need to run continually the process at suitable

intervals. If a fault is detected at some checkpoint, the process goes back to



(c)

the latest checkpoint. It is very important to determine the interval times of
checkpoints. If we generate checkpoints at short intervals, their overheads
are large. So that, the system performance becomes low. But, if some error
is detected in the process, the process goes back to near checkpoint and is
re-executed. In this case, the re-execution time is small. On the other hand,
if we generate checkpoints at long intervals, their overheads are small. So
that, the system performance becomes high. But, if some error is detected in
the process, the process goes back to far checkpoint and is re-executed. In
this case, the re-execution time is large. Therefore, it is one kind of trade-off
problem to generate checkpoint intervals. We study about optimal
checkpoints intervals in this thesis.

Journal Recovery Method

Journal recovery method is an easy method, but, it needs a longer time than
above two methods when a failure occurs. This method records an initial
point state and records all of transactions about changing data. If a failure
occurs, the process is re-executed from initial data and all transactions. So

that, this method needs a longer time than above two methods.



1.3 Outline of Thesis

This section describes the outline of this thesis. This thesis is divided into Introduction,
Chapters 2-7, Conclusions and Bibliography.

Chapter 2 considers a modified inspection model in reliability theory: When some
failure is detected, the backup operation is carried out until the latest checking time.
The expected cost from the failure detection to the latest checking time is obtained.
Optimal policies, which minimize the expected cost rates for two cases of periodic and
sequential checking times, are analytically discussed. Modified models where the
operation time is finite and some fault remains hidden and proposed.

Chapter 3 considers a two-level recovery scheme of the checkpoint model with soft
and hard checkpoints: Soft checkpoint is less reliable and less overhead than hard
checkpoint, and is set up between them. The total expected overhead during the
interval of hard checkpoints is obtained, using Markov renewal processes, and an
optimal policy which minimizes it is discussed. A numerical example shows that a
two-level scheme can achieve a good performance.

Chapter 4 considers multiple modular redundant systems of error detection and
error masking on a finite process execution when checkpoints are placed at periodic
times. The mean times to the completion of the process are obtained, using renewal
equations, and optimal checkpoint intervals which minimize them are discussed

analytically. It is shown numerically what a majority decision system is optimal.



Chapter 5 adopts a modular redundant system on a finite process execution when
checkpoints are placed at sequential times. Two checkpoint models where error rates
increase with the number of checkpoints and with an original execution time are
considered. The mean times to the completion of the process are obtained, and optimal
checkpoint intervals which minimize them are computed numerically by solving
simultaneous equations. Further, an approximation method is proposed.

Chapter 6 considers a double modular system when tasks with random processing
times are executed successively. Two types of checkpoints such as compare-checkpoint
and compare-and-store-checkpoint can be placed at the end of tasks. The mean
execution times per one task for three schemes are obtained, and optimal policies
which minimize them are discussed analytically. Extended models with majority
decision modules and a spare module are proposed. |

Chapter 7 considers the random checkpoint model with increasing error rates. The
mean execution times per one task for three schemes are obtained, and optimal policies
which minimize them are derived analytically. It is shown numerically that what a
majority system is optimal

Finally, Chapter 8 summarizes the results derived in this thesis and presents some

future studies.






Chapter 2

Checking Time of Backup Operation
for a Database System

When a failure occurs in the process of a database system, we execute the rollback
operation until the latest checking time and make the recovery of database files. This
chapter proposes a modified inspection model where the backup is carried out until the
latest checking time when some failure was detected. The expected cost until the backup
operation is made to the latest checking time is derived, and optimal policies, which
minimize it for two cases of periodic and sequential checking times, are analytically
discussed. Some further modified models where the operating time is finite and a fault

remains hidden are proposed.
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2.1 Introduction

Most units in standby [39, 16] and in storage [7, 15] have to be checked at planned times
to detect failures. Barlow and Proschan [2] summarized such inspection policies which
minimize the total expected cost until a failure detection. All inspection models have
assumed that any failure is known only through checking and summarized in [17]. But,
when a failure was detected in the recovery technique of a database system, we execute
the rollback operation until the latest checkpoint [5, 31] and reconstruct the consistency
of a database. It has been assumed in such models that any failures are always detected
immediately, however, there is a loss time or cost associated with the lapsed time of
rollback operation between a failure detection and the latest checkpoint.

Further, this model would be applied to the backup policy for hard disks [32, 33]:
There is a variety of files in the disk, however, they may be sometimes lost due to
human errors or disk failures. To prevent such events, backup files are made at suitable
times, which are called a backward time. When failures have occurred, we can make
the recovery of files at each backward time.

From the practical viewpoints of database recovery and backup files, we propose
the following backup operation model which is one of the modified inspection policies:
When some failure of a unit was detected, we carry out the backup operation to the
latest checking time. In such a model, we do not wish to provide checks much

frequently, and on the other hand, we wish to avoid a long elapsed time between a
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failure detection and the checking time. It would be an important problem to determine
an optimal checking schedule of this model.

By the similar method to that of the usual inspection model [17], we derive the
total expected cost until the completion of backup operation after a failure detection,
and discuss optimal checking times which minimize it for two cases of periodic and
sequential policies. We give numerical examples when failure times of a unit have a
Weibull and uniform distributions.

Further, we consider the case where a unit has to be operating for a finite interval.
The expected cost is obtained, and an optimal checking time which minimizes it is
numerically computed. Finally, the expected cost per unit of time and the availability
are also derived. We propose one modified model where a fault occurs and is hidden,

and after that, a failure occurs, and obtain the expected cost.

2.2 Expected Costs

Suppose that the failure time of a unit has a general distribution F(¢) with a finite mean
U= f F (t)dt , Where F(f)=1-F(f). The checking schedule of a unit is made at
successive times Ti(k=1, 2, ***) where 7¢=0. Let ¢; be the cost required for each check.
Further, when a failure was detected between T} and Tj+;, we carry out the backup

operation to the latest checking time 7. This incurs a loss cost ¢, per unit of time (Figure

2.1).
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Figure 2.1: Process of sequential checking times T.

The total expected cost until a failure is detected and the backup operation is made

to the latest checking time is, using the theory of inspection policy [2],

L=y, [V +ele-T,HF@)

k=

S

[cl — ¢, (T, _Tk-l)]F(Tk)*‘/Ucr (2.1)

NgE

=~
1l

1

If a unit is checked at periodic times k7(k=1, 2, -**) then

C\(T)=(c, =, 7)Y F(kT)+ pec,. (2.2)
k=1

Next, we obtain the expected cost per unit of time for an infinite time span. Since
the mean time of backup operation from a failure detection to the latest checking time

is

S [ @~ T,)dF @),

k=0 "k
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the expected cost rate is given by

C](TlaTZa"')

CaTsTyprer) = ——
eI G ALIG

CIZ/:O:lF—(Tk)_:ch

= i = +c,. (2.3)
21 = (L =T DFT)
If a unit is checked at periodic times k7 (k=1, 2, --) then
® F(kT)- pc
(:2(T)=C‘Zk=l (T )~ s, (2.4)

—— +c,.
2u-TY " F(kT)

2.3 Optimal Policies

We discuss optimal checking times 7, k* which minimize the expected cost Ci(71, T2, ***)
in (2.1). Let f{t) be a density function of F(¢), i.e., A{f)=F'(f). Then, differentiating C (7,

Ty, ") with respect to T and setting it equal to zero, we have

G

F(T}Hl)_F(T}() =T;(—Tk_, _ 1 (k=1,2,) (25)
ST €

Thus, we can determine the optimal checking times T,', using Algorithm 1 of [2].

In the periodic inspection case, from (2.2), we have
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€,(0) = limC,(T) = o,
Ci(o) = ;i_l:llcl(T) = HGy.

Hence, we have
Cy ()= C(T)=(c,T - )Y F(kT).
k=1

Thus, there exists an optimal checking time 7; (¢, /c, <7, < ) which minimizes Cy(7),
and
Ci(c,/cy)=C () = e, .

Further, differentiating C1(7) in (2.2) with respect to T and setting it equal to zero imply

SRR
P70 20

In the case of F(r)=1—e ¥, Equation (2.6) is

c
T - =1, 2.7
o @.7)

It can be easily seen that the left-hand side of (2.7) is strictly increasing from 0 to co.

Thus, there exists a finite and unique T," which satisfies (2.7), and the resulting cost is
C(T)=c1 —c,. (2.8)

Since e® % 1 + a + a” / 2 for small a > 0, the optimal checking time is approximately

given by

and T1* > Tl
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We can compute an optimal schedule which minimizes Co(7}, 75, ***) in (2.3), using

the algorithm 2 of [2]. When F(H)=1—¢ ™, Equation (2.4) is

ce —c,(1-e)/2
C,(T)=- 2 +c,» 2.10
O = e e T (10)

and
)
C2(0)=°o, C2(00)=?

Differentiating (2.10) with respect 7 and setting it equal to zero,

T-(-e¢*)/A _¢
R ¢,

2.11)

It can be easily seen that the left-hand side of (2.11) is strictly increasing from 0 to co.
Thus, there exists a finite and unique T , which satisfies (2.11). By comparing (2.7) and

(2.11), it can be shown that T\ < Ty, and it is approximately

2
T=54 (f‘—] 2 (2.12)
¢ ¢ Ac,

2.4 Finite Interval

Suppose that a unit has to be operating for a finite interval (0, S ] (0 < S < ), and is
replaced at time S=Ty [17]. The other assumptions are the same as those of the previous

model. Then, the total expected cost before replacement is
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CN=y. [k +e,e~T,0F@)+¢, N-DFT,) (N=12,-). (2.13)
k=0 T*

Putting that 0C3(N)/ 0T=0, we have (2.5), and the resulting minimum expected cost is

Cy(N) = C;(N) +, —c, [ F(rydr

=

= 3 [e; =, (T — T )]ﬁ(Tk )- (2.14)

0

bl
]

For example, when N=3, the checking times 7 and 7, are given the solution of

simultaneous equations

FS)-FT) . . e
f(T) r Cz’

FU)-F@) _, o
S(T) ¢

and the expected cost is
C,(3) =c¢, —c,T, +[e, — ¢, (T, ~T)|F(T) +[c, — ¢, (S —~T)|F(T).
From the above discussions, we compute 7i(k=1, 2, -, N—1) which satisfies (2.5),
and substituting them into (2.14), we obtain the expected cost C3(N). Next, computing
C3(N) for all N> 1, we can get the optimal checking number N and times Tk*(k =1, 2,

- N*).
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2.5 Numerical Examples

We compute the optimal checking times nﬁmerically when the failure time has a

Weibull distribution for the periodic checking time, and when the failure time has a

Weibull distribution and a uniform distribution for the sequential checking one.
Suppose that F(f)=1—exp[—(4)*] (a. > 1). Then, from (2.6), an optimal time 7" is

given by a solution of the equation

o _—-(T)*
Zk=1 © _&

Ak T e

Table 2.1 presents the optimal checking times Ty for a=1.0, 1.5,2.0, 2.5, 3.0 and ¢,/c,=5,
10, 20, 30, 40, 50 when 1/2=500. Note that when o=1, this corresponds to an exponential
case. Approximate times 7; in (2.9) give a good lower bound for T\" for a=1. This
indicates that the optimal times become longer as ci/c; are large, however, they are

changed little as the values of parameter a increase for a > 1.
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Table 2.1: Optimal checking times T:" to minimize Cy(7)

when F(f) = 1 — exp [~(#/500)%].

ciley
a
5 10 20 30 40 50

1.0 7242 103.45 148.42 183.81 214.27 241.59
1.5 67.40 9550 135.53 166.49 192.78 216.11
2.0 66.57 94.14 133.13 163.06 188.28 210.50
2.5 66.59 94.16 133.08 162.89 187.96 210.09
3.0 66.82 9448 133.57 163.51 188.71 210.87
T: | 70.71 100.00 141.42 17321 200.00 223.61

Table 2.2 gives the optimal checking schedule {Tk*} which satisfies (2.5), and
8=Ti+) —Ti when F(t)=1—exp[—-(/1t)2] for ¢1/c,=10, 20, 30. It is roughly seen that the
periodic intervals are almost the same value as d,, i.e., the interval between the first and

second checking times. Each checking time becomes longer as c¢;/c; are large.

