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Ab stract 

Computer systems have been required to operate nounally and effectively, and also 

hold high reliability as communication and infounation systems have been developed 

and complicated. However, some errors often occur due to noises, human errors, 

software bugs, hardware faults, computer viruses, and so on, and lastly, they might 

become faults and incur system failures. To protect such faults, various kinds of fault 

tolerant techniques such as the redundancy of processors and memories and the 

configurations of systems have been provided. The high reliability and effective 

perforrnance of real systems can be achieved by the use of redundant techniques in 

reliability theory. 

Some faults due to errors may be detected after some time has passed. A system 

consistency that may be lost by some faults should be restored by some recovery 

techniques. The operation of taking copies of the normal state of the system is called 

checkpoint. When faults have been occurred, the process goes back to the nearest 

checkpoint time by rollback operation, and its re-execution is made, using a consistent 

state stored in the checkpoint time. 

An initial chapter gives the introduction which is constructed by redundant 

techniques for improving reliability and achieving fault tolerance, failure detection and 

recovery methods and the organization of Thesis. Chapter 2 proposes the checking 
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model where the backup is carried out until the latest checking time when some failure 

was detected. The expected cost is obtained by using the inspection policy in reliability 

theory and optimal policies, which minimize it for two cases of periodic and sequential 

checking times, are derived. 

Chapters 3 to 7 consider several checkpoint models 'when an original execution 

time of one process or task is given, and discuss when and how to generate checkpoints 

to reduce the total overhead of processes: Chapter 3 proposes two-level recovery 

schemes of soft and hard checkpoints, and derives an optimal interval of soft 

cheekpoint between hard checkpoints. Chapter 4 adopts multiple modular redundant 

systems as the recovery techniques of error detection and error masking, and derives 

optimal checkpoint intervals. Chapter 5 eonsiders the modified checkpoint model in 

Chapter 4 where checkpoints are placed at sequential times and error rates increase 

with the number of checkpoints and with an original execution time. It is supported in 

Chapters 6 that tasks with random processing times are executed, successively,, and two 

types of checkpoints are placed at the end of tasks. Three schemes are considered and 

are compared numerically. Chapter 7 proposes the extended checkpoint model where 

error rates increase with the number of checkpoints as shown in Chapter 5 . , 

The numerical examples are given in each ehapter to understand, the results easily. 

The results are summarized in the end of thesis and future studies are deseribed. 

. 

- IV -



Acknowledgment 

The author would be like to appreciate Professor Toshio Nakagawa, the supervisor of 

my study for his constant guidance, encouragement and suggestions through this study. 

The author wishes to thank the members of this dissertation reviewing committee: 

Professor Kazumi Yasui, Professor Naohiro Ishii and Professor Tetsuhisa Oda for their 

careful reviews of this dissertation. 

The author is also grateful thank to Professor Shunji Osaki of Nanzan University 

for having presented the papers at some national conferences, and wishes to thank Dr 

Satoshi Mizutani and all members of Nagoya Computer and Reliability Research 

Group for their useful comment and discussions. 

The author wishes to thank Professor Kazuyuki Teramoto for giving me the 

opportunity to take the degree of Doctor. 

Furthermore, the author would like to thank President, all staff of Nagoya Sangyo 

University and Business College Excellence for continual support for this study. 

This dissertation could not have been accomplished without guidance and 

encouragement ofthe above members. 

Finally, the author wishes to thank my family for their mental and various supports. 

-V-





Contents 

Chapter 1 

1.1 

1.2 

1.3 

Chapter 2 

2. 1 

2.2 

2.3 

2.4 

2.5 

2.6 

Chapter 3 

3.l 

3.2 

3.3 

Introduction 

Redundant Techniques 

Failure Detection and Recovery Methods 

Outline of Thesis 

l 

3 

5 

8 

Checking Time of Backup Operation for a Database System_ 11 

Introduction 1 2 
Expected Costs 

Optimal Policies 

Finite Interval 

Numerical Examples 

Concluding Remarks 

Checkpoint Interval for llvo-Level Recovery Schemes 

Introduction 

ｦlvo-Level Recovery Schemes 

Performance Analysis 

13 

15 

17 

19 

24 

27 

28 

29 

31 

.. 
- Vll -



3.4 

3.5 

3.6 

Chapter 4 

4. 1 

4.2 

4.3 

4.4 

Chapter 5 

5.1 

5.2 

5.3 

5.4 

5.5 

Chapter 6 

6. 1 

6.2 

Expected Overhead 

Numerical Examples 

Conclusions 

36 

38 

41 

Checkpoint Intervals for Error Detection by Multiple Modular 

Re dundancies 43 

Introduction 

Multiple Modular System 

Numerical Examples 

Conclusions 

44 

45 

49 

51 

Se~uential Checkpoint Intervals for Error Detection 

Introductiori 

53 

54 

Sequential Checkpoint Interval 

Approximation Method 

Modified Model 

Conclusions 

55 

59 

62 

68 

Random Checkpoint Models for a Double Modular System 69 

Introduction 70 
Double Modular System 72 

- viii -



6.3 

6.4 

Chapter 7 

Extended Models 

Conclusions 

78 

80 

7. 1 

7.2 

7.3 

7.4 

Chapter 8 

Random Checkpoint Models for Multiple Modular Systems 

wrth Increasing Error Rates 

Introduction 

Double Modular System 

Majority Decision System 

Conclusions 

Conclusions 

81 

82 

83 

90 

93 

95 

, 

- IX -



Cha pter 1 

Introduction 

In recent years, computers have been used not only to live our daily life, but also to 

make and sell good products in industries. Most things have computers within them 

and are moved by computers. Computers play more important role in a highly civilized 

society. Especially, computer systems have been required to operate normally and 

effectively as communication and infounation systems have been developed rapidly 

and complicated remarkably. However, some errors due to noises, human errors, 

hardware faults, computer viruses, and so on, occur certainty in systems. Lastly, those 

errors might have become faults and incur system failures. Such failures have 

sometimes caused a heavy damage to a human society and have fallen into general 

disorder. To prevent such faults, various kinds of fault tolerant techniques such as the 

redundancy of processors and memories and the configuration of systems have been 
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provided [12, 23, 42 J . The high reliability and effective performance of real systems 

can be achieved by fault tolerant techniques. 

Partial data loss and operational errors in computer systems are generally called 

error and fault caused by errors. Failure indicates that faults are recognized on the 

exterior systems. Three different techniques of decreasing the possibility of fault 

occurrences can be used [1]: Fault avoidance is to prevent fault occurrences by 

improving qualities of structure parts and placing well surroundings. Fault masking is 

to prevent faults by error correction codes and majority voting. Fault tolerance is that 

systems continue to function correctly in the presence of hardware failures and 

software errors. There techniques above are called simply fault tolerance into one 

word. 

Some faults due to operational errors may be detected after some time has passed 

and a system consistency may be lost by them. Then, we should restore a consistent 

state just before fault occurrences by some recovery techniques. The operation that 

takes copies of the normal state of the system is called checkpoint. When faults have 

been occurred, the process goes back to the nearest checkpoint time by rollback 

operation [5, 14, 30], and ,its retry is made, using the copy of a consistent st~te stored in 

the checkpoint time. 

It is supposed that we have to complete the process of one task with a finite 

execution time A module rs an element such as a logroal crrcurt or a processor that 

executes certain lumped parts of the task. Then, we consider the checkpoint models of 

error detection and masking by redundancy, and propose their modified models. Using 
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reliability theory, we analyze these models and discuss analytically optimal checkpoint 

intervals. 

1 . I Redundant Technlques 

High system reliability can be achieved by redundancy. A classical standard problern is 

to determine how reliability can be improved by using redundant units. The results of 

various redundant systems with repair were summarized as repairman problem, and 

optimization problems of redundancy and allocation subject to some constrains were 

solved and qualitative relationships for multicomponent structures obtained [2]. 

Further, some useful expressions of reliability measures of many redundant systems 

were shown [3, 40]. The fundamentals and applications of system reliability and 

reliability optimization in system design were well described L9]･ Various 

combinatorial reliability optimization problems with multiple constrains for different 

system structures were considered [38] and their computational techniques were 

surveyed [ 1 3]. 

Redundancy techniques of a system for improving reliability and achieving fault 

tolerance are classified commonly into the following forrns [1 , 1 2, 23]: 

1 HardWare Redundancy () 
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(2) 

(3) 

(4) 

(a) Static hardware redundancy is fault masking technique in which effects of 

faults are essentially hidden from the system with no specific indication of 

their occurrence. Existing faults are not removed. A typical example is 

triple modular redundancy. 

(b) Dynamic hardware redundancy is fault tolerance technique in which the 

system continues to function by detection and removing faults, replacing 

faulty units, and making reconfiguration. Typical examples are standby 

sparing system and graceful degrading system [6]. 

(c) Hybrld hardware redundancy is a combination of the advantages of static 

and dynamic hardware redundancies. 

SOftWare Redundancy 

This technique is to use extra codes, small routines or possibly complete 

program to check the correctness or consistency of the results produced by 

software. Typical examples are N-version programming and Ad-Hoc 

technique . 

InfOrmatiOn Redundancy 

This technique adds redundant information to data to allow fault detection, 

fault masking, and fault tolerance. Examples are error-detecting codes such 

as parity codes and signatures, and watchdog processor. 

Time Redundancy 

This technique is the repetition of a given computation at a number of times 

and the comparison of results. This is used to detect transient of intermittent 
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faults to mask faults and to recover the system. Typical examples are 

retries and checkpoint schemes. 

Redundancies (1), (2) and (3) are also called Space Redundancy because high 

reliability is attained by providing multiple resources of hardware and software. 

In this thesis, we take up several checkpoint schemes for redundant modular 

systems as recovery techniques. 

1 
e 
2 Failure 

Methods 

Detection and Recovery 

It is important to know useful techniques for failure detection because most systems 

have become larger and more complex. Actually, several methods, to detect failures 

have been proposed: O'Counor [24] surveyed widely the techniques related with tests 

for electronic circuits. Lala [1l] summarized fault-tolerant design techniques with 

self-checking of digital circuits. 

The methods of self-checking which involves fault-secure and self-testing are 

required to design high reliable systems. Fault-secure means that a failed system 

outputs codes except an assumed output code space. Self-testing means that a failed 

system outputs codes except an assumed code space for at least one input code. 
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Another method for systems such as digital circuits is the comparison-checking 

with outputs of double modular systems: Two modules execute the same process and 

compare two states at checkpoint times. If two states of each module do not match with 

each other, this means system failure. One extending system is a majority decision 

system, i. e. , an (n+1)-out-of-(2n+1) system as an error masking system. If (n+1) or 

more states of (2n+1) modules match, the system is correct. 

On the other hand, when the logical consistency is lost by failures, the following 

two operations of process recovery are performed: One is forward recovery which 

keeps ruuning forward in a fault status without backward. Such method is applied to 

real time systems as weather satellite's picture and to forward the voice of IP telephony 

system. The other is backward recovery which goes back before failure occurrence. 