Next, suppose that the failure time is uniformly distributed during [0, S ] (0 <S <

), i.e.,
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for 0<¢t<S,

f@)=
0 for > 8.

Then, Equation (2.5) is rewritten as

4
=T, +5=T, -1,

2

which is equal to that of [2]. For example, when S=1000 and ¢;/c,=20, we have that
'N=10 since N(N-1) < 2,8 / ¢;= 100 [2], and T} = {100, 360, 510, 640, 750, 840, 910,
960, 990, 1000}. These values are a little larger than those in Table 2.3 for £&=2, 3, -, 9
when N=10. It would be trivial in the case of a uniform distribution that the optimal
schedule is equal to that of the standard inspection model [17].

Table 2.3 gives the checking times Ty (k=1, 2, -+, N) and the expected cost C3(N)
for S=1000 and ¢;/c,=20 when F(t)=1—exp[—(t/500)2]. Comparing C3(N) for N=1, 2, -,
10, the expected cost is minimum at N=9. That is, the optimal checking number is
N'=9 and optimal checking times are 183.56, 319.94, 436.78, 542.25, 640.21, 732.98,
822.41, 910.45 and 1000. These optimal times are almost the same ones in Table 2.2
for ¢1/¢;=20.

Table 2.4 gives T} and the expected cost C3(N) for S=500 and the same parameters in
Table 2.3. In this case, the optimal checking number is N*=4 and optimal checking times
are 174.82, 302.60, 408.84, 500. All checking times in Table 2.4 are smaller than those

in Table 2.3 for the same number MN.
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Table 2.2: Optimal checking times Ti to minimize C (T}, Ta, =*) and

85=Te ~T,' when F(f)=1-exp[~(t/500)?].

ci/c=10 ci/c2=20 c1/c2=30

‘ Ty Sk i Sk T Sk

1 145.04 107.24 | 183.23 136.06 | 211.09 157.44
2 252.28 91.62 | 31929 11643 | 368.53 135.06
3 343.90 82.54 | 43572 104.90| 503.59 121.86
4 426.44 76.49 | 540.92 97.09 | 62545 112.86
5 502.93 7220 | 637.71 91.40 | 738.29 106.13
6 575.13 69.12 | 729.11 87.15| 84442 100.88
7 | 644.25 67.03 | 816.26 84.06 | 945.30 96.61
8 711.28 65.90 | 900.32 82.17 | 1041.91 93.04
9 777.18 65.89 | 98249 81.92 | 1134.95 89.99
10 843.07 1064.41 1224.94
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Table 2.3: Checking times 7} and the expected cost Cs(N) for N=1, 2, -+, 10 when

S$=1000, c1/c2=20 and F(t)=1—exp[—(#/5 00)*].

N
k 1 2 3 4 5
1 1000 35824 27074 231.15  209.68
2 1000 51875 42095  373.79
3 1000 623.89  529.76
4 1000 703.78
5 1000
’ |
7
8
9
10

CsNYe, | —17.95 —213.82 —273.18 —299.18 —312.05
k N |

6 7 8 9 10

1 19727 190.00 18583  183.56  182.43
2 347.79 33293 32451 31994  317.68
3 48350 45825 44427 43678  433.10
4 618.15 57618 55393 54225  536.58
5 769.00 69431 65835 64021  631.54
6 1000 82400 761.87 73298  719.61
7 1000 87082 82241 80136
8 1000 91045  876.46
9 1000 943.53
10 1000

CyNYea | —318.61 —321.85 —32328 —-323.73 —323.67
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Table 2.4: Checking times T and expected cost C3(N) for N=1,2, -, 7

when S=500, c¢1/¢;=20 and Fi (t)=1—exp[—(t/500)2].

N
k
1 2 3 4 5 6 7

1 500 263.71 201.84 174.82 162.01 156.55 15533

2 500 357.26 302.60 277.67 267.21 264.87

3 500 408.84 369.89 353.91 350.37

4 500 443.77 421.41 416.49

5 500 470.32 463.88

6 500 491.91

7 500
Cs(NYlcy | -176.58 -264.10 -280.93 -282.10 -277.75 -271.19 -263.89

2.6 Concluding Remarks

We have considered the recovery model where we carry out the backup operation to the
latest checking time when a failure was detected, and have discussed the optimal

policies which minimize the total expected cost or the expected cost rate, using the
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techniques of inspection policies. Further, we have computed numerically the optimal
checking time when a unit should be operating for a finite interval when the failure time
has a Weibull distribution. These techniques would be applied to other backup models of
a database system [25] and the reliability model with backward time [21].

It is more useful in some systems to adopt the availability than the expected cost as

an appropriate objective function. If £ is the time for one check then the availability is

Mean operating time
AT, T-) pereTe

~ Mean timeuntil the complection of backup operation

- H __ | 2.15
26= va(B+ T ~TDET) =

Thus, the optimal policy which maximizes the availability corresponds to the policy
which minimizes the expected cost C(7,73, ) in (2.1) by replacing ¢; = f; and ¢; = 1.

Finally, we consider the following model as one of modified ones: A fault occurs
between the j-th and the (j+1)-th checking times according to a general distribution
F(f) with a finite mean y, and is hidden. After that, a failure occurs between the k-th
and the (k+1)-th checking times and is detected immediately, and the time from the
occurrence of a fault to the failure detection obeys a general distribution G(x) with
mean 6. This is called a fault latency [34]. When a failure was detected, we carry out
the backup éperation to the j-th checking time. Then, the expected cost until a failure is

detected and the backup operation is made to the j-th checking time is
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C(T Ty ) =Y 4 ﬁ {f [ke, + ¢, (x— T)]d.F(t)}dG(x )
+i f' {_E[]cl+c2( )}i.F(t }de ~1)

= i f” {ki f [kc, +c, (x T, )]dG (x- t)}dF( 1)
DI ([T, + 67 G-

:clif“{j+ iG_(Tk—t)deF(tﬂczzf O+t— T]dF

k=j+1 =0 /

- =][ fG —t)dF(t]+c2{y+9 ZT[ Tk+l)]}'

(2.16)

If a faults is not hidden and is detected immediately, i.e., G(x)=1 for x>0 and 6=0, this
corresponds to the previous model and Equation (2.16) agrees with (2.1).

Further, suppose that f{f) and g(x) are density functions of F(f) and G(x),
respectively. Then, differentiating C4(T", T3, ) with respect to 7 and setting it equal

to zero,

(T =T (L) [FT)-FT) _ e 2.17)
f‘ (T, —t)F (1) ¢

Thus, using Algorithm 1 of [2], we can compute the optimal checking time

numerically for specified distributions F(#) and G(x).
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Chapter 3

Checkpoint  Interval for Two-Level
Recovery Schemes

It is important to design computer systems to tolerate some failures. This‘chapter
proposes two-level recovery schemes; soft checkpoint (SC) ‘and hard checkpoint (HC)
which are useful to recover from failures. Soft checkpoint is less reliable and less
overhead than those of HC, and is set up between HCs to reduce the overhead of the
process. The total expected overhead of bne cycle from HC to HC is obtaz'ned, using
Markov renewal processes, and an optimal interval which minimizes it is computed. It
is shown in a numerical example that a two-level recovery scheme can achieve a good

performance.
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3.1 Introduction

In computer and database information systems, some errors often occur due to noises,
human errors, software bugs and hardware faults, and make these systems inherently
unreliable. In such cases, it is important to restore a consistent state by rollback
recovery techniques. Checkpoint 1s the most efféctive recovery mechanism which
stores a consistent state in the secondary storage at suitable times. Even if failures

occur, the process goes back to the latest checkpoint and can resume its normal
operation [5, 12, 30]. Ling et al. [14] made a good survey of such checkpoint
problems.

Vaidya [41, 42] considered two-level recovery schemes in which N-checkpoint can
recover from several number of failures, and I-checkpoint is taken between
N-checkpoint and can recover from only a single failure. He presented an analytical
approach for evaluating the performance of two-level schemes, using a Markov chain.
Further, Ssu et al. [36] described an adaptive protocol that manages the storage for
base stations in mobile environments, where soft checkpoint is saved in a mobile host,
e.g., in a local disk or flash memory, and hard checkpoint is saved in a base station.
Soft checkpoints will be lost if a mobile host fails, however, hard checkpoints can
survive but have higher overheads since they must be transmitted through the wireless

channels.
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This chapter considers two-level recovery schemes based on the proposed scheme
[41]: Soft checkpoint (SC) and hard checkpoint (HC) which are useful to recover from
only one failure and several failures, respectively. SC are set up at periodic intervals
between HC, and are less reliable and less ovérhead than those of HC. We discuss an
optimal checkpoint interval of SC when HC are placed on the beginning and at the end
of the process. The total expected overhead of one cycle from HC to HC is obtained,
using Markov renewal processes [27], and an optimal interval which minimizes it
numerically computed. It is shown in a numerical example that two-level schemes

reduce the total overhead of the process.

HCo SC1 SCa SCs = ===~-- SCN—l HCN

« T—sf— T——T— —T—
S .

L 3

Figure 3.1: Soft checkpoints between hard checkpoints.

3.2 Two-Level Recovery Schemes

Suppose that S is an original execution time of one process or task which does not

include the overheads of retries and checkpoint generations. Then, to tolerate some
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failures, we consider two different types of checkpoints:

4.

5.

Soft checkpoint (SC) can recover from some kinds of failures and its overhead is
small.
Hard checkpoint (HC) can recover from any kinds of failures and its overhead is
large.

We propose the two-level recovery scheme with the following assumptions:
The original execution time of one process is S (0 < S < ). We divide S equally
into N time intervals where 7' = S/N, and take (N —1)SC every at times kT (k= 1,
2, -+ ,N—1), and two HC at time 0 and time N7, i.e., SC;, SCy, -**, SCy- are set
up between HCy and HCy (Figure 3.1).
Failures of the process occur at constant rate A (1 > 0), i.e., the process has a
failure distribution F (=1-e¢*and F ()=1-F()=e ™
If failures occur between HCj and SC;, then the process is rolled back to HCy and
begins its re-execution. If failures occur between SC; and SC;; (=1, 2, -, N-1),
then the process is rolled back to SC; where SCy = HCy:
(a) The process can recover from failures with probability ¢ (0 < ¢ < 1) and

begins its re-execution from SC; .
(b) The process cannot recover with probability 1 — ¢, and further, is rolled back
to HCy and begins its re-execution.

If there is no failure between SC; and SCj+ (j =0, 1, -, N—1) where SCy = HC,,

the process goes forward and begins its execution from SCj;.

The process ends when it attains to HCy;
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3.3 Performance Analysis

We define the following states of the process:
State 0: The process begins to execute its processing from HCy.
State j: The process begins to execute its processing from SC; (j =1, 2, -, N—1).

State N: The process attains to HCy and ends.

Figure 3.2: Transition diagram between states.

The process states defined above form a Markov renewal process [27] in which
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State N is an absorbing state. All states are regeneration points and the transition
diagram between states is shown in Figure 3.2. Let Qi(H) (i, j =0, 1, 2, =, N) be
one-step transition probabilities of a Markov renewal process. Then, by the similar
method of Yasui et al. [43], mass functions Q;(¢) from State i at time O to State ; at

time ¢ are

O () = [ F)dD () G.1)
0, ()= [ Fu)D() (=0L-N-1), (32)
0,()=q [ FdD() (G=0L~N-1), (3.3)
0,0(t) = (1-q) | F(u)dD(w) (j=0L-N=1), (3.4)

where D() is a degenerate distribution placing unit mass at T, i.e., D(f) = 1 for t > T,
and O forr < T.
Further, let ¢(s) be the Laplace-Stieltjes transform of any function @(¢), i.e.,
o(s) = J:e's’ddi(t) for s > 0.

Then, the LS transforms of Q;(¢) are, from (3.1) — (3.4),

Goy(5) =T F(T), 35
quls) =" F(T) (G=0L--N-1, GO
q,(s) =e*TgF(T) (=0L-N-1, BT
q,0(s) =e™"(1-q)F(T) (j=0L---N=1).  (3.8)

Denoting Hon(f) by the first-passage time distribution from State 0 to State N, its
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LS transform is given by

b (5)= g0 (5)-026)_ Twans)

1-g; ( ) 1_qN—lN—l(S)

+{q00 (s)+ f[qm(S)lf‘;(f()s)xM — q,,( )}} W6 69

J=1

To simplify equations, we put that g0 = ao(s), g;(s) = ai(s) and gj+1(s) = ax(s). Then,
we easily have that ggo(s) = ao(s) + ai(s) and a¢(0) + a;(0) + a»(0) = 1. Using these

notations and solving (3.9) for Zgn(s),
N-1
a9, (S)
] i

e R

It is evident that on(0) = 1. Thus, the mean first-passage time from State 0 to State N is

N-1 — ) J=(N-1) )
T)Fo[l_qp (7) (V=12,). (3.11)

Moreover, the LS transform of the expected number of returning to State 0 is given

by a renewal equation

n:lH (S) = I:qoo (S) qu( ) q‘;l(l ()S) X 1 ij;fls(.)g)][l +my (S)] (3.12)

Solving this equation and arranging it,
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0,5+ a(5)+a( )[ .s) ]

1- a

m, (s)= e (3.13)
3| a
1 2
a0 -a bS] 40T
Thus, the expected number of returning to State O is
M, = lsiir}) m, (s)
N-1
AL lEr0)
— Y (v=12,). (3.14)
F(7)
F(T
1-gF (T)

Note that My represents the expected number of rollbacks to HC until the process ends.
Next, we compute the expected number of rollbacks to SC. The expected numbers
of returning to State j when the process transits from State j to State j + 1 and State 0

are, respectively,

’] [q,, ]q/m() [1 qj-j( )]2’

=z f qjj()qjo(s
;[q,j ) 9,0 [1 R

Thus, the LS transform of the expected number of returning to State j (j =1, 2, -, N—1)
is

m S__N_l s q12(s) oeex qf—lj(s) qg(s)[qjyn(s)"'qj'o(s)]
S()—;qm()l—q”(S) l—qj_]j_l(s) | [1_qﬂ(s)]2
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N qoo(s)+§q0](s)lq]2(s) . qj._]j(s) q,/o(S) Jms(s).

“‘hl(s) 1—‘11—1;-1(5)1_%7(5)

(3.15)
Solving this equation,
) a, (S) N-1
a, (S)az (S)[ao (S)+ a, (S)] 1 I:l —4 (S)jl
m,(s) = 1-a,(s) 1-a,(s)-a,(s) . (3.16)

az (S) N-1
1_.
1= a,(5)- a,()- a4, (s)a s) I.E Ef)l'—(?}(s) |

Therefore, the expected number of returning to State j =1, 2, -, N—1)is, for 0 <¢g <

1,
1{ F(T) j”"
M, =limm,(s)=—2 1:‘]F(T L (V=1,2, ), (3.17)
0 I-¢q F(T)
1-gF(T)
and forg=1,
_(W-DF(1) 1 9 .
M, = 0 (N=1,2, ). (3.18)

Note also that My represents the expected number of rollbacks to SC until the process

ends.
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3.4 Expected Overhead

Assume that the overheads for rollbacks to HC and SC are Cy and Cs (Cs < Cp),

respectively, and Cr for setting up one SC. The other overheads except Cy, Cs and Cr

would be neglected because they are small. Then, the total expected overhead is, from

(3.11), (3.14), and (3.17),

C,(N)=1l,, +C, M, +C;M +(N-1)C, =S

T+C, +[T+qF(T)C, ]ﬁ(l_i@— |

J=1

ol )

(N=1,2, =),

where note that Z(}=l = (0. In particular, when N=1, i.e., SC is not set up,

_S+C,F(S)

(l(l) jycg)

When g =1, i.e., SC can recover from all failures,

C(N)= S+F(T)[(1,;_,,(;)(N—1)CS]+(N_1)CT _s,

and when g = 0, i.e., SC cannot recover from any failures,
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c,(N)=1“_[F(T)]N( 4 +CHJ+(N—1)CT—S. (3.22)

HC, SCi SC, HCy SCh+1 SCoy-1 HCuy

| | | |
© 2 I 1, - I"Tz+

Figure 3.2: Soft checkpoints between three hard checkpoints.

Next, we divide S equally into 2N time intervals where T, = S/(2N) (N=1, 2, -),
and set up three HCs at time 0, NT5, 2NT5, and SCs every at time kT except for k=0, N,
2N (Figure 3.2). Then, by the similar method of obtaining C(N) in (3.19), the total

expected overhead is

rTQ +C, +[T, + F(Tz)cs]f _F(L) j
C,(NV)=2: - i T )F‘ Ll_]_ 4F (7, )J +NC, ¢
k F(Tz)[l—sz(Tz)} | J

(N=1,2, ). (3.23)
Generally, when we divide S equally into kN time intervals where T3=S/(kN), and

set up HCs at times AN (&=0, 1, 2, -*) and SCs between HCs, the total expected
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overhead is

1, vcy ol var e S EE)
Ck(N)=k< - I F(T )f=1 [Il—l'"qF(Tk ):| +NC, b
L F(Tk)[l—szTk)} )

(N=1,2, ", k=1,2, ). (3.24)

3.5 Numerical Examples

We compute an optimal number N of SC which minimizes the total expected

overhead C(N). Since F(¢) = 1-e ™ and T=S/N, Equation (3.19) becomes

1S S N-1 oSN Y
24 2C, +| =+ gll-e N aC }
v et [

-AS/N N-l
e~ ASIN €
'[l—ql—e"‘w }

- AC, +(N-1)AC, - AS (N=1,2, ). (3.25)

AC,(N)=

Table 3.1 gives the optimal number N for q =0.0,02, 04, 0.6, 0.8, 1.0 and ACr
=0.0001, 0.0005, 0.001, 0.005 when AS = 0.1, ACx = 0.001 and ACs = 0.0002. For
example, when ¢ = 0.8 and ACr = 5 x 107*, the optimal ‘number is N = 4 and the
resulting overhead is AC1(4) = 4.866 X 1073 , I.e., we should take 3SCs between HCs. It

is evident that optimal N " decrease and their overheads Cy(N ") increase as the overhead
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Table 3.1: Optimal number N” and total expected overhead AC;(N*) when AS = 0.1,

ACH=0.001, ACs = 0.0002.

ACr=1x10"* ACr=5x10" | iCr=1x1073 ACr=5x%1073
g | N° 2C(VHx10° | N° ACi(NH*10° | N© AC(NH*10° | N° AC; (V) x10°
00| 7 6.629 3 8.039 2 8.927 1 10.622
021 8 5.687 4 7.280 3 8.312 1 10.622
0419 4.746 4 6.470 3 7.588 1 10.622
06| 9 3.803 4 5.665 3 6.868 | 1 10.622
08110 2.867 4 4.866 3 6.151 1 10.622
1.0 10 1.933 5 4.056 3 5.437 2 10.189

Cr increases. This also indicates that N increase as q increase, because SC becomes
useful to recover from failures. Further, the overhead of two-level schemes is smaller
than that of one-level scheme in the case of N = 1. From this example, two-level
recovery schemes would achieve better performances as compared to one-level
scheme.

We give the optimal number N which minimizes Ci(N) in (3.24) when 1S=0.1,
ACp=0.0003, 1Cs=0.0002, AC7=0.0001 and ¢=0.8 in Table 3.2. We find the optimal

number k=2 and N'=5.
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Table 3.2: Optimal number N and total expected overhead ACk(N*) when 15=0.1,

ACy=0.0003 , ACs=0.0002, AC=0.0001, g=0.8.

k N ACHN)
1 9 0.1032
2 5 0.1030
3 3 0.1031
4 2 0.1034
5 2 0.1036
6 2 0.1039
7 1 0.1042
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3.6 Conclusions

We have taken two types of checkpoints as the fault tolerance technique of recovery
mechanism and obtained the total expected overhead of one cycle from HC to HC,
using Markov renewal processes. Further, we have computed numerically the optimal
interval of SC between HC which minimizes the total overhead. It has been shown in a
numerical example that two-level recovery schemes would be more useful to recover
from failures. Moreover, by making suitable modification and further extension, this
model would be applied to storage management in mobile environments [36], and

other computer and database information systems.
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Chapter 4

Checkpoint Intervals for Error Detection
by Multiple Modular Redundancies

This chapter considers multiple modular redundant systems as the recovery techniques
of error detection and error masking on the finite process execution, and discusses
analytically optimal checkpoint intervals. Introducing the overheads of comparison
and decision by majority, an error occurrence rate and a native execution time of the
process, we obtain the mean times to the completion of the processes for multiple
modular systems, using renewal equations, and derive analytically optimal checkpoint
intervals which minimize them. Further, it is shown numerically that what a majority

decision system is optimal.
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4.1 Introduction

In computer systems, some errors often occur due to noises, human errors, hardware
faults, and so on. To attain the accuracy of the computing, it is important to detect and /or
mask such errors by fault tolerant computing techniques [4, 12].