Typical three methods are usually used [1 , I O, 12, 23]: 

(a) Retry Recovery Method 

Retry recovery method is very popular and easily method: If a fault occurs, 

the procedure of retry is made immediately. But if the fault changes an 

original data, the retry fails. This method is used for hard disk read, 

memory read, and so on. 

(b) Checkpoint Recovery Method 

This is the most general method of backward recovery system. This method 

records system states which need to run continually the process at suitable 

intervals. If a fault is detected at some checkpoint, the process goes back to 
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the latest checkpoint. It is very important to deterrnine the interval times of 

checkpoints. If we generate checkpoints at short intervals, their overheads 

are large. So that, the system performance becomes low. But, if some error 

is detected in the process, the process goes back to near checkpoint and is 

re-executed. In this case, the re-execution time is small. On the other hand, 

if we generate checkpoints at long intervals, their overheads are small. So 

that, the system perforrnance becomes high. But, if some error is detected in 

the process, the process goes back to far checkpoint and is re-executed. In 

this case, the re-execution time is large. Therefore, it is one kind oftrade-off 

problem to generate checkpoint intervals. We study about optimal 

checkpoints intervals in this thesis. 

(c) Journal Recovery Method 

Journal recovery method is an easy method, but, it needs a longer time than 

above two methods when a failure occurs. This method records an initial 

point state and records all of transactions about changing data. If a failure 

occurs, the process is re-executed from initial data and all transactions. So 

that, this method needs a longer time than above two methods. 
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1 .3 Outline ofThesis 

This section describes the outline of this thesis. This thesis is divided into Introduction, 

Chapters 2-7, Conclusions and Bibliography. 

Chapter 2' considers a modified inspection model in reliability theory: When some 

failure is detected, the backup operation is carried out until the latest checking time. 

The expected cost from the failure detection to the latest checking time is obtained. 

Optimal policies, which minimize the expected cost rates for two cases of periodic and 

sequential checking times, are analytically discussed. Modified models where the 

operation time is fmite and some fault remains hidden and proposed. 

Chapter 3 considers a two-level recovery scheme ofthe checkpoint model with soft 

and hard checkpoints: Soft checkpoint is less reliable and less overhead than hard 

checkpoint, and is set up between them. The total expected overhead during the 

interval of hard checkpoints is obtained, using Markov renewal processes, and an 

optimal policy which minimizes it is discussed. A numerical example. shows that a 

tw0-1evel scheme can achieve a good performance. 

Chapter 4 considers multiple modular redundant systems of error detection and 

error masking on a fmite process execution when checkpoints are placed at periodic 

times. The mean times to the completion of the process are obtained, using renewal 

equations, and optimal checkpoint intervals which minimize them are discussed 

analytically. It is shown numerically what a majority decision system is optimal. 
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Chapter 5 adopts a modular redundant system on a fmite process execution when 

checkpoints are placed at sequential times. Two checkpoint models where error rates 

increase with the number of checkpoints and with an original execution time are 

considered. The mean times to the completion of the process are obtained, and optimal 

checkpoint intervals which minimize them are computed numerically by solving 

simultaneous equations. Further, an approximation method is proposed. 

Chapter 6 considers a double modular system when tasks with random processing 

times are executed successively. Two types of checkpoints such as compare-checkpoint 

and compare-and-store-checkpoint can be placed at the end of tasks. The mean 

execution times per one task for three schemes are obtained, and optimal policies 

which minimize them are discussed analytically. Extended models with majority 

decision modules and a spare module are proposed. 

Chapter 7 considers the random checkpoint model with increasing error rates. The 

mean execution times per one task for three schemes are obtained, and optimal policies 

which minimize them are derived analytically. It is shown numerically that what a 

maj ority system is optimal 

Finally, Chapter 8 summarizes the results derived in this thesis and presents some 

future studies. 
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Chapter 2 

Checking Time of Backup Operation 

for a Database System 

When a failure occurs in the process of a database system, we execute the rollback 

operation until the latest checking time and make the recovery ofdatabase files. This 

chapterproposes a modlfied inspection model where the backup is carried out until the 

latest checking time when some failure was detected. The expected cost until the backup 

operation is made to the latest checking time is derived, and optimal policies, which 

minimize itfor two cases ofperiodic and sequential checking times, are analytically 

discussed. Some further modlfied models where the operating time isfinite and afault 

remains hidden are proposed. 
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2 . I Introduction 

Most units in standby [39, 1 6] and in storage [7, 1 5] have to be checked at planued times 

to detect failures. Barlow and Proschan [2] summarized such inspection policies which 

minimize the total expected cost until a failure detection. All inspection models have 

assumed that any failure is known only through checking and summarized in [ 1 7]. But, 

when a failure was detected in the recovery technique of a database system, we execute 

the rollback operation until the latest checkpoint [5, 3 1 J and reconstruct the consistency 

of a database. It has been assumed in such models that any failures are always detected 

immediately, however, there is a loss time or cost associated with the lapsed time of 

rollback opeiation between a failure detection and the latest checkpoint. 

Further, this model would be applied to the backup policy for hard disks [32, 33]: 

There is a variety of files in the disk, however, they may be sometimes lost due to 

human errors or disk failures. To prevent such events, backup files are made at suitable 

times, which are called a backward time. When failures have occurred, we can make 

the recovery of files at each backward time. 

From the practical viewpoints of database recovery and backup files, we propose 

the following backup operation model which is one of the modified inspection policies: 

When some failure of a unit was detected, we carry out the backup operation to the 

latest checking time. In such a model, we do not wish to provide checks much 

frequently, and on the other hand, we wish to avoid a long elapsed time between a 
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failure detection and the checking time. It would be an important problem to determine 

an optimal checking schedule ofthis model. 

By the similar method to that of the usual inspection model [ 1 7], we derive the 

total expected cost until the completion of backup operation after a failure detection, 

and discuss optimal checking times which minimize it for two cases of periodic and 

sequential policies. We give numerical examples when failure times of a unit have a 

Weibull and uniform distributions. 

Further, we consider the case where a unit has to be operating for a fmite interval. 

The expected cost is obtained, and an optimal checking time which minimizes it is 

numerically computed. Finally, the expected cost per unit of time and the availability 

are also derived. We propose one modified model where a fault occurs and is hidden, 

and after that, a failure occurs, and obtain the expected cost. 

2.2 Expected Costs 

Sup~ose that the failure time of a unit has a general distribution F(t) with a finite mean 

/1 ~ rF(t~t , where F(t)~1-F(t). The checking schedule of a unit is made at 

successive times Tk(k=1, 2, ･ ･ ･) where ToEO. Let cl be the cost required for each check. 

Further, when a failure was detected between Tk and Tk+1, we carry out the backup 

operation to the latest checking time Tk. This incurs a loss cost c2 per unit oftime (Figure 

2.1). 
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Tl T2 
t 

X Failure Tk Checking time 

Figure 2. I : Process of sequential checking times Tk. 

The total expected cost until a failure is detected and the backup operation is made 

to the latest checking time is, using the theory of inspection policy [2], 

" - r",･,[kc +c (t T ) F(t) - ^ 1 2 -k~ C(T T "') ~ l l' 2' 
k=0 

" 

= ~[c J (2.1) l - c2(Tk -Tk_1) F(Tk) + /Jc2' 
k =1 

If a unit is checked at periodic times kT(k=1 , 2, ･ ･ ･) then 

" 
C (T) = (c - c T) F(kT)+ IJC (2.2) l 2 ~ 2' k=1 

Next we obtain 'the expected cost per unit of time for an infmite time span. Since 

the mean time of backup operation from a failure detection to the latest checking time 

is 

"f ~ ~,."' (t ~ Tk )dF(t) 
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the expected cost rate is given by 

C (T T "')= Cl(Tl'T2"") 
2 l' 2' T*" (t - Tk )dF(t) IJ+~ ~ "= ^ 

kO 

~ cl k"= I F (Tk ) - 1lc2 

2/1 - ~k"=1(Tk -Tk l)F(T ) 

If a unit is checked at periodic times kT (k=1 , 2, ･･･) then 

cl ( ) C2(T) = ~k"=1F kT -lJc2 +c 
k~_ I F (kT ) 2 ' 21J-T~ _ 

+ c2' 
(2 . 3 ) 

(2.4) 

2.3 Optimal POllCleS 

We discuss optimal checking times Tk which minimize the expected cost Cl(Tl' T2, " ') 

in (2. 1). Letj(t) be a density function ofF(t), i.e., j(t)EF'(t). Then, differentiating Cl(Tl' 

T2, " ') with respect to Tk and setting it equal to zero, we have 

F(Tk.1 ) ~ F(Tk ) (2.5) f (Tk ) = Tk - Tk_1 c (k = 1,2,. . .). 

c2 

Thus, we can deterrnine the optimal checking times Tk , using Algorithm I of [2]. 

In the periodic inspection case, from (2.2), we have 
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Cl(O) = ITi+moC1(T) = oo, 

Cl (oo) = ;i_m"CI (T) = I~2' 

Hence, we have 

" Cl (oo) - Cl (T) = (c2T - cl )~ F(kT). 

k=1 

Thus, there exists an optimal checking time T1'(cl /c2 < T < oo)which mnunuzes Cl(T) 

and 

Cl(cl /c2)=Cl(Qo) IJC 

Further, differentiating Cl(T) in (2.2) with respect to T and setting it equal to zero imply 

~~ I F(kT) _ cl (2.6) T ~~1kf(kT) c2 

In the case ofF(t)=1-e~At, Equation (2.6) is 

T - I - e~A T cl (2.7) 
~ ~ c2 

It can be easily seen that the left-hand side of (2.7) is strictly increasing from O to oo. 

Thus, there exists a finite and unique Tl which satisfies (2.7), and the resulting cost is 

Cl(T') =c2Tl ~cl' (2.8) 

Smce e I + a + a2 / 2 for small a > O, the optimal checking time is approximately 

given by 

2cl 

T~1 ~ ~c2 ' (2.9) 
and Tl* > ~Tl 
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We can compute an optimal schedule which minimizes C2(Tl' T2, " ') in (2.3) usmg 

the algorithm 2 of [2]. When F(t)=1-e~At, Equation (2.4) is 

C (T) = cle~hT -c2(1 - e~hT)/jL + c , (2.10) 
2(1 - e~;LT )/jL - Te~hT 2 

and 

c C (O) oo C (oo) = ~ -

Differentiating (2. I O) with respect T and setting it equal to zero, 

T - (1 - e~hT )/~ cl 

2 - e~~T ~ ' (2. 1 1) c2 

It can be easily seen that the left-hand side of (2.1 1 ) is strictly increasing from O to co. 