This chapter considers the redundant techniques of error detection and error
masking on a finite process execution. Firstly, an error detection of the process can be
made by two independent modules where they compare two results at suitable
checkpoint times. If their results do not match with each other, we go back to the
newest checkpoint and make a retrial of the processes. Secondly, a majority decision
system with multiple modules is adopted as the technique of an error masking and the
result is decided by its majority of modules. In this case, we determine numerically
what a majority system is optimal.

In such situations, if we compare results frequently, then the time required for
rollback could decrease, however, the total overhead for comparisons at checkpoints
would increase. Thus, this is one kind of trade-off problems how to decide an optimal
checkpoint interval.

Several studies of deciding a checkpoint frequency have been discussed for the
hardware redundancy above. Pradhan and Vaidya [29] evaluated the performance and
reliability of a duplex system with a spare processor. Ziv and Bruck [44, 45]

considered the checkpoint schemes with task duplication and evaluated the
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performance of schemes. Kim and Shin [8] derived the optimal instruction-retry period
which minimizes the probability of the dynamic failure on the triple modular redundant
controller.

This chapter considers a double modular fedundancy as redundant techniques of
error detection and summarizes the results [19, 20]. Next, we consider a redundant
system of a majority decision with (2n+1) modules as an error masking system, and
compute the mean time to completion of the process and decide numerically what a

majority system is optimal.

4.2 Multiple Modular System

Suppose that S is a native execution time of Athe process which does not include the
overheads of retries and checkpoint generations. Then, we divide S equally into N
parts and create a checkpoint at planned times k7(k=1, 2, -, N—1) where S=NT
(Figure 4.1).

To detect errors, we firstly provide two independent modules where they
compare two results at periodic checkpoint times. If two results agree with each
other, two processes are correct and go forward. However, if two results do not
agree, it is judged that some errors have occurred. Then, we make a rollback
operation to the newest checkpoint and a retry of the processes. The process

completes when two processes are succeeded in all intervals above.
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T 27 3T (N-)T ~ NT

|

Figure 4.1: Checkpoint intervals.

Let us introduce a constant overhead C, for the comparison of two results. We
neglect any failures of the system caused by common mode faults to make clear an
error detection of the processes. Further, it is assumed that some errors of one process
occur at constant rate 4, i.e., the probability that any errors do not occur during (0,] is
given by e . Thus, the probability that two processes have no error during (0,f] is
F(D=e#T[27].

The mean time L,(N) to completion of the process is the summation of the
processing times and the overhead C,; of comparison of two processes. From the
assumption that two processes are rolled back to the previous checkpoint when an error
has been detected at a checkpoint, the mean execution time of the process for one
checkpoint interval (0,7] is given by a renewal equation:

L) =T +C)e +[T+C, + L Mk1-e?7), (4.1)
and solving it,
L) =(T+C)e** . (4.2)
Thus, the mean time to completion of the process is

L(N)= NL (1) = N(T +C,)e**" =(S+NC,)e**'" 4.3)
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We seek an optimal number N;,” which minimizes L,(N) for a specified S. Evidently,
L(0)=c0 and

L) =(S+C)e*”. 4.4)

Thus, there exists a finite number N; (1 < N;* < «). However, it would be difficult to

find analytically N," which minimizes L;(N) in (4.3). Putting 7=S/N in (4.3) and

rewriting it by the function 7,
Cl 24T
L,(T)=S1+—T—e 0<T<S). 4.5)

It is evident that L;(0)=lim7—L(7)=c and L;(S) is given by (4.4). Thus, there exists an
optimal 7} (0 <7; <S) which minimizes L,(7) in (4.5). Differentiating L , (T) with

respect to T and setting it equal to zero,
T2+C,T——C—'=O. (4.6)
24
Solving it with 7,
T]=Q -2 1], (4.7)
2 AC,

Therefore, we have the following optimal interval number N;" [18]:

(1) IfT) <8, we put [ S/ T1]= N, where [x] denotes the greatest integer contained
in x, and calculate L,(N) and L;(N+1) from (4.3). If Li(N)< L,(N+1) then N,"=N

and Tl* =S/ Nl*, and conversely, if Lj(N+1)< L(N) then N|*=N+l.
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(ii) If 71>S, i.e., we should make no checkpoint until time S then N1*=1 , and the

mean time is given in (4.4).

Note that 7} in (4.7) does not depend on S. Thus, if S is very large, is changed greatly

or is unclear, then we may adopt T as an approximate checkpoint time.

Further, the mean time for one checkpoint interval per this interval is

L(D)= —Lii(-ll = (1 + %)em :

Thus, the optimal time which minimizes Z,(T) also agrees with 7 in (4.7).

(4.8)

Next, consider a redundant system of a majority decision with (2n+1) modules as

an error masking system, i.e., (ntl)-out-of-(2n+1) system (n=1,2,":"). If more than

(n+1) results of (2n+1) modules agree, the system is correct. Then, the probability that

the system is correct during (0, T71is
— 2ol (2n+1 P \n
Fo(T) = Z ( nk )(e“”y‘(l—e—“)z Ik
k=n+1

Thus, the mean time to completion of the process is

(T + Cn+l)

N
La(N) === (n=12,),
n+l

where C+; is the overhead of a majority decision of (2n+1) modules.
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Table 4.1: Optimal checkpoint number N ", interval AT} and mean time AL,(N,") for a

double modular system when AS=10"".

ACix10° | ATyx10* | Ny | LN, )*10? AT, x10?
0.5 1.556 6 110.650 1.67
1.0 2.187 5 10.929 2.00
1.5 2.665 4 11.143 2.50
2.0 3.064 3 11.331 3.33
3.0 3.726 3 11.715 1333
4.0 4277 2 11.936 5.00
5.0 4.756 2 12.157 5.00
10.0 6.589 2 13.435 5.00
20.0 9.050 1 14.657 10.00
30.0 10.839 1 15.878 10.00

4.3 Numerical Examples

We show numerical examples of optimal checkpoint intervals for a double modular
system when 18=10"". Table 4.1 presents A7} in (4.7), optimal number Ni*, AT;" and
AL T(NY) for AC1=0.5, 1.5, 2, 3, 4, 5, 10, 20, 30(x10™). For example, when 1=10"

(1/sec), C1=10""(sec) and S=10.0(sec), the optimal number is N 1'=5, the optimal interval
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isT"=S/N" =20 (sec), and the resulting mean time is L;(5)=10.929 (sec), which is
longer about 9.3 percent than S.

Next, we consider the problem what a majority system is optimal. When the
overhead of comparison of two processes is C1, it is assumed that the overhead C,+; of an
(nt1)-out-of-(2n+1) system is given by C E(QI;HJC; (n=1, 2, --). This is to select
and compare 2 from each of (2n+1) processes. Table 4.2 presents optimal number N
and the resulting mean time /1L,,+1(N*,,+1)><102 for n=1, 2, 3, 4 when AC1=0.1x10"2 s
0.5x107. When AC;=0.5x 107, the optimal checkpoint number is N3*=2 and
AL3(2)=10.37x107* which is the smallest among these systems, that is, a 2-out-of-3
system is optimal. The mean times for #=1, 2 are smaller than 10.65x1072 for a double

modular system.

Table 4.2: Optimal checkpoint number N*,,H and mean time ALnH(N*nH) for

(nt+1)—out—of—(2n+1) system when AC;=0.5x10" , AC;=0.1x107> and 1S=10"".

AC1=0.1x107 AC1=0.5%x107
n | N | Ay w)x107 | Nyt | ALy (Vi) x107
3 10.12 * 2 10.37 *

1 10.18 1 10.58

1 10.23 1 11.08

1 10.36 1 11.81
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4.4 Conclusions

In this chapter, the simple checkpoint models are formulated for error detection and
error masking by redundancy on the finite process execution. We have obtained the
mean times to completion of the process for a double modular and a majority decision
systems. The optimal checkpoint intervals which minimizeh them are derived
analytically. In general, the overhead C; and the native execution time S would be
estimated for real systems. Therefore, the establishment of checkpoint schemes would

be depend on whether we can accurately estimate error rates or not.
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Chapter 5

Sequential Checkpoint Intervals |
for Error Detection

This chapter adopts a modular redundant system as the recovery techniques of error
detection and error masking on the finite process execution: Checkpoints are placed at
sequential times Ty(k=1, 2, *:, N). We consider two checkpoint models where error
rates during the interval (Ty-;, Ty (k=I1, 2, '+, N) increase with the number of
checkpoints and with the original execution time. The mean times to the completion of
the process are obtained analytically, and optimal checkpoint intervals which minimize
them are computed numerically by solving simultaneous equations. Further,
approximate checkpoint intervals are derived by denoting that the probability of the
occurrence of errors during (Ti-1, Ti] is constant. It is shown that the approximate

method is simple and these intervals give good approximations to optimal ones.
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5.1 Introduction

This chapter considers a general modular system of error detection and error masking
on a finite process execution: Suppose that checkpoints are placed at sequential times
Ty(k=1, 2, -, N), where Ty = S (Figure 5.1). First, it is assumed that error rates
during the interval (Tj-1, Tx ] (k=1, 2, ***, N) increase with the number £ of checkpoints.
The mean times to completion of the process are obtained, and optimal checkpoint
intervals which minimize them are derived by solving simultaneous equations.

Further, approximate checkpoint intervals are given by denoting that the
probability of the occurrence of errors duripg (Ty-1, Ty ] is constant. Secondly, it is
assumed that error rates during (Ti-1, Ty ] increase with the original execution time,
irrespective of the number of recoveries. Optimal checkpoint intervals which minimize
the mean time to completion of the process are discussed, and their approximate times
are shown. Numerical examples of optimal checkpoint times for a double modular
system are presented. It is shown numerically that the approximate method is simple

and these intervals give good approximations to optimal ones.
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Figure 5.1: Sequential checkpoint interval.

5.2 Sequential Checkpoint Interval

The error rate A is constant and S is divided into an equal part. In general, error rates
would be increasing with time, and so that, their intervals should be decreasing with
their number. We assume for the simplicity of the model that error rates are increasing
with the number of checkpoints.

Suppose that S is a native execution time of the process which does not include the
overheads of retries and checkpoint generations. Then, we divide S into N parts and
create a checkpoint at sequential times Ty(k = 1, 2, -, N—1), where To=0 and Ty=S
(Figure 5.1)[17]. Let us introduce a constant overhead C for the comparison of a
modular system. Further, the probability that the system has no error during the
interval (Tj-1, Ty] is Fi(Ty—Ti-1), irrespective of other intervals and rollback operation.

Then, the mean time L;(N) to completion of the process is the summation of the
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processing times and the overhead C for the comparison of a modular system.

From the assumption that the system is rolled back to the previous checkpoint
when some error has been detected at a checkpoint, the mean execution time of the
process for the interval (Tj-1, Tk] is

L(k)=(0 Ty + O (G - T )+ - T+ C+ LB (T - L), 5D)
and solving it,

()_T -7, +C

=1,2, -, N), (5.2)
A ( M

where Fi(f)=1— Fy(r). Thus, the mean time to completion of the process is
> ST, -T,,+C
L(N)=Y L(k)=> L=~ (N=1,2, ). (5.3)

We find optimal times 7, which minimize L;(N) for a specified N. Let fi(¢) be a
density function of Fi(f) and ri(f) = fi(t)/Fi{) that is the failure rate of Fy(¢). Then,

differentiating (V) with respect to T and setting it equal to zero,

1
W[“(Tk ~Ta +C) 1 (T, T,
e\ =4y, :
o
= W——T)[l + (T/m -7, + C) Tk (Tk+1 -1, )] (54
k+1 \* k+1 k

Setting that x;=T}—T}- and rewriting (5.4) as a function of xy,
4 (e + € (5 )= [+ (i + ) ()] (1.2, 1),
k (xk) k4l (x/m)

(5.5)
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Next, suppose that Fk(t)=e_i", i.e., an error rate during (74-1,7%] is constant A

which increases with k. Then, Equation (5.5) is rewritten as

1+ 4. (xk+] + C)

(Aexp = A Xin)
—-€ =0. 5.6
1+ 4,(x, +C) (:6)

It is easily noted that A+ 1xk+1 < Agxr, and hence, xj+1 < xi since Agw < Ag.

In particular, when ;= A for k=1, 2, -, N, Equation (5.6) becomes

1+ l(x,m + C) _eﬂ(x‘__xm)

1+ A(x, +C) =0 S

Since xx+1 < x4, we have that xz+1> x; from (5.7), i.e., it is easily proved that a solution

to satisfy (5.7) is restricted only to x+1 = xx = T, irrespective of the interval number £.
Then, the mean time to completion of the process is

L(N)= (S +NC)™". (5.8)

If Ak > Ag, then x4 < xi from (5.6). Let OQ(xi+1) be the left-hand side of (5.7) for a

fixed x;. Then, Q(xx+1) is strictly increasing from

1+4.,C At

X0 G +0)

to Q(xx)>0. Thus, if 0(0)<0, then an optimal xpe1 (0< xpe1<xp) to satisfy (5.6) exists
uniquely, and if Q(0)>0, then x+=S—T}.
Therefore, noting that 7,=0 and 7T»=S, we have the following reéult: '
(i) When N=1 and T;=S, the mean time is
L{)=(S+C)*. (5.9)

(ii) When N = 2, from (5.5),
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[1+ 40 +C)*™ =1+ 4,(S—x, + O =0. (5.10)
Letting O1(x;) be the left-hand side of (5.10), it is strictly increasing from Q;(0)<0
to
0,(S)=[1+2(s +C)f** -1+ 4,C).
Hence, if 01(S)>0, then x=T} (0<T1<S) to satisfy (10) exists uniquely, and
conversely, if O1(S) <0 then xT= T T=S.
(iif) When N=3, we compute xx(k=1,2) which satisfy the simultaneous equations:
1+ 40 +C)™ =1+ A4, (x, + O™, (5.11)
[1+ 4, (x, + C)™ =1+ 4,(S - x, — x, )P0, (5.12)

k
(iv) When N=4, 5, -**, we compute xeand T e = Zx; similarly.

J=1

We compute sequgntial checkpoint intervals Ty(k=1, 2, -, N) for a double modular
system. It is assumed that 4,=2[1+0.1(k—1)]A (k=1, 2, -**), i.e., an error rate increases by
10% of an original rate A. Table 5.1 presents optimal sequential intervals 7 and the
resulting mean times L;(N) for N=1, 2, -, 9 when AS=10"" and 1C=10>. In this case,
the mean time is the smallest when N=5, i.e., the optimal checkpoint number is N'=5
and the checkpoint times T} (=1, 2, 3, 4, 5) should be placed at 2.38, 4.53, 6.50, 8.32,
10.00(sec) for A=107%(1/sec), and the mean time 11.009 is about 10% longer than an
original execution time S=10. Further, all values of x;=7;—T}-; decrease with k because

error rates increase with the number of checkpoints.
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Table 5.1: Checkpoint intervals A7} and mean time AL;(N) when 4,=2[1+0.1(k—1)]4,

1S=10"" and 1C=10">.

N 1 2 3 4 5 6 7 8 9
AT;x10% 10.00 524 365 285 238 205 183 165 152
AT>x10% 10.00 697 544 453 391 348 3.15 2.89
AT3x10? 10.00 7.81 650 562 499 452 415
AT4x10? 10.00 832 7.19 639 578  5.31
ATsx10? 10.00 865 7.68 695 6.38
ATex10? 10.00 8.88 803  7.37
AT7x10° 10.00  9.05  8.31
ATx10? 10.00  9.18
ATox10% 10.00
AL1(N)

) 12.3362 11.3266 11.0792 11.0095 11.0089 11.0423 11.0950 11.1596 11.2322

x10

5.3 Approximation Method

It is very troublesome to solve simultaneous equations. We consider the following
approximate checkpoint times: It is assumed that the probability that a modular system

has no error during (T4-1,7%] is constant, i.e., F(Ty—=Ti-1)=q (k=1, 2, -, N). From this
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assumption, we derive T;—7, k_lzﬁk"l(q) as a function of g. Substituting this 77}~ into
(5.3), the mean time to completion of the process is
N -1
L(N)= E'@+C (5.13)
k= q

1

We discuss an optimal g which minimizes L;(N).

For example, when Fi(f)=e ™,

e"'lk (T4 ~Ty1) =q= e—‘7 ,
and hence,
T =T = ;q—
Since
N N N l
Z(Tk Tk-l)zTN =8 Zqz—l‘>
k=1 k=1 Y
we have
N
L,(N)=e‘7[c"jZ/1L+NC}=eq(S+NC). (5.14)
k=1 7Y

Therefore, we compute g and L;(N) for a specified N. Comparing L;(N) for N=1, 2,
**, we obtain an optimal N which minimizes L;(N) and § = S/ Z ¥ (1/4,). Lastly, We
may compute T, =g ", (1/ A J.) (k=1, 2, -, N-1) for an approximate optimal N

which minimizes L;(N).
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Table 5.2: Mean time AL;(N) for ¢ when A8=10"" and AC=10".

N q AL{(N)x10
1 0.2000000  12.33617
2 0.1047619  11.32655
3 0.0729282  11.07923
4 0.0569532  11.00951
5 0.0473267  11.00888
6 0.0408780  11.04229
7 0.0362476  11.09496
8 0.0327555  11.15962
9 0.0300237  11.23222

Table 5.2 presents § =S/>.1,(1/4,) and AL,() in (5.14) for N=1,2, -, 9 under
the same assumptions as those in Table 5.1. In this case, N=5=N" and the mean time
Li(5) is a little longer than that in Table 5.1. When N =5, approximate optimal
checkpoint times are ﬁ’k*x 102=2.37, 4.52, 6.49, 8.31, 10.00 that are a little shorter than
those in Table 5.1. Such computations are much easier than to solve simultaneous
equations.

It would be sufficient to adopt approximate checkpoint intervals as optimal ones in

actual fields. Figure 5.2 draws the mean times AL;(N) for 1 <N <20.
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Figure 5.2: Mean time AL;(N) when 1<N<20.

It has been assumed until now that error rates increase with the number of checkpoints.
-62-

We assume for the simplicity of the model that a modular system has no error during the
interval (Ty-1, T¢] is F(Ty) / F(T-1), irrespective of rollback operation. Then, the mean

5.4 Modified Model



execution time of the process for the interval (7j-1,7%] is

F(1,)
F(1,.)

-1 ror LB (55

Lz(k)= (Tk T +C) F—(Tk_ ) ,

and solving it,

(Tk _Tk—l +C)F(Tk— )
L\k)= = 1 k=12,---,N). 5.16
@)=l s ( ) (5.16)
Thus, the mean time to completion of the process is
y B _ | ,
LZ(N)zz(Tk Tk-l +C)F(Tk—l) (N=1,2, ) (517)

= F(T,)

We find optimal times 7} which minimize L,(N) for a specified N. Let f{¢) be a
density function of F(f) and r(t)=fr)/ F(f) be the failure rate of F(f). Then,

differentiating L,(N) with respect to 7} and setting it equal to zero,

F(T, F(T,
F((}k_l)) [+ (T XT - T+ €)= F((T;: ])) [+ (X = T+ C))
(=1, 2, - ,N-1). (5.18)
Therefore, we have the following result:
) When N=1 and T;=S, the mean time is
L=, (5.19)

F(S)

(ii) When N=2, from (5.18),
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}__—_éj[l+r(]])(ﬂ +C)]- ];((g;[l +r(LYS-T,+C)|=0. (5.20)

Letting O»(T") be the left-hand side of (5.20), it is evidently seen that

Q2(0)=1+F(0)C—%S)[1+r(0)(S+C)]<O,

0,(8)= ?15[1 +r(SXS + O)-h+rs)]>o0.

Thus, there exists some 7} that satisfies (5.20).

(iii) When N=3, we compute Tx(k=1,2) which satisfies the simultaneous equations:

Al )+l E X -+ (5:21)

F(T
F(T,

N

[1+r@XT, -1+ C)|= =& 1+ (T XS - T, +C)]. (5.22)

"y

N—

(iv) When N=4,5, -, we compute T similarly.

We compute sequential checkpoint intervals Ty(k=1, 2, ", N) for a double modular
system when error rates increase with the number of checkpoints. It is assumed that

F(r)=e?*7 (m>1),AC=10" and AS=10"".
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Table 5.3: Checkpoint intervals AT} and mean time AL,(N) when F{ (t)=exp[—2(lt)]"],

AC=10"% and AS=10"".