Thus, there exists a finite and unique T2 which satisfies (2.1 1 ). By comparing (2.7) and 

(2. 1 1), it can be shown that Tl' < T2 , and it is approximately 

~ cl cl 2 2cl (2.12) = + + . c2 c2 ~c2 

2.4 Finite Interval 

Suppose that a unit has to be operating for a finite interval (O, S J (O < S < oo), and is 

replaced at time S=TN [1 7]. The other assumptions are the same as those ofthe previous 

model. Then, the total expected cost before replacement is 
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N-l 
T"'[kq +c2(t-Tk) (t)+cl(N-1)F(TN) (N=1,2,. . ). C~(N)=~ ~', 

~F (2. 1 3) k =0 

Putting that aC3(N)leTk=0, we have (2.5), and the resulting minimum expected cost is 

~3 (N) = C3 (N) + cl ~ c2 J~F(t)dt 

N-l 

= ~[cl ~c2(Tk.1 T )]F(T ) (2.14) 
k=0 

For example, when N=3, the checking times Tl and T2 are given the solution of 

simultaneous equations 

F(S) - F(T2) _ T2 -TI - c 

f (T2 ) ~ c2 
F(T2) - F(TI ) _ _ T] c 

f (TI ) ~ c2 

and the expected bost is 

C3 (3) c [ ~ [ 
J 

= I -c2Tl + cl ~c2(T2 -Tl) (Tl)+ cl ~c2(S-T2) F(T2)' 

From the above discussions, we compute T~k=1, 2, ･･･, N-1) which satisfies (2.5), 

and substituting them into (2.14), we obtain the expected cost ~3(N). Next, computing 

C~3(N) for all N ~ I , we can get the optimal checking number N' and times Tk'(k = I , 2, 

"', N'). 
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2.5 Numencal Examples 

We compute the optimal checking times numerically when the failure time has a 

Weibull distribution for the periodic checking time, and when the failure time has a 

Weibull distribution and a uniform distribution for the sequential checking one. 

Suppose that F(t)=1-exp[-(~t)a] (OL > 1). Then, from (2.6), an optimal time Tl is 

given by a solution of the equation 

* (hkT )" 

T- ~ -k=1 e cl ~k-=1 jl ;ofk(;1 ;kT) "~1 e~( AkT ) c2 

Table 2. I presents the optimal checking times Tl' for a=1 .O, I .5, 2.0, 2.5, 3 .O and cl/c2=5, 

1 O, 20, 30, 40, 50 when 1/~=500. Note that when a=1 , this corresponds to an exponential 

case. Approximate times ~l in (2.9) give a good lower bound for Tl' for a=1. This 

indicates that the optimal times become longer as cl/c2 are large, however, they are 

changed little as the values ofparameter a increase for a > I . 
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Table 2 1 Optimal checking times Tl' to minimize Cl(T) 

when F(t) = I - exp [-(t/500)"]. 

Table 2.2 gives the optimal checking schedule {Tk'} which satisfies (2.5), and 

6kETk+]'~Tk When F(t)=1-exp[-(~t)2] for cl/c2=10, 20, 30. It is roughly seen that the 

periodic intervals are almost the same value as 61' i. e . , the interval between the first and 

second checking times. Each checking time becomes longer as cl/c2 are large. 

Next, suppose that the failure time is uniformly distributed during LO, S J (O < S < 

co), i. e. , 
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S for O ~ t ~ S, 

f(t) = 

O for t > S. 

Then, Equation (2.5) is rewritten as 

Tk.1 Tk+cl =Tk T l, 
c2 

which is equal to that of [2]. For example, when S=1000 and cl/c2=20, we have that 

N=10 since N(N-1) < 2c2S / cl = 100 [2], and Tk' = {100, 360, 510, 6~0, 750, 840, 910, 

960, 990, I OOO} ･ These values are a little larger than those in Table 2.3 for k=2, 3, ･･･, 9 

when N=10. It would be trivial in the case of a uniform distribution that the optimal 

schedule is equal to that ofthe standard inspection model [1 7]. 

Table 2.3 gives the checking times Tk (lfl, 2, ･･･, N) and the expected cost ~C3(N) 

for S=1 OOO and cllc2=20 when F(t)=1-exp[-(t/500)2]. Comparing C~3(N) for N=1 , 2, ･･･, 

1 O, the expected cost is minimum at N=9. That is, the optimal checking number is 

N'=9 and optimal checking times are 183.56, 319.94, 436.78, 542.25, 640.21, 732.98, 

822.41, 910.45 and I OOO. These optimal times are almost the same ones in Table 2.2 

for cl/c2=20. 

Table 2.4 gives Tk and the expected cost ~3(N) for S=500 and the same parameters in 

Table 2.3 . In this case, the optimal checking number is ~=4 and optimal checking times 

are 1 74.82, 302.60, 408.84, 500. All checking times in Table 2.4 are smaller than those 

in Table 2.3 for the same number N. 
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Table 2.2: Optimal checking times Tk' to minimize Cl(Tl' T2, " ') and 

6k=Tk+1'~Tk when F(t)=1-exp[-(t/500)2]. 
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Table 2.3 : Checking times Tk and the expected cost ~3(N) for N=1 , 2, ･ ･ -

S 1000 cl/c2=20 and F(t)=1-exp[-(t/500)2]. 

, 
1 O when 
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Table 2.4: Checking times Tk and expected cost ~3(N) for N=1 

when S=500, cllc2=20 and F(t)=1-exp[-(t/500)2]. 

, 
2, 

, 
7 

2 .6 COncludlng RemarkS 

We have considered the recovery model where we cany out the backup operation to the 

latest checkin~ time when a failure was detected, and have discussed the optimal 

policies which minimize the total expected cost or the expected cost rate, using the 
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techniques of inspection policies. Further, we have computed numerically the optimal 

checking time when a unit should be operating for a fmite interval when the failure time 

has a Weibull distribution. These techniques would be applied to other backup models of 

a database system [25] and the reliability model with backward time [2 1 J . 

It is more useful in some systems to adopt the availability than the expected cost as 

an appropriate obj ective function. If pl is the time for one check then the availability is 

A(T T ･ ･ ･) = Mean operating time 
l ' 2 ' Mean timeuntil the complecticn of backup operation 

IJ 

= . (2. 1 5) 
2/J - ~ k"=1( Pl + Tk - Tk_1)F(Tk) 

Thus, the optimal policy which maximizes the availability corresponds to the policy 

which minimizes the expected cost C(Tl,T2, "') in (2. 1) by replacing cl = Pl and c2 = I . 

Finally, we consider the following model as one of modified ones: A fault occurs 

between the j-th and the ~+ I )-th checking times according to a general distribution 

F(t) with a fmite mean /1, and is hidden. After that, a failure occurs between the k-th 

and the (k+1)-th checking times and is detected immediately, and the time from the 

occurrence of a fault to the failure detection obeys" a general distribution G(x) with 

mean 6. This is called a fault latency [34]･ When a failure was detected, we carry out 

the backup operation to thej-th checking time. Then, the expected cost until a failure is 

detected and the backup operation is made io thej-th 'checking time is 
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C4(Tl'T2"")= " k~1 r"k･1 r,,･l[kc +c (x T) F(t) dG(x-t) k=1 j=0 A ' 1 2 ~ J h ~~ 
+~ r:,"' , Jcl +c2 x-Tj F(t) -,[･ ( )~ dG(x t) 

"r " = ~ };" f"A"[kc +c ( )k ) ) 1 2 x-Tj G(x-t dF(t ~ k=j+1 k 

+ " r,j･1 fj'l )k ( ) ) r. ( - Gx-t F(t ~f LJcl+c2~x Tj 
j=0 ' 

= cl~r:!'1 j+ " 2~o r:,"[6+t-TJhF(t) ~G(Tk-t) F(t)+c 
k=j+1 

~f F(Tk)+ ~T [F(Tk)-F(Tk.1)] " r ~;1 (~ = cl G(Tk -t)uF~t) +c2 p+e- k 

k=1 k=1 (2. 1 6) 

If a faults is not hidden and is detected immediately, i' e.. G(x)~1 for x~0 and 6=0, this 

corresponds to the previous model and Equation (2. 1 6) agrees with (2. I ). 

Further, suppose that j(t) and g(x) are density functions of F(t) and G(x), 

respectively. Then, differentiating C4(TI ' 'T2' " ') with respect to Tk and setting it equal 

to zero, 

) )[( c F(T )] = I . (2.17) (Tk -Tk_1 f(Tk - F Tk+1)~ k 

r g(Tk - t~F(t) c2 

Thus, using Algorithm I of [2], we can compute the optimal checking time 

numerically for specified distributions F(t) and G(x). 
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Chapter 3 

Checkpoint Interval 
Recovery Schemes 

for Two-Level 

It is important to design computer systems to tolerate some failures. This chapter 

proposes h/vo-level recovery schemes,' soft checlpoint (SC) and hard chec~oint (HC) 

which are useful to recover from faiJures. Soft checkpoint is less reliable and Jess 

overhead than those ofHC, and is set up betvveen HCs to reduce the overhead ofthe 

process. The total expected overhead of one cycle from HC to HC is obtained, using 

Markov renewal processes, and an optimal interval which minimizes it is computed. It 

is shown in a numerical example that a two-level recovery scheme can achieve a good 

performance. 
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3 . I Introduction 

In computer and database infonnation systems, some errors often occur due to noises. 

human errors, software bugs and hardware faults, and make these systems inherently 

unreliable. In such cases, it is important to restore a consistent state by rollback 

reco very techal~Ues. Checkpolht js the most effectfve reco vely mechanl~m whlbh 

stores a consistent state in the secondary storage at suitable times. Even if failures 

occur, the process goes back to the latest checkpoint and can resume its normal 

operation [5, 12, 30]. Ling et al. [14] made a good survey of such checkpoint 

problems. 

Vaidya [41 , 42] considered two-level recovery schemes in which N-checlpoint can 

recover from several number of failures, and 1-checlpoint is taken between 

N-checkpoint and can recover from only a single failure. He presented an analytical 

approach for evaluating the perforrnance of two-level schemes, using a Markov chain. 

Further, Ssu et al. [36] described an adaptive protocol that manages the storage for 

base stations in mobile envirouments, where soft checkpoint is saved in a mobile host, 

e.g. , in a local disk or flash memory, and hard checkpoint is saved in a base station. 

Soft checkpoints will be lost if a mobile host fails, however, hard checkpoints can 

survive but have higher overheads since they must be transmitted through the wireless 

chaunels. 
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This chapter considers two-level recovery schemes based on the proposed scheme 

[4l]: Soft checkpoint (SC) and hard checkpoint (HC) which are useful to recover from 

only one failure and several failures, respectively. SC are set up at periodic intervals 

between HC, and are less reliable and less overhead than those of HC. We discuss an 

optimal checkpoint interval of SC when HC are placed on the beginning and at the end 

of the process. The total expected overhead of one cycle from HC to HC is obtained, 

using Markov renewal processes L27], and an optimal interval which minimizes it 

numerically computed. It is shown in a numerical example that two-level schemes 

reduce the total overhead of the process. 

HCo SCI SC2 SC,3 - - - SCN-1 HCN 

S 

Figure 3 . I : Soft checkpoints between hard checkpoints. 

3 .2 TWO LeVel RecOVery SchemeS 

Suppose that S is an original execution time of one process or task which does not 

include the overheads of retries and checkpoint generations. Then, to tolerate some 
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failures, we consider two different types of checkpoints: 

o Soft checkpoint (SC) can recover from some kinds of failures and its overhead is 

small. 

e Hard checlpoint (HC) can recover from any kinds of failures and its overhead is 

large . 