N 1 2 3 4 5 6 7 8 9
ATix10%| 10.00 517 351 267 216 181 157 138  1.23
ATHx10? 1000 680 517 418 351  3.03 267 239
AT3x10? 1000 760 615 517 446 393 351
ATyx10 10.00 809 680 587 517 462
ATsx10? 1000 841 726 639 571
ATsx10? 10.00 863  7.60  6.80
ATyx10? 10.00 881  7.87
ATx107 10.00  8.94
ATyx10? 10.00
AL (N)X

e 11.8390 11.0424 10.8593 10.8207 10.8384 10.8839 10.9452 11.0162 11.0938

Table 5.3 presents sequential intervals AT} and the resulting mean times AL(N) for

N=1, 2, =, 9 when F(f)=exp[-2(An"'], AS=10"" and AC=10"". In this case, the mean

time is the smallest when N=4, i.e., the optimal checkpoint number is N'=4 and the

checkpoint times T; (k=1, 2, 3, 4) should be placed at 2.67, 5.17, 7.60, 10.00(sec) for

A=10"%(1/sec), and the mean time 10.8207 is about 8% longer than an original

execution time S=10.
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Next, we consider the approximate method similar to that of the previous model. It
is assumed that the probability that a modular system has no error during (7j-1, T¥] is

constant, i.e., F(Ty)/F(T-1)=q (k=1,2,"**,N). When F‘(,)z e 2"

F(L) _ lony-on.y] g=c

F(T...)
and hence,
2(A1,)" -2(a1,,)" =§ (k=1,2,---,N).
Thus,
n_kq
AT, )" =—,
.y =
ie.,
~\l/m
AT, =(k—‘1) (k=12,--,N-1),
and
1m
i1, -15-(24)
Therefore,

L,(N)=€7(S + NC)= ™"/ (s + NC). (5.23)
Forming the inequality Ly(N+1)—Ly(N) > 0,
C 2 (S+NC)gtrineal _f, (5.24)

It is proved that the right-hand side of (5.24) is strictly decreasing to 0. Thus, an
optimal N to minimize L,(N) in (5.23) is given by a unique minimum which satisfies
(5.24).
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Table 5.4: Mean time ALy(N) for ¢ when 4S=10"" and AC=10"".

N q ALo(N)%10?
1 0.1588656 | 11.83902
2 0.0794328 |  11.04326
3 0.0529552 | 10.86014

4 0.0397164 10.82136
5 0.0317731 10.83897
6 0.0264776 10.88441
7 0.0226951 10.94561
8 0.0198582 11.01661

9 0.0176517 11.09411

Table 5.4 presents g=2(1S)"/N and ALy(N) in (5.23) for N=1, 2, **, 9 under the same
assumptions in Table 5.3. In this case, N=4=N" and approximate optimal checkpoint
times are AT,x10% = 2.84, 5.33, 7.70, 10.00, that are a little longer than those of Table

5.3.
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5.5 Conclusions

We have considered two checkpoint models with a finite execution time S where error
rates increase with the number of checkpoints and with the original execution time.
The mean times to completion of the process for two models have been obtained and
the computing procedures for determining optimal checking intervals fo minimize
them have been shown. When error rates have an exponential and Weibull distributions,
sequential checkpoint intervals have been computed numerically by solving
simultaneous equations. Furthermore, approximate checkpoint intervals have been
derived by assuming that the probability of the occurrence of errors during each
checkpoint interval is constant. This is very simple and gives good approximations to
optimal intervals. It would be sufficient to use practically approximate checkpoint

intervals for actual models.
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Chapter 6

Random Checkpoint Models for |
a Double Modular System

Tasks with random processing times are executed successively. A double modular system
of error detection for the processing of each task is adopted. Two types of checkpoints
such as compare-checkpoint and compare-and-store checkpoint can be placed at the
end of tasks. The problem is that in what places we set suitable checkpoints. The mean
execution times per one task for three schemes are obtained, and optimal numbers which
minimize them are derived analytically. Extended models with majority decision

modules and a spare module are proposed.
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6.1 Introduction

Most computer systems in offices and industries execute successively tasks each of
which has a random processing time. In such systems, some errors often occur due to
noises, human errors and hardware faults. To detect and mask errors, some useful fault
tolerant computing techniques have been adopted [12, 35]. The simplest scheme in
recovery techniques of error detection is as follows [20]: We execute two independent
modules which compare two states at checkpoint times. If two states of each module do
not match with each other, we go back to the newest checkpoint and make their retrials.

Several studies of deciding optimal checkpoint frequencies have been made: The
performance and reliability of a double modular system with one spare module were
evaluated [22, 28]. Furthermore, the performance of checkpoint schemes with task
duplication was evaluated [44, 45]. The optimal instruction-retry period that minimizes
the probability of the dynamic failure by a triple modular controller was derived [8].

Evaluation models with finite checkpoints and bounded rollback were discussed [26].
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® CSCP

Figure 6.1: Task execution for Scheme 1.

Suppose that we have to execute the successive tasks with a processing time Yy (k=1,
2, ) (Figure 6.1). A double modular system of error detection for the processing of each
task is adopted. Then, introducing two types of checkpoints; compare-and-store
checkpoint (CSCP) and compare- checkpoint (CCP) [20], we consider the following
three checkpoint schemes:

(1) CSCP is placed at each end of tasks.
(2) CSCP is placed at the N-th end of tasks.
(3) CCP is placed at each end of tasks and CSCP is placed at the N-th end of tasks.

The mean execution times per one task for each scheme are obtained, and optimal
numbers N that minimize them for Schemes 2 and 3 are derived analytically and are
compared numerically. This is one of applied models with random maintenance times
[17, 37] to checkpoint models. Such schemes would be useful when it is better to place
checkpoints at the end of tasks than those on one’s way. Further, we extend a double

modular system to a majority decision system and the system with one spare module

[22].
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6.2 Double Modular System

Suppose that task & has a processing time Y; (k=1, 2, --*) with an identical distribution
G() = Pr{Y; < t} and a finite mean u = I: [1 - G(t)]dt <o , and is executed
successively. To detect errors, we provide two independent modules where they compare
two states at checkpoint times. Further, it is assumed that some errors occur at a constant

rate A (4> 0), i.e. , the probability that two modules have no error during (0, ¢ ] is e

(1) Scheme 1
CSCP is placed at each end of task k: When two states of modules match with each other
at the end of task £, the process of task £ is correct and its state is stored (Figure 6..1). In
this case, two modules go forward and execute task k+1. How¢ver, when two states do
not match, it is judged that some errors have occgrred. Then, two modules go back and
make the retry of task k again.

Let C be the overhead for the comparison of two states and Cs be the overhead for
their store. Then, the mean execution time of the process of task k is given by a renewal
equation:

Z(l):j:[e-“’ (C+Cs+1k (l—e"“’XC +t+Zl(l))] dG(t). (6.1)
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Figure 6.2: Task execution for Scheme 2.

Solving (6.1) for (1),

~ C+ pu+CsG (24
fj)-Sraresiis)

where G (s) is the Laplace-Stieltjes (LS) transform of G(?), i.e.,G" (s)= .[:e""’dG(t) for

s>0. Therefore, the mean execution time per one task is

L{)= Z‘(l)zEC‘Zz—ﬁ)JFCS’ (6.2)

(2) Scheme 2

CSCP is placed only at the end of task N (Figure 6.2): When two states of all task k (k=1,
2, -, N) match at the end of task N, its state is stored and two modules execute task N+1.
When two states do not match, two modules go back in the first task 1 and make their
retries.

By the method similar to obtaining (6.1), the mean execution time of the process of

all task £ (k=1, 2, -, N) is
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L)=[le™ (c+Cs+rpli-e Yo +1+ L™ (), 6.3)
where G™M(r) is the N-fold Stieltjes convolution of G(f) with itself, ie.,
™M)= j:G‘N-‘)(r—u)dG(u) (N=1, 2, -), and GO¥)=1 for ¢ > 0 and GPP=G().

Solving (6.3) for Ly(N),

7 w)=C +Nu+CslG' @A)

6" @A)’

Therefore, the mean execution time per one task is

L(N) _ C+Nu e
Noongeal w

L,(N)= (N=1,2, ). (6.4)

When N=1, L,(1) agrees with (6.2).
We find an optimal number N," that minimizes Ly(N). There exists a finite Ny (1<

N, < o) because lin”.lN_.mLz(N)=OO. From the inequality L, (N+1)—L; (N)>0,

1-G'(24)

G'(22)

The left-hand side of (6.5) is strictly increasing to o in N. Thus, there exists a finite and

N[V +1)u+C] ~CslG'2A)]" =C (N=1,2, ). (6.5)

unique minimum N," (1 <N, < 00) which satisfies (6.5). If (2u+C)[1-G"(24)] = [C + Cs
xG (24)] G'(24), then N,'=1.

When G(t)=1—e"’/", Equation (6.5) is rewritten as

N
M1+ & 2@—55 1 >C (N=1,2, ). (6.6)
H 1\ 2Au+1 M

Table 6.1 presents the optimal number N," and the resulting execution time Ly(N, )/

and Ly(1)/u in (6.2) for Ax and C/u when Cs/u=0.1. This indicates that optimal Ny
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Table 6.1: Optimal number N," and the resulting execution time L, (N )y for

Scheme 2 when G(r)=1—¢ ™ and Cs/u=0.1.

Clu=0.5 Clu=0.1
A'u * * * *
N, Ly(N2 ) La(1)/u N> Ly(N2 ) Ly(D)/u
0.1 2 1.850 1.900 1 1.420 1.420
0.05 2 1.563 1.750 1 1.310 1.310
0.01 5 1.234 1.630 3 1.130 1.222
0.005 7 1.163 1.615 4 | 1.092 1.211
0.001 17 1.071 1.603 10 1.040 1.202
0.0005 24 1.050 1.602 14 1.028 1.201
0.0001 54 1.022 1.600 32 1.013 1.200

decrease with Ax and increase with C/u. For example, when Ax=0.005 and C/u=0.1,

Ny'=4 and Ly(N>)/p is 1.092 that is about 10% shorter than L,(1)/u=1.211 for Scheme 1.

(3) Scheme 3

CSCP s placed at the end of task N and CCP is placed only at the end of task & (k=1, 2, -,
N-1) between CSCPs (Figure 6.3): When two statéé oftask k (k=1, 2, -, N—1) match at
the end of task %, two modules execute task &+1. When two states of task k(k=1,2,,N)

do not match, two modules go back in the first task 1. When two states of task N match,
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Y- Yv

Figure 6.3: Task execution for Scheme 3.

the process of all tasks NV is completed, and its state is stored. Two modules execute task
N+1.

Let L3(k) be the mean execution time from task k to the completion of task N. Then,
by the method similar to obtaining (6.3),

L= [ lc+i+ L]+ (- o+ i+ LOJGE)  Ge1,2, -+ N1,

(6.7)
LV)= [ (c+i+Cs)+ (- o+ + LOJG(). 6.8)
Solving (6.7) and (6.8) for Zs(1),
Z(l)— C+/l){1 [G 2’1)]N}
-¢'a)| ¢ 21]”
Therefore, the mean execution time per one task is
L(N)EZ3(1)= (C““ﬂ){l [G*( )] }_i_ﬁ (N=1,2, ). (6.9)
’ N Ni-g@i)cea)l N
When N=1, L(1) agrees with (6.2). If |
Sleed o= 3. (6.10)

>
C+,Ll N"'lk=
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Table 6.2: Optimal number N5" and the resulting execution time L3(N3*)/,u for Scheme 3

when G(f)=1-¢ " and Cs/u=0.1.

Clu=0.5 Clu=0.1
/‘L’u * * * *
NS LW | N LNk
0.1 1 1.900 1 1.420
0.05 1 1.750 1 1310
0.01 3 1.594 3 1178
0.005 4 1.563 4 1153
0.001 8 1.526 9 1122
0.0005 12 1518 13 1115
0.0001 | 26 1508 30 1.107

then Scheme 3 is better than Scheme 2 for the same number N (N=2, 3,--).
It can be clearly seen that a finite N3'(1 < N5 < o) that minimizes L3(N) exists. From

the inequality Ly(N+1)~Ls(N) > 0,

Wg{l—[@m)}’}z CC:ﬂ (N=1,2, ). (6.11)

The left-hand side of (6.11) is strictly increasing to o in N. Thus, there exists a finite and
unique minimum N5'(1<N3'<o0) which satisfies (6.11). If (C+,u)[1—G*(2/1)] >
Cs[G (2%, then N5'=1.

When G(f)=1—¢ ", Equation (6.11) is rewritten as
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N 1 ’ Cs/p

@Ap+1)""> 1= > 17 (N=1.2, ). (6.12)
= 241 +1 Clu+1

Table 6.2 presents the optimal number N3* and the resulting execution time L3(N3*)/y

in (6.9) for Au and C/u when Cs/u=0.1. In this case, Scheme 3 is not better than Scheme

2 when C/u=0.5. However, if C/u would be smaller, Scheme 3 would be better than

Scheme 2 as shown in (6.10) when A4=0.01 and 0.05. Further, if Au would be larger, we

would not need to consider Scheme 3.

6.3 Extended Models

We consider the following two extended checkpoint modules:

(4) Majority System

We take up a majority decision system with (2rn+1) modules as an error masking system,
i.e., (ntl)-out-of-(2n+1) system (n=1, 2, ---). If more than (n+1) states of (2n+1) modules
match, the process of task £ is correct and its state is stored. In this case, the probability
that the process is correct during (0, ] is

ORGSO (B

J=n+1 .]

D R & o S RS

i=0 !
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Thus, the mean execution time of the process of task £ is
L) = [ [ 6)C+Cs+0)G()+ F,, 0fc +1+ L, 0HG(), (6.14)
where F.1()=1—F,+1(¢). Therefore, by the method similar to obtaining (6.2), the mean

time execution time per one task is

L) =L,0)= Cru +Cs

e (2;1 N lj 2 “f(zn +l.1 ~J ](—1)" G'[(j+i)]

J

(6.15)

(5) Spare Model

In Scheme 1, when two states of task £ do not match, one spare module executes task £,
an;i two modules go forward and execute task k+1 [22]. It is assumed that a spare
module has no error. Furthermore, Cp is the total overhead of preparing a spare module
and of setting a correct process at checkpoint times.

Let L5(1) be the mean execution time from task k. Then, by the similar method in (1),
L) = J:[e’”’ (C+1+Cs)+(1—e fC+1+Cp+1 +Cs)]dG(r)

=C+u+Cs+(Cp+pfi-G'(22)). (6.16)

If (Cp+,u)G*(2,1) < C+u, then it is useful to provide a spare module.
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6.4 Conclusions

We have considered two types of checkpoints for a double modular system and adopted
three schemes for answering the problems in what places we set suitable checkpoints. It
has been shown in the numerical examples that when an error rate 4 and a mean
processing time u increase and the overhead C for the comparison decreases, Schemes 2
and 3 are better than Scheme 1. Further, we have proposed two extended models with a
majority decision system and the system with a spare module. It would require to
discuss further which schemes including extended models are better in practical

situations.
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Chapter 7

Random Checkpoint Models
for Multiple Modular Systems
with Increasing Error Rates

Tasks with random processing times are executed successively. A double modular system
of error detection for the processing of each task is adopted. Two types of checkpoints
can be placed at the end of tasks. The problem is that in what places we set suitable
checkpoints. It is assumed that error rates of two models for task k increase with the
number of checkpoints. The mean execution times per one task for three schemes are
obtained, and optimal numbers which minimize them are derived analytically. A
majority decision system is also proposed. What system is optimal is discussed

numerically.
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7.1 Introduction

Most computer systems in offices and industries execute successively tasks each of
which has a random processing time. In such systems, some errors often occur due to
noises, human errors and hardware faults. To detect and mask errors, some useful fault
tolerant computing techniques have been adopted [12, 35]. The simplest scheme in
recovery techniques of error detection is as follows [20]: We execute two independent
modules which compare two states at checkpoint times. If two states of each module do
not match with each other, we go back to the newest checkpoint and make their retrials.
Several studies of deciding optimal checkpoint frequencies have been made: The
performance and reliability of a double modular system with one spare module were
evaluated [28, 22]. Further, the performance of checkpoint schemes with task
duplication was evaluated [44, 45]. The optimal instruction-retry period that minimizes
the probability of the dynamic failure by a triple modular controller was derived [8].
Evaluation models with finite checkpoints and bounded rollback were discussed [26].
Suppose that we have to execute the successive tasks with a processing time Y (k=1,
2, ) (Figure 6.1). A double modular system of error detection for the processing of each
task is adopted. Then, introducing two types of checkpoints; compare-and-store
checkpoint (CSCP) and compare- checkpoint (CCP) [20], we consider the following

three checkpoint schemes:
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(1) CSCP is placed at each end of tasks.
(2) CSCP is placed at the N-th end of tasks.
(3) CCP is placed at each end of tasks and CSCP is placed at the N-th end of tasks.

It is assumed that the error rate of every task k for Scheme 1 is the same one, however,
error rates of task £ (k=1, 2, -, N) for Scheme (2) and (3) increase with the number k of
checkpoints. The mean execution times per one task for each scheme are obtained, and
optimal numbers N* that minimize them for Schemes 2 and 3 are derived analytically
and are compared numerically. This is one of applied models with re}ndom maintenance
times [17, 37] to checkpoint models. Such schemes would be useful when it is better to
place checkpoints at the end of tasks than those on one’s way. Further, we extend a
double modular system to a majority decision system, and obtain numerically what a

majority decision system is optimal.

7.2 Double Modular System

Suppose that task & has a processing time Y; (=1, 2, --) with an identical distribution
G(f) = Pr{Y; <t} and a finite mean time u = _[: [1-G({t)]dr <, and is executed
successively. To detect errors, we provide two independent modules where they compare
two states at checkpoint times. Furthermore, the probability that a modular system for

task k has no error during ( 0, ¢ ] is assumed to be ¢ ™ for Scheme 1 and e ™' for Schemes
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2 and 3, irrespective of other tasks and rollback operation. Then, we consider the

following three schemes:

(1) Scheme 1
CSCP s placed at each end of task £: When two states of modules match with each other
at the end of task £, the prbcess of task k is correct and its state is stored. In this case, two
modules go forward and execute task £+1. However, when two states do not match, it is
judged that some errors have occurred. Then, two modules go back and re-execute task &
again.

Let C be the overhead for the comparison of two states and Cs be the overhead for
their store. Noting that every task & has the same error rate 4;, the mean time execution

time of the process of every task k for two modules is given by a renewal equation
L= [l (C+1+Cs)+(l-e¥fC +1+ L,)]dG() (7.1)

Solving (7.1) for L,,

L= e, (7.2)

G'(24)

where G’ (s) is the Laplace-Stieltjes (LS) transform of G(?), i.e., G (s) = f e“’dG(t) for

s>0.

(2) Scheme 2

CSCP is placed only at the end of task N (Figure 6.2): When two states of all task k(k=1,
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2, -, N) match at the end of task A, its state is stored and two modules execute task N+1.
When two states do not match, two modules go back in the first task and make their
re-executions.
Let Li(k) be the mean execution time from task & to the completion of task N.
Because the probability that no error of two modules for task k& occurs is
[e*d6()=6"(24)  (=12,N). (7.3)

Thus, we have a renewal equation

L,(N)=(NC + Nu+ Cs)ﬁ G (22,)+ [Nc +Nu+1L, (N){l - f[ G (24, )] . (14
k=1 k=1
Solving (7.4) for Ly(N),
ZZ(N)=M+CS. (7.5)
HG' (24,)
Therefore, the mean execution time per one task is
L,(N)= LW)__C+u  Cs (N=1,2, ). (7.6)

N
Mo TI60RA) Y
k=1
When N=1, Ly(1) agrees with (7.2).
We find an optimal number N," that minimizes Ly(N). There exists a finite N (1<

N,' < ) because limy—wLa(N) = 00, From the inequality Ly(N+1)—La(N) > 0,
N +1J1-G' (24,,)],Cs
N+l = '
[16'C4) Cru
k=1

(1.7)

From the assumption that A < Ae1, G (2A+1) < G 24, ie., 1-G 24) < 1-G*Q1).

Thus, it is clearly noted that the left-hand side of (7.7) is strictly increasing to o in N.
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Therefore, there exists a finite and unique minimum Ny (1 <N," < o) that satisfies (7.7).

If

1-G'(24) ,_ GCs
G (24)G"(24) 2AC+u)’

then N'=1.

When G(f)=1—¢ . Equation (7.7) is rewritten as

NV +1) 2wt
24 1 +1 S Cs

ﬁ 1 TCHp
ka1 241 +1

(7.8)

It is assumed that =[1+a(k—1)]4, ie., an error‘rate increases by 100a% of an
original rate 4. Then, we compute an optimal number N, which satisfies (7.8). Table 7.1

presents optimum N, for 4x and C/u when 0=0.1 and Cs/u = 0.1.

(3) Scheme 3
CSCP s placed at the end of task N and CCP is placed only at the end of task &k (&=1, 2, -,
N-1) between CSCP (Figure 6.3). When two states of task k£ match at the end of task £,
two modules execute task £+1. When two states of task £ (k=1, 2, -**,N) do not match,
two modules go back in the first task 1. When two states of task N match, the processes
of all N tasks are completed, and its state is stored. Two modules execute task N+1.