We propose the tw0-1evel recovery scheme with the following assumptions: 

1 . The original execution time of one process is S (O < S < co). We divide S equally 

into N time intervals where T ~ S/N, and take (N - I )SC every at times kT (k = 1, 

2, ･･･ ,N-1), and two HC at time O and time NT, i.e., SCl, SC2, "' , SCN_1 are set 

up between HCo and HCN (Figure 3 . I ) . 

2. Failures of the process occur at constant rate ~ (~ > O), i. e. , the process has a 

failure distribution F(t) = I - e~At and F (t) ~: I - F (t) = e~At 

3. Iffailures occur between HCo and SCl, then the process is rolled back to HCo and 

begins its re-execution. If failures occur between SCj and SCj+1 U = 1, 2, ･･･, N- 1), 

then the process is rolled back to SCj where SCN E HCN: 

(a) The process can recover from failures with probability q (O ~ q ~ I ) and 

begins its re-execution from SCj . 

(b) The process cannot recover with probability I - q, and further, is rolled back 

to HCo and begins its re-execution. 

4. If there is no failure between SCj and SCj+1 ~ = O, 1, "', N- 1) where SCo ~E HCo, 

the process goes forward and begins its execution from SCj+1 ' 

5. The process ends when it attains to HCN. 
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3 .3 Performance AnalySIS 

We defme the following states ofthe process: 

State 0: The process begins to execute its processing from HCo' 

State j: The process begins to execute its processing from SCj ~ = 1, .2, " ' 

State N: The process attains to HCN and ends. 

, N-1). 

1 2 3 N1 N 

O 

The process 

Figure 3 .2: Transition diagram between states. 

states defmed above form a Markov renewal process 
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State N is an absorbing state. All states are regeneration points and the transition 

diagram between states is shown in Figure 3.2. Let Qlj(t) (i, j = O, 1, 2, ･ ･ ･, N) be 

one-step transition probabilities of a Markov renewal process. Then, by the similar 

method of Yasui et al. [43], mass functions Qif(t) from State i at time O to State j at 

time t are 

Q"(t)= :F(u~D(u)' J 

)- J' ~ ( ) QJJ'I(t ~ *F(u Du 

QJj(t)= J' ~ ( ) q *F(u Du 

)J (~ ) () Fu D(u Qj" t =(1-q * 

(j = 0'1"" N - 1)' 

(j = 0'1" " N - l)' 

(J 0'1" ' ' N - l)' 

(3 . I ) 

(3.2) 

(3.3) 

(3.4) 

where D(t) is a degenerate distribution placing unit mass at T, i. e., D(t) ~ I for t Z T, 

and O for t < T. 

Further, Iet ~(s) be the Laplace-Stieltjes transforrn of any function ~(t), i. e. , 

~ ~(s) E o e~'td~(t) for s Z O. 

Then, the LS transforms of Qlj(t) are, from (3. I ) - (3.4), 

( ) (3.5) 
qoo(s) = e~'TF T , 

) e 'TFf¥T) ( -qjj+1¥s = (j = 0,1," 'N-1), (3'6) 

qJj(s) = ~ ( ) (j =0,1,"'N-1), (3'7) e *TqF T 

( )- - ( ) ( (3.8) 
) qjo S ~e ST 1-qF (j = 0,1, ' ' 'N - 1). T 

Denoting HoN(t) by the first-passage time distribution from State O to State N, its 
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LS transform is given by 

hoN(s) qol(s) ql2(s) x"'x qN_lN(s) 

1 - qll (s) I - q (s) 
N-lN-l 

N-1 ql2 (s) qjo ~f " xl-qjj(s) hoN(s) + qoo (s)+ qol(s) (3.9) x' 1 - qll (s) 
j=1 

TO Snuplify equations we put that q o ao(s), qjJ(s) al(s) and qJj+1(s) E a2(s). Then, 

we easily have that qoo(s) = ao(s) + al(s) and ao(O) + al(O) + a2(O) = I . USmg these 

notations and solving (3.9) for hoN(s), . 

a (s) N~l 

a2(s 2 
1 - al (s) 

hoN (s) = (3 . I O) a (s)a2 (s) N~l a2 (s) ' 
1 - ao (s) - al (s) - 1 1 - al (s) 1 - ~~: (s) - a2 (s) 

It is evident that hoN(O) = I . Thus, the mean first-passage time from State O to State N is 

l =1iml-hoN(s) 

ON *+0 s 

j-(N-1) 

T N-1 F(T) (N =1,2,...). (3.11) = F(T)~j o 1-qF(T) 

MOreover, the LS transform of the expected number of returning to State O is given 

by a renewal equation 

qjo (s) 

N-1 ql2 (s) J . (3 . 1 2) mH(s = qoo(s)+ qol(s) [ 1 + mH (s) ) ~ x"'x j=1 1 - ql I (s) I - qjj (s) 

Solving this equation and arranging it, 
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N-1 a2(s) J 
a (s)+ a (s)+ ao(s)~ 

mH(s = j=1 1-al(s) (3.13) ) o 
N-1 a (s) j ' 

1 a (s) a (s)-ao(s)~ 2 
J=1 1-al(s) 

Thus, the expected number of returning to State O is 

() MH =1.i_momH S 

1 - F (T F (T) N~l 

1 - qF (T) (3.14) F (T F (T) N~1 ( ) ' N = 1,2,... 

1 - qF (T) 

NOte that MH represents the expected number of rollbackS to HC until the process ends. 

Next, we compute the expected number of rollbacks to SC. The expected numbers 

of returning to State j when the process transits from State j to State j + I and State O 

are, respectively, 

~i[q (s)]'q qjj (s~ (s) " jj+1 ) ( 
jj+1¥s = [1 - qjj (s)] 2 ' jj 

i=1 

* (~ ( 
~fi[q (s)]'qjo(s)= qjj ¥s)qjo~s) 

[1 - qjj (s)] 2 ' jj 

i=1 

Thus, the LS transform ofthe expected number of returning to State j ~ = I , 2, 

iS 

ql2(s) q _ (s) (s)+qjo(s)] ms (s) = ~ qcn (s) x " ' x j lj qjj (s)Lqjj+1 

( 1 - qll (s) ) [1 - qJj (s)]2 j=1 1 - qj_v-1 ¥s 

･･･,N- I ) 
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N-1 n ( ) q]o(s) ms(s ql2 (s) ~ j-lj ¥s 

j=1 ( ) ) 
(~ V )1 qll + qoo¥s)+Lqol s x"'x (s)1-q ( ( 

- ) s 1-q s j-lj-1 jj 

Solving this equation, 

m s (s) = (3 ' 1 6) N-1 ' 1 - a2 (s) 

1 - ao(s)- al(s)- a (s)a (s) I - al(s) 

2 1 - al (s)- a2 (s) 

Therefore, the expected number ofreturning to Statej ~ = 1, 2, "', N I ) rs for O < q < 

1, 

F(T) N~] 

Ms ~1.i_moms(s)= q 1 1-qF(T) (3.17) 
(N=1, 2, "'), 

1 - q F(T) N~l 
1 - qF(T) 

and for q = 1, 

M = (N-1)F(T) (3.18) (N=1, 2, "'). 

S F(T) 

NOte also that Ms represents the expected number of rollbacks to SC until the process 

ends. 

(3 ' 1 5) 

N-l a2 (s) 

al(s)a2(s)[ao(s)+a2(s)] I - I - al(s) 

1 - al (s) I - al (s)- a2 (s) . 
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3 4 EXpected OVerhead 

Assume that the overheads for rollbacks to HC and SC are CH and Cs (Cs < CH), 

respectively, and CT for setting up one SC. The other overheads except CH, Cs and CT 

would be neglected because they are small. Then, the total expected overhead is, from 

(3. 1 1), (3. 14), and (3. 1 7), 

Cl (N) ~ IoN + CHMH + CSMS + (N - I~T - S 

T + CH + [T + qF(T~ l~ F(T) j N-l 

s 1-qF(T) _CH +(N I~T -S j=1 

F(T) N~l 
F(T 1-qF(T) 

(N=1, 2, ･･･), (3.19) 

where note that ~j=1 ~ O. In particular, when N = I , i.e. , SC is not set up, 

Cl (1) = S + CHF(S) _ S (3.20) 
F(S) ' 

When q = I , i. e. , SC can recover from all failures, 

Cl (N) = S + F(T~CH + (N - I~s I + (N - I~T - S, (3.21) 

F(T) 

and when q = O, i. e. , SC caunot recover from any failures, 
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C,(N)=1-[F(T)r T +C~ +(N I~~ S 
[F(T)r F(T) 

(3.22) 

HCo SCl SC2 HCN SCN+1 S C2N- l HC2N 

Figure 3 .2: Soft checkpoints between three hard checkpoints. 

Next, we divide S equally into 2N time intervals where T2 E S/(2N) (N=1, 2, ･･･), 

and set up three HCs at time O, NT2, 2NT2, and SCs every at time kT2 except for k=0, N, 

2N (Figure 3 .2). Then, by the similar method of obtaining Cl(N) in (3.19), the total 

expected overhead is 

set 

C2 (N) = 2 

N-1 F(T ) j 
T2 + CH + [T2 + qF(T2 ~s l~ 2 

j=1 1-qF(T2) 

F (T F (T2 ) N~l 

2 1-qF(T2) 

(N=1, 2, ･･･). (3.23) 

Generally, when we divide S equally into kN time intervals where Tlf--S/(kN), and 

up HCs at times kN (k=0, 1, 2, ･･･) and SCs between HCs, the total expected 

+ NCT 
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overhead is 

Ck (N) = k 

N-1 F(T ) j 
Tk + CH + [Tk + qF(Tk)Cs~f k 

J=1 1-qF(Tk) 

F (T F (Tk ) N~l 

k 1-qF(Tk) 

(N=1, 2, ･･l 
, 

+ NCT 

k=1 ' ) - 2 . ... 
, 

(3 .24) 

3 . 5 Numerical Examples 

We compute an optimal number 

overhead Cl(N). Since F(t) I e At 

e~AS/N N-l ~S+'~C + ~ +q(1 e AS/N)~1Cs ~ 

~Cl (N)= N '~r~ j=1 

N-l 

N* of SC which minimizes the total 

and T=S/N, Equation (3. 1 9) becomes 

expected 

e~AS/N e~AS/N 
1 - q I - e~AS/N 

- ;LCH + (N - 1)jLCT - ~S (3.25) (N=1, 2, ･･･). 

Table 3.1 gives the optimal number N' for q = 0.0, 0.2, 0.4, 0.6, O. 8, 1.0 and ~CT 

=0.0001, 0.0005, 0.001, 0.005 when ~S = 0.1, ~CH = 0.001 and ~Cs = 0.0002. For 

example, when q = O. 8 and ~CT = 5 x I 0~4, the optimal number is N' = 4 and the 

resulting overhead is ~Cl(4) = 4' 866 x I 0~3 i. e. , we should take 3 SCs between HCs. It 

is evident that optimal N' decrease and their overheads Cl(N') increase as the overhead 
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Table 3 . I : Optimal number N' and total expected overhead ~Cl(N') when ~S = O. I , 

~CH =0. OOI , ~Cs = O. O002. 

CT increases. This also indicates that N' increase as q increase, because SC becomes 

useful to recover from failures. Further, the overhead of two-level schemes is smaller 

than that of one-level scheme in the case of N = I . From this example, two-level 

recovery schemes would achieve better performances as compared to one-level 

scheme . 

We give the optimal number N~ which minimizes Ck(N) in (3.24) when ~S=0.1, 

~CJr~0.0003, ~Cr~0.0002, ~Cf0.0001 and q=0.8 in Table 3.2. We fmd the optimal 

number k=2 and N*=5. 
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Table3．2：0ptim飢numberN＊a血dt・talexpected・verheadλCん（めwhenλS－0．1，

　　　　　　　　　　　　λC折0．OOO3，λCチ0．0002，λCfO．0001，9＝0．8．

ん ガ 　　　　＊λCん（N）

1 9 0．1032

2 5 0．1030

3 3 0．1031

4 2 0．1034

5 2 0．1036

6 2 0．1039

7 1 0．1042
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3.6 Conclusions 

We have taken two types of checkpoints as the fault tolerance technique of recovery 

mechanism and obtained the total expected overhead of one cycle from HC to HC, 

using Markov renewal processes. Further, we have computed numerically the optimal 

interval of SC between HC which minimizes the total overhead. It has been shown in a 

numerical example that two-level recovery schemes would be more useful to recover 

from failures. Moreover, by making suitable modification and further extension, this 

model would be applied to storage management in mobile environments [36], and 

other computer and database inforrnation systems. 
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Chapter 4 

Checkpoint Intervals for Error Detection 

by Multiple Modular Redundancies 

This chapter considers multiple modular redundant systems as the recovery techniques 

of error detection and error masking on the finite process execution, and discusses 

analytically optimal checkpoint intervals. Introducing the overheads of compa~ison 

and decision by majority, an error occurrence rate and a native execution time ofthe 

process, we obtain the mean times to the completion of the processes for multiple 

modular systems, using renewal equations, and derive analytically optimal checlpoint 

intervals which minimize them. Further, it is shown numerically that what a majorty 

decision system is optimal. 
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4.1 Introduction 

In computer systems, some errors often occur due to noises, human errors, hardware 

faults, and so on. To attain the accuracy ofthe computing, it is important to detect and lor 

mask such errors by fault tolerant computing techniques [4, 1 2]. 

This chapter considers the redundant techniques of error detection and error 

masking on a finite process execution. Firstly, an error detection of the process can be 

made by two independent modules where they compare two results at suitable 

checkpoint times. If their results do not mateh with each other, we go back to the 

newest checkpoint and make a retrial of the processes. Secondly, a majority decision 

system with multiple modules is adopted as the technique of an error masking and the 

result is decided by its majority of modules. In this case, we determine numerically 

what a maj ority system is optimal. 

In such situations, if we compare results frequently, then the time required for 

rollback could decrease, however, the total overhead for comparisons at checkpoints 

would increase. Thus, this is one kind of trade-off problems how to decide an optimal 

checkpoint interval. 

Several studies of deciding a checkpoint frequency have been discussed for the 

hardware redundancy above. Pradhan and Vaidya [29] evaluated the performance and 

reliability of a duplex system with a spare processor. Ziv and Bruck [44, 45] 

considered the checkpoint schemes with task duplication and evaluated the 
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performance of schemes. Kim and Shin [8] derived the optimal instruction-retry period 

which minimizes the probability ofthe dynamic failure on the triple modular redundant 

controller. 

This chapter considers a double modular redundancy as redundant techniques of 

error detection and summarizes the results L19, 20]. Next, we consider a redundant 

system of a majority decision with (2n+1) modules as an error masking system, and 

compute the mean time to completion of the process and decide numerically what a 

majority system is optimal. . 

4.2 Multiple MOdular SyStem 

Suppose that S is a native execution time of the process which does not include the 

overheads of retries and checkpoint generations. Then, we divide S equally into N 

parts and create a checkpoint at planned times kT(k=1, 2, ･ ･･, N-1) where S=NT 

(Figure 4. I ) . 

To detect errors, we frrstly provide two independent modules where they 

compare two results at periodic checkpoint times. If two results agree with each 

other, two processes are correct and go forward. However, if two results do not 

agree, it is judged that some errors have occurred. Then, we make a rollback 

operation to the newest checkpoint and a retry of the processes. The process 

completes when two processes are succeeded in all intervals above. 
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T 2T 3T 

O 

(N-1)T 

- - - - . 

NT 

S 

Figure 4. I : Checkpoint intervals. 

Let us introduce a constant overhead C I for the comparison of two results. We 

neglect any failures of the system caused by conunon mode faults to make clear an 

error detection of the processes. Further, it is assumed that some errors of one process 

occur at constant rate ~, i. e. , the probability that any errors do not occur during (O,t] is 

given by e~At. Thus the probabillty that two processes have no error durmg (O t] rs 

Fl (T)=e~2AT [27] . 

The mean time L I (N) to completion of the process is the summation of the 

processing times and the overhead C I of comparison of two processes. From the 

assumption that two processes are rolled back to the previous checkpoint when an error 

has been detected at a checkpoint, the mean execution time of the process for one 

checkpoint interval (O,T] is given by a renewal equation: 

L (1) (T + C )e~ [ k (4･ 1) l 2~T + T+CI +Ll(1) 1-e~2~T) , 

and solving it, 

~ (1) (T + Cl ) (4'2) 
e2~7' 

Thus, the mean time to completion of the process is 

~(N) ~ N~(1) = N(T + Cl)e2~T = (S + NCI )e2AS/N (4.3) 
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r 

We seek an optimal number Nl which minimizes L I (N) for a specified S. Evidently, 

Ll(co)=co and 

Ll (1) = (S + Cl )e2As (4.4) 
Thus, there exists a finite number Nl'(1 ~ Nl' < co). However, it would be difficult to 

find analytically Nl which minimizes Ll(N) in (4.3). Putting T=S/N in (4.3) and 

rewriting it by the function T, 

~(T) = S 1+ CTI e2hT (O < T ~ S) . (4.5) 

It is evident that Ll(O)=1imT-oLl(T)=00 and Ll(S) is given by (4.4). Thus, there exists an 

optimal ~l (O < ~l ~ S) which minimizes Ll(T) in (4.5). Differentiating L I (T) with 

respect to T and setting it equal to zero, 

T + CIT Cl O . (4.6) 2~ ~ 

Solving it with T, 

~ Cl I + 2 1 (4.7) l ~ 2 ~Cl 

Therefore, we have the following optimal interval number Nl ' [1 8] : 

(i) If ~l < S, we put [ S / ~Tl]= N, where [x] denotes the greatest integer contained 

in x, and calculate Ll(N) and Ll(N+1) from (4.3). IfLl(N)~ Ll(N+ I ) then Nl '=N 

and Tl' = S / Nl ' and conversely, ifLl(N+ 1)< Ll(N) then Nl'=N+1 . 
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(ii) If ~I~S, i. e ., we should make no checkpoint until time S then Nl '=1 , and the 

mean time is given in (4.4). 

Note that ~l in (4.7) does not depend on S. Thus, if S is very large, is changed greatly 

or is unclear, then we may adopt Tl as an approximate checkpoint time. 

Further, the mean time for one checkpoint interval per this interval is 

C L (T) ~~ Ll(1) = I + I e2~T (4.8) 

T T ' 
Thus, the optimal time which minimizes Zl(T) also agrees with ~l m (4.7). 

Next, consider a redundant system of a majority decision with (2n+1) modules as 

an error masking system, i.e., (n+1)-out-of-(2n+1) system (n=1,2,･･･). If more than 

(n+1) results of (2n+1) modules agree, the system rs correct Then the probabilrty that 

the system is correct during (O, T] is 

2~+1 2n+1 ( _hT y(1 e~hT~)"'1 k 

F~.1(T) = ~ k ~e - (4.9) k=~+1 

Thus, the mean time to completion of the process is 

L~.1(N)=N(T+C ) (4.10) F~.1 (T) (n = 1,2,･ ･ ･) , ~+1 

where Cn+1 is the overhead of a majority decision of (2n+1) modules. 
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Table 4.1 : Optimal checkpoint number Nl , interval ~Tl and mean time ~Ll(NI ') for a 

double modular system when ~S=1 0~1 . 

4.3 Numencal Examples 

We show numerical examples of optimal checkpoint intervals for a double modular 

system when ~S= I 0~1. Table 4.1 presents ~~l in (4.7), optimal number Nl', ~Tl and 

~LIT(Nl') for ~Cl=0.5, 1.5, 2, 3, 4, 5, 10, 20, 30(xl0~3). For example, when ~=10~2 

(1/sec), Cl=1 0~1(sec) and S=1 0.0(sec), the optimal number is Nl'=5, the optimal interval 

- 49 -



is Tl' = S / Nl' = 2.0 (sec), and the resulting mean time is Ll(5)=10.929 (sec), which is 

longer about 9.3 percent than S. 

Next, we consider the problem what a majority system is optimal. When the 

overhead ofcomparison oftwo processes is Cl , it is assumed that the overhead Cn+1 ofan 

2n+1 
(n+1)-out-of-(2n+1) system is given by C ~ C (n=1, 2, ･･･). This is to select 

'*1 2 l 
and compare 2 from each of (2n+1) processes. Table 4.2 presents optimal number N'n+1 

and the resulting mean time ~Ln+1(N'~+1)xl02 for n=1, 2, 3, 4 when ~Cl=0.1xl0~3 

0.5xl0~3. When ~Cl=0.5xl0~3, the optimal checkpoint number is N3'=2 and 

~L3(2)=10.37xl0~2 which is the smallest among these systems, that is, a 2-0ut-of-3 

system is optimal. The mean times for n=1 , 2 are smaller than I 0.65x I 0~2 for a double 

modular system. 

Table 4.2: Optimal checkpoint number N'n+1 and mean time ~Ln+1(N'n+1) for 

(n+1 )-out-of-(2n+1 ) system when ~Cl=0.5 x I 0~3 , ~Cl=0. I x I 0~3 and ~S= I 0~1 . 
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4.4 Conclusions 

In this chapter, the simple checkpoint models are fonnulated for error detection and 

error masking by redundancy on the finite process execution. We have obtained the 

mean times to completion of the process for a double modular and a majority decision 

systems. The optimal checkpoint intervals which minimize them are derived 

analytically. In general, the overhead Cl and the native execution time S would be 

estimated for real systems. Therefore, the establishment of checkpoint schemes would 

be depend on whether we can accurately estimate error rates or not. 
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Chapter 5 

S equential Checkpoint Intervals 

for Error Detection 

This chapter adopts a modular redundant system as the recovery techniques of error 

detection and error masking on the finite process execution.' Checlpoints are placed at 

sequential times Tk(k=J, ~, . . ., N). We consider two checlpoint models where error 

rates during the interval (7;k_1. T~ (k=1, 2, ･ ･ ･, N) increase with the number of 

checkpoints and with the original execution time. The mean times to the completion of 

the process are obtained analytically, and optimal checlpoint intervals which minimize 

them are computed numerically by solving simultaneous equations. Further, 

approximate checlpoint intervals are derived by denoting that the probabiJty of the 

occurrence of errors during (Tk_], TkJ is constant. It is shown that the approximate 

method is simple and these intervals give good approximations to optlmal ones. 
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5 . I Introduction 

This chapter considers a general modular system of error detection and error masking 

on a fmite process execution: Suppose that checkpoints are placed at sequential times 

Tk(k=1, 2, ･ ･ ･, N), where TN S (Figure 5.1). First, it is assumed that error rates 

during the interval (Tk_1, Tk J (k=1, 2, ･ ･ ･, N) increase with the number k of checkpoints. 