Let Z3(k) be the mean execution time from task k to the completion of task N. Then,

by the method similar to obtaining (7.4),
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Table 7.1. Optimal number N,  and the resulting execution time L(N> )/ for Scheme 2

when G(f)=1—¢ " and Cs/u=0.1

Clu=0.5 Clu=0.1
M . L(v, L,(1) " L(v, L,(1)
Y H 4 #
0.1 1 1.900 1.900 1 1.420 1.420
0.05 1 1750 1750 1 1310 1310
0.01 2 1.614 1.630 3 1208 1222
0.005 4 1.595 1.615 6 1.202 1211
0.001 14 1.578 1.603 17 1.175 1.202
0.0005 21 1.603 1.602 26 1.170 1.201
0.0001 53 1.569 1.600 63 1.160 1.200

L= [ o+ L) (- o+ 1+ LOJc6)

L(N)= f{e‘“”’ (C+t+Cs)+(1-e? IC +1+1L (1)]}dG(t).

Solving (7.9) and (7.10) for L3(1),

Therefore, the mean execution time per one task is

.

J

k=1

[oeslf
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(7.10)
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L(N)= () _ ms +=2 V=1, 2, ), (7.12)
N NG 2A)

where [[=1. When N=1, L3(1) agrees with (7.2).

k=1

We find an optimal N;" that minimizes L3(N). From the inequality L3(N+1) — L3(N) >

0,
NZ[HG (uk)]—(Nn)G‘(zAM ) [H[G (uk)]] o
ﬁG'(z/lk) Cru

-+l 22,05

N+1+ i - 2
[16°@4) Ca
k=1

[jG‘(uk )] e

k=1

(N=12,-).  (7.13)

First, note that
N-(N+1)G (A1)
is increasing because
N-(NHD)G A )~(N=-1)+NG" (223)=1-G" @An+1)+N[G (2An)~G" (2An+1)]>0.

Further, denoting the left-hand side of (7.13) by Q(N+1),
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Q(N+1)—Q(N)
{HG e+ bv-r) i IS 110 6|

HG (24,) L+ j=0L ke
-v-1-n0es, o e TToren)|
m—l—{ﬁc;*(u) +[N-1-NG'22,)l6" (24, [N]G* }
HG (24,) '~ el

= N[1—G (24,)]> 0

Thus, the left-hand side of (7.13) is strictly increasing in N. Therefore, if a finite N to

satisfy (7.13) exists, it is a finite and unique minimum such that (7.13). If
(C+uli+G"(24)-26"(24,)|> 56" (24)5" (24,).

then N5 =1

By comparing (7.6) with (7.12), Scheme 3 is better than Scheme 2 for N such that

E[ﬁG'(Mk )] <N. (7.14)

J=0 | k=1

Because

o)1

Scheme 3 is better than Scheme 2 for the same number N (N=2, 3, -+-).
Table 7.2 presents the optimal number N; and the resulting execution time
L3(N3*)/y for Au and C/u when a=0.1 and Cs/u=0.1. This indicates that optimal Ny’

decrease with Au
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Table 7.2. Optimal number N3 and the resulting execution time L3(N5)/u for Scheme 3

when G(f)=1-¢ " and Cs/u=0.1

Clu=0.5 Clu=0.1
Ju ' Lv,) v L (v,))
p H

0.1 1 1.900 1 1.420
0.05 1 1.750 1 1310
0.01 2 1.598 3 1.184
0.005 3 1.568 4 1.158
0.001 6 1.531 7 1.127
0.0005 8 1.522 9 1.120
0.0001 15 1.511 17 1.110

and C/u. Compared with Table 7.1, N5 are equal to or less than N,', however, Ly(Ns")

are less than Lz(Nz*) for N3* > 2, i.e., Scheme 3 is better than Scheme 2.

7.3 Majority Decision System

We take up a majority decision system with (2n+1) modules as an error masking system
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that is called an (n+1)-out-of-(2n+ 1) system [17]. If more than (n+1) states of (2n+1)
modules match, the process of task & is correct. In this case, the probability that the

process of task & for Scheme 1 is correct during (0, ¢ ] is

2n+1

Ra0= 35 [ e hoer

m=n+1

2n+1 2 1 2n+l-m — i

m=n+1 m i=0 !

Thus, by the method similar to obtaining (7.1), the mean execution time of the

process of task k is

L, = [[F eXC+C, +1)+ F (XC +1+L,)]+ dG(). (7. 16)
Solving (7.16) for L4
C+u
L=— +Cs  (n=1,2,~). (7.17)
ml (In+1\2dsm (2n+1—-m . )
I AP R S
m=n+1 i=0

For example, when n=1, i.e., the system is composed of a 2-out-of-3 system,

I = C+u
Y 3G'(24)-2G6"(34)

+Cs. . (7.18)

Similarly, the mean execution time per one task for Scheme 2 is, from (7.6)

C+u Cs

[ 2"2“ (2n+1)2'§m(2n +i1_m)(—1)[G'[(m+i)21]] +—  (N=1,2,),

LS(N)= N
1l

1| m=nei\ ™M i=0

(7.19)
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and the mean time for Scheme 3 is from (7.12),

=0 | k=1 | mens1\_ M i=0

Le(N)z

G 3ol 01 G S B |

Cs
+._.

k=1 | m=n+l i=0

Nﬁ[ 221 (2nm+1Tn+im (Zn +,-1 - m) 6 [+ 1, ]‘

(N=1,2, ). (7.20)

Table 7.3. Optimal number Ns* and the resulting execution time Ls(Ns™ )/u when du =

0.01 and Cs/u = 10.

Clu=0.5 C/u=0.1
n Ny L \N, Ny LN
H H
1 1 15.000 2 10.203
2 1 22.000 2 13.005
3 1 33.000 1 16.200
4 1 48.000 1 19.200

2

2n+1
Suppose that C = ( )C 1 in (7.19) because we have to compare two states of

(2n + 1) ones for (2z + 1) modules. When C; is the overhead for comparing two states,

Table 7.3 presents the optimal numbers Ns* which minimize Ls(N) in (7.19) and its

resulting execution times Ls(Ns")/u when Ax = 0.01 and Cs/u =10. This indicates that

optimal N;* decrease with n and C/u, and Ls(Ns") increase with » and C/u. Thus, from

this table, an optimal decision system is a 2-out-of-3 system.
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7.4 Conclusions

We have considered two types of checkpoints for a double modular system with
increasing error rates, and adopted three schemes for answering the problem in what
places we set suitable checkpoints. It has been shown in the numerical examples that
when an original error rate 1 and a mean processing time u increase and the overhead C
for the comparison decreases, Schemes 2 and 3 are better than Scheme 1. Furthermore,
we have considered a redundant system of a majority decision as an error masking

system, and obtained numerically what system is optimal for each scheme.
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Chapter 8

Conclusions

This thesis have formulated the stochastic models of a recovery mechanism and
analyzed them theoretically, using stochastic processes. We have adopted checkpoint
and backup operation as recovery techniques and obtained expected costs, expected
overheads and mean times to the completion of processes. Using reliability theory, we
have discussed analytically optimal policies which minimize such objective functions.
Further, to understand the results easily, we have given numerical examples at the end
of each chapter, evaluated numerically some measures and determined the best scheme.
If some parameters of each model are estimated from actual models, we could apply
such models to practical recovery models by modifying them.

We have used some useful techniques to analyze models: One is how to formulate
stochastic models, using the techniques of stochastic processes, and the other is how to

derive optimal policies, using reliability theory. Within there techniques, it would be
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instructive to derive optimal times for a finite time span and by solving simultaneous
equations. These would be very useful to the analysis of other fields in reliability and
computer systems.

Some valuable contributions to the study of recovery techniques for computer
systems have been made as follows:

In Chapter 2, we have considered the modified inspection model where checking
times of an operating unit are placed at sequential times 7 and the backup operation is
carried out until the latest checking time when a failure was detected. The expected
costs until the backup operation have been obtained, and optimal policies, which
minimize them for two case of periodic and sequential times, have been analytically
discussed. Further, modified models where the operating time of the unit is finite and a
fault remains hidden have been proposed and analyzed.

In Chapter 3, we have considered two-level recovery schemes; soft checkpoint (SC)
and hard checkpoint (HC) as recovery techniques. When HCs are placed on the
beginning and at the end of the process, and SCs are placed between HCs, the total
expected overhead of the process has been obtained, using Markov renewal processes.
Optimal intervals of SCs to minimize the expected cost have been derived and
computed numerically. It has been shown that a two-level recovery scheme can achieve -
a good performance.

In Chapter 4, we have considered multiple modular redundant systems as the
recovery techniques of error detection and error masking on a finite process execution

when checkpoints are placed at periodic times k7. Introduceing the overheads of
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comparison and decision by majority, we have obtained the mean times to the
completion of the process and derived analytically optimal checkpoint intervals which
minimize them. Further, it has been shown numerically that what a majority decision
system is optimal.

In Chapter 5, when checkpoints are placed at sequential times 7%, we have two
models where error rates increase with the number of checkpoints and with the original
execution time. We have obtained the mean times to the completion of the process and
computed numerically optimal checkpoint intervals which minimize them by solving
simultaneous equations. Further, approximate. checkpoint intervals have been derived
by denoting that the probability of error occurrence during each checkpoint interval is
constant. It has been shown that the approximate intervals give good approximate to
optimal ones.

In Chapter 6, we have taken up the random checkpoint model with two types of
checkpoints such as compare-checkpoint and compare-and-store checkpoint, where
tasks with random processing times are executed successively. When a double modular
system of error detection for each task is adopted, we have considered three schemes,
obtained the mean execution times per one task for three schemes, and derived optimal
policies which minimize them. It has been shown in numerical examples which
scheme is better. Further, extended models with majority decision modules and a spare
module have been proposed.

In Chapter 7, we have considered the modified checkpoint model of Chapter 6

where error rates increase with the number of checkpoints. We have obtained the mean
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execution times per one task for three schemes and derived analytically optimal
policies which minimize them. Further, we have extended a double modular system to
a majority system and discussed numerically what a majority system is optimal.

It has been assumed in this thesis that the overheads for the generation of
checkpoints and the probability of error occurrences are already known. However, it is
important in practical applications to identify what a type of distribution fits the
collected data and to estimate several kinds of overheads from the observation of
actual models. If such distributions and overheads are given, we can determine optimal
policies for recovery models and apply to real systems by modifying them.

Recently, most systems consist of distributed systems as computer network
technologies have developed rapidly. A general model of distributed systems is a
mobile network system [1]. Coordinated and uncoordinated protocols to achieve
checkpointing in such distributed processes have been introduced [1]: Uncoordinated
protocols allow each process to take its local checkpoint independently and
coordinated protocols force each process to coordinate with other processes to take
consistent checkpoints. Two protocols have one's own advantages. A typical advantage
of coordinated protocols is to avoid the domino effect. From such viewpoints, a
number of techniques of checkpoint protocols have been proposed and their
performance have been evaluated [1, 25, 26]. However, there are little research papers
to study theoretically optimal policies for checkpoint intervals. Using the methods and
techniques used in this thesis, we could analyze optimal intervals of checkpoints for

distributed systems.
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