The mean times to completion of the process are obtained, and optimal checkpoint 

intervals which minimize them are derived by solving simultaneous equations. 

Further, approximate checkpoint intervals are given by denoting that the 

probability of the occurrence of errors during (Tk_1, Tk J is constant. Secondly, it is 

assumed that error rates during (Tk_1, Tk J increase with the original execution time, 

irrespective of the number of recoveries. Optimal checkpoint intervals which minimize 

the mean time to completion of the process are discussed, and their approximate times 

are shown. Numerical examples of op,timal checkpoint times for a double modular 

system are presented. It is shown numerically that the approximate method is simple 

and these intervals give good approximations to optimal ones. 
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To Tl T2 T3 TN-1 TN 

S 
XN 

Figure 5 . I : Sequential checkpoint interval. 

5 .2 Sequential Checkpoint Interval 

The error rate ~ is constant and S is divided into an equal part. In general, error rates 

would be increasing with time, and so that, their intervals should be decreasing with 

their number. We assume for the simplicity of the model that error rates are increasing 

with the number of checkpoints. 

Suppose that S is a native execution time of the process which does not include the 

overheads of retries and checkpoint generations. Then, we divide S into N parts and 

create a checkpoint at sequential times Tk(k = I , 2, ･･･, N-1), where To O and TN S 

(Figure 5.1)[17]. Let us introduce a constant overhead C for the comparison of a 

modular system. Further, the probability that the system has no error during the 

interval (Tk_1, Tk] is Fk(Tk-Tk_1), irrespective of other intervals and rollback operation. 

Then, the mean time Ll(N) to completron of the process rs the summatron of the 
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processing times and the overhead C for the comparison of a modular system. 

From the assumption that the system is rolled back to the previous checkpoint 

when some error has been detected at a checkpoint, the mean execution time of the 

process for the interval (Tk_1' Tk] is 

L(k)=(T -Tk_1+C)Fk(Tk-Tkl)+[T -Tk l+C+L(k) k(Tk T l), l k _ k _ I V; - k_ (5.1) 

and solving it, 

~(k) = Tk -Tk_1 + C (k=1, 2, "', N), (5.2) 
Fk (Tk - Tk_1 ) 

where Fk(t)E1- Fk(t). Thus, the mean time to completion ofthe process is 

N ~ Tk -Tk_1 + C Ll (N) ~ ~fLl (k) = ~f Fk (Tk - Tk_1 ) (N=1, 2, "'). (5.3) 
k=1 

We find optimal times Tk which minimize Ll(N) for a specified N. Let fk(t) be a 

density function of Fk(t) and /k(t) fk(t)/F~~t) that is the failure rate of Fk(t). Then, 

differentiating Ll(N) ' with resp~ct to Tk and setting it equal to zero, 

1 + (Tk -Tk_1 + C)rk (Tk -Tk_1 ) 
Fk (T'k - TkLl ) 

[ J ~F (T -Tk)1+(Tk.1~T+C)r (T -Tk). 
k k+1 k+1 

k+1 k+1 

Setting that xk~Tk-Tk I and rewrrtmg (5 4) as a functron ofxk 

1 1 (/F1,2, "', N-1). [ [ k.1 k'l l 
J 1 + (xk + C)rk(xk) = 1+(xk.1+C)r (x ) 

Fk (xk ) ( ~ Fk+1 ¥xk+1 ) 

(5.5) 
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Next, suppose that F~~t)=e~Ad, i. e., an error rate during (Tk_1'Tk] is constant ~k 

which increases with k. Then. Equation (5.5) is rewritten as 

1 + jLk.1(xk.1 + C) _e(h"^ h"'^") O (5.6) 
1 + ~k(xk + C) 

It is easily noted that ~k+1xk+1 ~ ~kxk, and hence, xk+1 ~ xk Since ~k+1 ~ ~k. 

In particular, when ~k ; ~ for k = I , 2, ･･･, N, Equation (5.6) becomes 

1+jL(xk.1 +C)_e~(" '^ ') O (5.7) 
1 + jl;(xk + C) 

Since xk+1 ~ xk, we have that xk+1 ~ xk from (5.7), i.e., it is easily proved that a solution 

to satisfy (5.7) is restricted only to xk+1 = xk ~ T, irrespective of the interval number k. 

Then, the mean time to completion of the process is 

Ll (N) = (S + NC~AS/N (5.8) 
If ~k+/ > ~k, then xk+1 < xk from (5.6). Let Q(xk+1) be the left-hand side of (5.7) for a 

fixed x Then, Q(xk+1) is strictly increasing from 

Q(O) = I + jLk.lC _ eh" 
1 + jLk(xk + C) 

to Q(xk)>0. Thus, if Q(O)<0, then an optimal xk+1 (0< xk+1<xk) to satisfy (5.6) exists 

uniquely, and if Q(O)~O, then xk+1=S-Tk. 

Therefore, noting that T0=0 and Tir~S, we have the following result: 

(i) When N= I and Tl=S, the mean time is 

Ll (1) = (S + C~~,s (5.9) 
(ii) When N = 2, from (5.5), 
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[1 + ~ (xl + C)~A,', - [1 + ;1~ (S - xl + C)~~,(s-., ) = O . (5. 10) 

Letting Ql(xl) be the left-hand side of (5. I O), it is strictly increasing from Ql(O)<0 

to 

Ql(S) = [1 + ~(S + C)~;L,s _ (1 + ~2C) . 

Hence, if Ql(S)>0, then xi=T; (0<Tl<S) to satisfy (10) exists uniquely, and 

conversely, if Ql(S) ~ O then x;= Tf=S. 

(iii) When N=3, we compute xk(k=1 ,2) which satisfy the simultaneous equations: 

[1 + ~ (xl + C)~~,', = [1 + ;12(x2 + C)~~,'= (5.1 1) 

[1 + jl~(x2 + C)~A=', = [1 + ~(S - xl ~ x2)~;1;,(s-', ',) (5.12) 

=~ x; similarly. (iv) When N=4, 5, ･ ･ ･, we compute xk and Tk 

j=1 

We compute sequential checkpoint intervals T~~fl , 2, ･ ･ ･. N) for a double modular 

system. It is assumed that ~k=2[1+0. I (k-1)]~ (k=1 , 2, ･ ･ ･), i. e., an error rate increases by 

1 Oo/o of an original rate ~. Table 5.1 presents optimal sequential intervals Tk and the 

resulting mean times Ll(N) for N=1, 2, ･ ･･, 9 when ~S=10~1 and ~C=10~3. In this case, 

the mean time is the smallest when N=5, i. e., the optimal checkpoint number is N'=5 

and the checkpoint times T~ (k=1, 2, 3, 4, 5) should be placed at 2.38, 4.53, 6.50, 8.32, 

1 0.00(sec) for ~=10~2(1/sec), and the mean time 1 1 .009 is about I Oo/o longer than an 

original execution time S=1 O. Further, all values ofxk=Tk-Tk_1 decrease with k because 

error rates increase with the number of checkpoints. 
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Table 5 . I : Checkpoint intervals ~Tk and mean time ~Ll(N) when ~k=2[1 +0. I (k-1 )]~, 

~S=1 0~1 and ~C=1 0~3. 

N 
~TI x I 02 

~T2X I 02 

~T3 x I 02 

~T4X I 02 

~T5XI02 

~T6X I 02 

~T7X I 02 

~T8X I 02 

~T9x I 02 

~L I (N) 

* I 02 

1 2 3 4 5 6 7 8 9 

10.00 5.24 

10.00 

3.65 

6.97 

10.00 

2.85 

5 .44 

7.81 

10.00 

2.38 

4.53 

6.50 

8.32 

10.00 

2.05 

3.91 

5.62 

7.19 

8.65 

10.00 

1.83 

3.48 

4.99 

6.39 

7.68 

8.88 

10.00 

1 .65 

3.15 

4.52 

5.78 

6.95 

8.03 

9.05 

10.00 

1 .52 

2.89 

4.15 

5.31 

6.38 

7.37 

8.31 

9.18 

10.00 

12.3362 11.3266 11.0792 11.0095 11.0089 11.0423 11.0950 11 , 1596 1 1.2322 

5 .3 ApprOXimatlOn MethOd 

It is very troublesome to solve simultaneous equations. We consider the following 

approximate checkpoint times: It is assumed that the probability that a modular system 

has no error during (Tk_1'Tk] is constant, i. e., F~k(Tk-Tk_1)~:q (k=1, 2, "', N). From this 
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assumption, we derive Tk-Tk_1EF~k~1(q) as a function of q. Substituting this Tk-Tk_1 into 

(5.3), the mean time to completion of the process is 

Ll(N)-lJ ~1(q)+C (5.13) ~Fk 
k=1 q 

We discuss an optimal q which minimizes Ll(N). 

For example, when F~k(t)=e~Akt 

e hk(Tk~T^~') = q ~ e~q , 

and hence, 

T Tk_1 ~ ~ 
;Lk' 

Since 

N __~ 1 Tk, Tk_1)=TN=S q ~( - ~,;Lk k=1 

we have 

~1 e (S+NC). Ll(N)= e~ ~~: jLk +NC (5.14) 

Therefore, we compute ~ and Ll(N) for a specified N. Comparing Ll(N) for N=1 , 2, 

we obtam an optimal N which mmunlzes Ll(N) and ~ = S/~ k=1( ) N 1/;Lk . Lastly. We 

~ J=1 (1/;LJ ) (~~l 2 N 1) for an approxunate optimal N may compute T~k' = ~ 

which minimizes Ll (N). 
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Table 5.2: Mean time ~Ll(N) for ~ when ~S=10~1 and ~C=10~3. 

Table 5 2 presents ~ = S/~ N (1l~k) and ~Ll(N) in (5.14) for N=1,2, ･･･, 9 under 
k=1 

the same assumptions as those in Table 5 . I . In this case, N~=5=N' and the mean time 

Ll(5) is a little longer than that in Table 5.1. When N =5, approximate optimal 

checkpoint times are ~~Tk X I 02=2.37, 4.52, 6.49, 8.3 1 , I 0.00 that are a little shorter than 

those in Table 5 . I . Such computations are much' easier than to solve simultaneous 

equations . 

It would be sufficient to adopt approximate checkpoint intervals as optimal ones in 

actual fields. Figure 5.2 draws the mean times ~Ll(N) for I ~ N ~ 20. 
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Figure 5.2: Mean time ~Ll(N) when 1_<N<_20. 

5.4 MOdlfled MOdel 

It has been assumed until now that error rates increase with the number of checkpoints. 

We assume for the simplicity of the model that a modular system has no error during the 

interval (Tk_1' Tk] is F~(Tk) / F~(Tk_1)' irrespective ofrollback operation. Then, the mean 
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execution time of the process for the interval (T~l'Tk] is 

F(Tk) F(Tk) F(Tk_1), (5.15) L2 (k) = (Tk - Tk_1 + C) + [Tk - Tk_1 + C + L2 (k)] ~ 

F (Tk_1 ) F (Tk_1 ) 
and solving it, 

(Tk - Tk_1 + C)F(Tk_1 ) (5. 16) L2 (k) = (k = 1,2, . . . , N) . 
F(Tk) 

Thus, the mean time to completion ofthe process is 

(T -Tk I +C)F(Tk l) N (N=1, 2, ":). 

L (N)=~ k - - (5.17) F(Tk) 
k=1 

We fmd optimal times Tk Which minimize L2(N) for a specified N. Let j(t) be a 

density function of F(t) and r(t)~--~~t)/F(t) be the failure rate of F(t). Then, 

differentiating L2(N) with respect to Tk and setting it equal to zero, 

F(Tk_1) F(Tk) [1+r(TXT -T+C)] F(Tk) [1 + r(TkXTk -Tk_1 +C)] = F(Tk.1) 
k k+1 k 

(k=1, 2, "',N-1). (5.18) 

Therefore, we have the following result: 

(1) When N= I and Tl=S, the mean time is 

S+C L2(1)= F(S) ' (5.19) 

(ii) When N=2, from (5. 1 8), 
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F(Tl)[1+r(TIXT1+C)] F(Tl)[1+r(TIXS T+C)] O (5.20) 1 

F(S) 

Letting Q2(Tl) be the left-hand side of (5.20), it is evidently seen that 

1 
Q2 (O) = I + r(O~ - [1 + r(OXS + C)] < O , 

F(S) 

1 
Q2 (S) = [1 + r(SXS + C)]- [1 + r(S~] > O . 

F (S ) . 
Thus, there exists some Tf that satisfies (5.20). 

(m) When N=3, we compute Tk(lfl ,2) which satisfies the simultaneous equations: 

1 ' F(T) [1 +r(TIXTI +C)]= I [1 + r(TIXT2 -T +C)] (5.21) 

F(Tl) F(T2) l 
F(Tl) [1 + r(TIXT2 -TI +C)]= 2 [1 + r(T )(S -T + C)] (5.22) F(T ) 

F(T2) F(S) 2 2 

(iv) When N=4,5, " ', we compute Tk Similarly. 

We compute sequential checkpoint intervalS Tk(k=1 , 2, " ', N) for a double modular 

system when error rates increase with the number of checkpoints. It is assumed that 

= e~2(;L')"' (m>1), ~C=10~3 and ~S=10~1. F(t) 
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Table 5.3 : Checkpoint intervals ~Tk and mean time ~L2(N) when F~(t)=exp[-2(~t)1'1], 

~C=1 0~3 and ~S=1 0~1 . 

N 
~TI x I 02 

~T2 X I 02 

~T3 x I 02 

~T4X I 02 

~T5 X I 02 

~T6X I 02 

~T7X I 02 

~T8 X I 02 

~T9 x I 02 

~L2(N) * 

1 02 

1 2 3 4 5 6 7 8 9 

10.00 5.17 

10.00 

3.51 

6.80 

10.00 

2.67 

5.17 

7.60 

10.00 

2.16 

4.18 

6.15 

8.09 

10.00 

1.81 

3.51 

5.17 

6.80 

8.41 

10.00 

1 .57 

3.03 

4.46 

5.87 

7.26 

8.63 

10.00 

1.38 

2.67 

3.93 

5.17 

6.39 

7.60 

8.81 

10.00 

1 .23 

2.39 

3.51 

4.62 

5.71 

6.80 

7.87 

8.94 

10.00 

11.8390 11.0424 10.8593 10.8207 10.8384 10.8839 10 9452 11 0162 1 1 .093 8 

Table 5.3 presents sequential intervals ~Tk and the resulting mean times ~L2(N) for 

N=1,, 2, ･･･, 9 when F(t) expL 2(~t)1 I] ~S 10 and ~C 10 In thrs case the mean 

time is the smallest when N=4, i. e., the optimal checkpoint number is N'=4 and the 

checkpoint times Tk' (k=1, 2, 3, 4) should be placed at 2.67, 5.17, 7.60, 10.00(sec) for 

~=10~2(1/sec), and the mean time 10.8207 is about 80/0 Ionger than an original 

execution time S= I O. 
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Next, we consider the approximate method similar to that of the previous model. It 

is assumed that the probability that a modular system has no error during (Tk_1' Tk] is 

2(hty' , constant, i.e.. F~(Tk)/F~(Tk_1)=q (k=1,2,"',N). When F(t) = e~ 

F(Tk) _ e~2[(hT^)~~(hT,~,)",] - q ~ e 

F(Tk_1 ) ~ ~ 
and hence, 

2(~Tk)~ - 2(jLTk l)~ q (k 1,2, N) 

Thus, 

(jLTk )~ = l~~ 

2' 

i. e ., 

~T = kq l/~ ~ (k=1,2,....N 1) 
2 

and 

j~TN ~S N~q l/~ 

- 2 

Therefore, 

L2 (N) = e~ (S + NC) = e2(As)"'/N (S + NC) . (5.23) 

Fonuing the inequality L2(N+ I )-L2(N) ~ O, 

C ~ (S+NC)~2(;Lsy AN(N'I)] I . (5.24) " -} 
It is proved that the right-hand side of (5.24) is strictly decreasing to O. Thus, an 

optimal i~ to minimize L2(N) in (5.23) is given by a unique minimum which satisfles 

(5.24). 
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Table 5.4: Mean time ~L2(N) for ~q when ~S=10~1 and ~C=1 0~3. 

Table 5 4 presents q 2(~S)m/N and ~L2(N) m (5 23) for N=1, 2, ･ ･ ･, 9 under the same 

assumptions in Table 5.3. In this case, N~=4=N* and approximate optimal checkpoint 

times are ~~TkX 102 = 2.84, 5.33, 7.70, 10.00, that are a little longer than those of Table 

5.3. 
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5 . 5 COncluSIOnS 

We have considered two checkpoint models with a finite execution time S where error 

rates increase with the number of checkpoints and with the original execution time. 

The mean times to completion of the process for two models have been obtained and 

the computing procedures for determining optimal checking intervals to minimize 

them have been shown. When error rates have an exponential and Weibull distributions, 

sequential checkpoint intervals have been computed numerically by solving 

simultaneous equations. Furthermore, approximate checkpoint intervals have been 

derived by assuming that the probability of the occurrence of errors during each 

checkpoint interval is constant. This is very simple and gives good approximations to 

optimal intervals. It would be sufficient to use practically approximate checkpoint 

intervals for actual models. 
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Chapter 6 

Random 
a Double 

Checkpoint Models 

Modular System 

for 

Tasks with random processing times are executed successively. A double modular system 

oferror detection for the processing ofeach ta~k is adopted. Two types ofcheclpoints 

such as compare-checkpoint ' and compare-and-store checlpoint can be placed at the 

end oftasks. The problem is that in whatplaces we set suitable checkpoints. The mean 

execution timesper one taskfor three schemes are obtained, and optimal numbers which 

minimize them are derived analytically. Extended mod~ls with majorty decision 

modules and a spare module are proposed. 
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6 . I Introduction 

Most computer systems in offices and industries execute successively tasks each of 

which has a random processing time. In such systems, some errors often occur due to 

noises, human errors and hardware faults. To detect and mask errors, some useful fault 

tolerant computing techniques have been adopted [12, 35]. The simplest scheme in 

recovery techniques of error detection is as follows [20]: We execute two independent 

modules which compare two states at checkpoint times. If two states of each module do 

not match with each ･other, we go back to the newest checkpoint and make their retrials. 

Several studies of deciding optimal checkpoint frequencies have been made: The 

performance and reliability of a double modular system with one spare module were 

evaluated [22, 28]. Furthermore, the performance of checkpoint schemes with task 

duplication was evaluated [44, 45]. The optimal instruction-retry period that minimizes 

the probability of the dynamic failure by a triple modular controller was derived [8]. 

Evaluation models with finite checkpoints and bounded rollback were discussed [26]. 
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e CSCP 

Figure 6. I : Task execution for Scheme I . 

Suppose that we have to execute the successive tasks with a processing time Yk (lfl , 

2, ･･･) (Figure 6. I ). A double modular system of error detection for the processing of each 

task is adopted. Then, introducing two types of checkpoints; compare-and-store 

checkpoint (CSCP) and compare- checkpoint (CCP) [20], we consider the following 

three checkpoint schemes: 

(1) CSCP is placed at each end of tasks. 

(2) CSCP is placed at the N-th end oftasks. 

(3) CCP is placed at each end oftasks and CSCP is placed at the N-th end of tasks. 

The mean execution times per one task for each scheme are obtained, and optimal 

numbers N* that minimize them for Schemes 2 and 3 are derived analytically and are 

compared numerically. This is one of applied models with random maintenance times 

[17, 37] to checkpoint models. Such schemes would be useful when it is better to place 

checkpoints at the end of tasks than those on one's way. Further, we extend a double 

modular system to a majority decision system and the system with one spare module 

[22] . 

- 71 -



6.2 D oub I e Modular System 

Suppose that task k has a processing time Yk (lfl, 2, ･･･) with an identical distribution 

" Jo [1 - G(t)]dt < oo , and is executed G(t) E pr{Yk ~ t} and a fmite mean IJ = 

successively. To detect errors, we provide two independent modules where they compare 

two states at checkpoint times. Further, it is assumed that some errors occur at a constant 

rate ~ ( ~ > O ), i. e. , the p~obability that two modules have no error during (O, t J is e~2At 

(1) Scheme 1 

CSCP is placed at each end of task k: When two states of modules match with each other 

at the end of task k, the process oftask k is correct and its state is stored (Figure 6. I ). In 

this case, two modules go forward and execute task k+ I . However, when two states do 

not match, it is judged that some errors have occurred. Then, two modules go back and 

make the retry oftask k again. 

Let C be the overhead for the comparison of two states and Cs be the overhead for 

their store. Then, the mean execution time ofthe process oftask k is given by a renewal 

equation: 

~(1)=~[e~2;Lt (C+Cs+t~(1 e 2A/ -Y - ~l - AC + t + Ll (1))J dG(t) . (6. I ) 
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Figure 6.2: Task execution for Scheme 2. 

Solving (6. 1) for Zl(1), 

~(1) = C + /J + CsG'(2jL) , 

G'(2~) 

where G'(s) is the Laplaee-Stieltjes (LS) transform of G(t), i e G'(s)- ~e~'tdG(t) for . ･, - Jo 

s>0. Therefore, the mean execution time per one task is 

~(1)= ~(1)= C+p (6.2) +Cs. G' (2~) 

(2) Scheme 2 

CSCP is placed only at the end oftask N (Figure 6.2): When two states of all task k (lfl ,' 

2, ･ ･ ･, N) match at the end of task N, its state is stored and two modules execute task N+ I . 

When two states do not match, two modules go back in th~ frrst task I and make their 

retries. 

By the method similar to obtaining (6. I ), the mean execution time of the ~process of 

all task k (k=1, 2, ･･･, N) is 
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= [e~2~t (6.3) ~(N) r X - )] 
( C +t + L2(N) dG(N)(t), (C+Cs+t~l e - -2~t 

where G(N)(t) is the N-fold Stieltjes convolution of G(t) with itself, i. e., 

G(N)(t)~ Jo"G(N~1)(t _u~G(u) (N=1, 2, ･･･), and G(o)(t) I for t > O and G(1)(t) G(t) 

Solving (6.3) for Z2(N), 

~(N) - [ ･ IN _ C+N/1+Cs G (2~) 

[･ r ' G (2jL) 

Therefore, the mean execution time per one task is 

L (N) ~ ~(N) _ C + N/J Cs (6.4) (N=1, 2, ･･･). + 
2 ~ [･ r N N N G (2~) 

When N=1 , L2(1 ) agrees with (6.2). 

We find an optimal number N2' that minimizes L2(N) . There exists a fmite N2' ( I ~ 

N2' < co) because limN-~2(N)=co. From the inequality L2 (N+1 )-L2 (N)~O, 

[ I - G' (2;~) (6.5) l G'(2~) [ ･ l -Cs G (2~) N ~ C N (N+ l)/1 + C (N=1, 2, ･･･). 

The left-hand side of (6.5) is strictly increasing to oo in N. Thus, there exists a fmite and 

unique minimum N2' (1 ~ N2 < oo) which satisfies (6.5). If(2p+C)[1-G'(2~)] ~ [C + Cs 

XG'(2~)] G'(2~), then N2'=1 . 

When G(t)=1-e~t//', Equation (6.5) is rewritten as 

N 

N N+1+C 2~p Cs I >C (N 1 2 ) (6.6) 
p /1 2~/1+1 IJ 

Table 6.1 presents the optimal number N2 and the resulting execution time L2(N2')/p 

and L2(1)/p in (6.2) for A/1 and C//1 when Cs/p=0.1. This indicates that optimal N2 
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Table 6.1: Optimal number N2 and the resultmg executron tnue L (N2 )1l/ for 

Scheme 2 when G(t)=1-e~tlp and Cslp O 1 

decrease with ~p and increase with C/p. For example, when ~p=0.005 and Clp=0,l 

N2'=4 and L2(N2')/p is I .092 that is about I Oo/o shorter than L2(1)lp=1 .21 1 for Scheme 1 

, 

(3) Scheme 3 

CSCP is placed at the end of task N and CCP is placed only at the end of task k (~f I , 2, ･･･, 

N- 1) between CSCPs (Figure 6.3): When two states of task k (kF1 , 2, ･･･, N- I ) match at 

the end oftask k, two modules execute task k+1 . When two states of task k (k=1 , 2, ･･･, ~) 

do not match, two modules go back in the first task I . When two states of task N match, 
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O o CCP t oCSCP 

Figure 6.3 : Task execution for Scheme 3 . 

the process of all tasks N is completed, and its state is stored. Two modules execute task 

N+1. 

Let Z3(k) be the mean execution time from task k to the completion of task N. Then, 

by the method similar to obtaining (6.3), 

L(k) ~f_ r - I ( V - ~ 3 = Ie 2A/ LC +t + L3(k +1)J+ I -e~2;u IC+t+L3(1)JdG(t) (lfl,2, "',N-1) 

(6.7) 

~(N)=1"{e~2;u(C+t+Cs)+ I e~2~/V - ~ (6.8) (- IC + t + L3 (1)JdG(t) . 

SOlving (6.7) and (6.8) for Z3(1), 

~(1)- [ ･ r +Cs _ (C+/J) - G (2~) 

J * . 1-G'(2;L) G (2jL) 

Therefore, the mean execution time per one task is 

L (N)= ~(1) _ ~iJ~~i+ Cs (N=1 2 ) (6.9) 

3 - [ ･ l[･ l N N1-G(2~) G (2jL)N N 

When N=1 , L3(1) agrees with (6.2). If 

/1 > N1 1 ~ G'(2~) k (N-2 3 "') (6.10) - =[ I -,, , 
C+p 
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Table 6.2: Optimal number N3 and the resultmg executron time L3(N3 )/// for Scheme 3 

t//' 

when G(t)=1-e~ and Cs//1=0.1. 

then Scheme 3 is better than Scheme 2 for the same number N (N=2, 3,･･･). 

It can be clearly seen that a finite N3'(1 ~ N3 < Qo) that minimizes L3(N) exists. From 

the inequality L3(N+1)-L3(N) ~ O, 

N 

1 ~ Cs (N=1 2 ) (6.11) [･ y - G (2;L) ~ 

[ r C+p 
+1 G' (2~) 

J=1 

The left-hand side of (6. 1 1 ) is strictly increasing to co in N. Thus, there exists a fmite and 

unique minimum N3'(1_<N3 <00) which satisfies (6.11). If (C+p)[1-G'(2~)] ~ 

Cs[G'(2~)]2, then N3'=1 . 

When G(t)=1-e~t//', Equation (6. 1 1 ) is rewritten as 
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N I J Csl 11 (2jl;/1 +1)N'I~ 1- > (N=1,2, ･･･). (6.12) j=1 2jL/1 + I ~ C//J + 1 

Table 6.2 presents the optimal number N3 and the resulting execution time L3(N3')/p 

in (6.9) for Ap and C//1 when Cslp=0. I . In this case, Scheme 3 is not better than Scheme 

2 when C/p=0.5. However, if C//1 would be smaller, Scheme 3 would be better than 

Scheme 2 as shown in (6. I O) when ~11=0.01 and 0.05. Further, if~p would be larger, we 

would not need to consider Scheme 3 . 

6 .3 Extended Models 

We consider the following two extended checkpoint modules: 

(4) Majority System 

We take up a majority decision system with (2n+1 ) modules as an error masking system, 

i. e., (n+1 )-out-of-(2n+1 ) system (n=1 , 2, ･･･). If more than (n+1 ) states of(2n+1 ) modules 

match, the process of task k is correct and its state is stored. In this case, the probability 

that the process is correct during (O, t J is 

2~+1 2n+1 ( _A/ -y(1 e ~t)2~+1 j F~+1(t) = ~f ' ~e -
j="+1 J 

2~+1 2n+1 2~+1-j 2n+1-j ( 1)'(e~Aly+' (n 1 2 ) 

= ~ . ~ . - (6.13) j="+1 J j=0 l 
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Thus, the mean execution time ofthe process of task k is 

~ [ ~ k ) (6.14) ~(1)= r[F~.1(tXC+Cs+t) G(t)+F~.1(t)C+t+L4(1) G(t , 

where F~+1(t)~1-F~~+1(t). Therefore, by the method similar to obtaining (6.2), the mean 

time execution time per one task is 

C+p L4 (1) = L4 (1) = 

2n+1 2n+1 2n+1-j ,r(' '¥ ~f j=n+1 j i (~1)' G L¥J + l)jL] ~f 2n+1- j 
i=0 

+Cs 

(6.15) 

(5) Spare Model 

In Scheme I , when two states of task k do not match, one spare module executes task k, 

an~ two modules go forward and execute task k+1 [22]. It is assumed that a spare 

module has no error. Furthermore, Cp is the total overhead ofpreparing a spare module 

and of setting a correct process at checkpoint times. 

Let Z5(1 ) be the mean execution time from task k. Then, by the similar method in (1), 

( 
-e~2ht C+t+Cp+t+Cs) dG(t) ~(1) = ~ Le~2~t(C+t+Cs)+ 1 

X ' I (6. 1 6) =C+p+Cs+(Cp+/J 1-G (2jL) . 

If (Cp+p)G'(2~) ~ C+p, then it is useful to provide a spare module. 
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6.4 Conclusions 

We have considered two types of checkpoints for a double modular system and adopted 

three schemes for answering the problems in what places we set suitable checkpoints. It 

has been shown in the numerical examples that when an error rate ~ and a mean 

processing time /1 increase and the overhead C for the comparison decreases, Schemes 2 

and 3 are better than Scheme I . Further, we have proposed two extended models with a 

majority decision system and the system with a spare module. It would require to 

discuss further which schemes including extended models are better in practical 

situations . 
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Chapter 7 

Random Checkpoint Models 
for Multiple Modular Systems 

with Increasing Error Rates 

Tasks with random processing times are executed successively. A double modular system 

oferror detection for the processing ofeach task is adopted. Two types ofcheckpoints 

can be placed at the end of tasks. The problem is that in what places we set suitable 

checkpoints. It is assumed that error rates of two models for task k increase with the 

number of checkpoints. The mean execution times per one taskfor three schemes are 

obtained, and optimal numbers which minimize them are derived analytically. A 

majorty decision system is also proposed. What system is optimal is discussed 

numerical ly. 
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7 . I Introduction 

Most computer systems in offices and industries execute successively tasks each of 

which has a random processing time. In such systems, some errors often occur due to 

noises, human errors and hardware faults. To detect and mask errors, some useful fault 

tolerant computing techniques have been adopted [12, 35]. The simplest scheme in 

recovery techniques of error detection is as follows [20]: We execute two independent 

modules which compare two states at checkpoint times. If two states of each module do 

not match with each other, we go back to the newest checkpoint and make their retrials. 

Several studies of deciding optimal checkpoint frequencies have been made: The 

performance and reliability of a double modular system with one spare module were 

evaluated [28, 22]. Further, the perforrnance of checkpoint schemes with task 

duplication was evaluated [44, 45]. The optimal instruction-retry period that minimizes 

the probability of the dynamic failure by a triple modular controller was derived [8]. 

Evaluation models with finite checkpoints and bounded rollback were discussed [26]. 

Suppose that we have to execute the successive tasks with a processing time Yk (k=1 , 

2, ･･･) (Figure 6. I ). A double modular system of error detection for the processing of each 

task is adopted. Then, introducing two types of checkpoints; compare-and-store 

checkpoint (CSCP) and compare- checkpoint (CCP) [20], we consider the following 

three checkpoint schemes: 
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(1) CSCP is placed at each end oftasks. 

(2) CSCP is placed at the N-th end oftasks. 

(3) CCP is placed at each end of tasks and CSCP is placed at the N-th end of tasks. 

It is assumed that the error rate of every task k for Scheme I is the same one, however, 

error rates oftask k (k=1 , 2, ･ ･ ･, N) for Scheme (2) and (3) increase with the number k of 

checkpoints. The mean execution times per one task for each scheme are obtained, and 

optimal numbers N' that minimize them for Schemes 2 and 3 are derived analytically 

and are compared numerically. This is one of applied models with random maintenance 

times [17, 37] to checkpoint models. Such schemes would be useful when it is better to 

place checkpoints at the end of tasks than those on one 's way. Further, we extend a 

double modular system to a maj ority decision system, and obtain numerically what a 

maj ority decision system is optimal. 

7.2 Double Modular System 

Suppose that task k has a processing time Yk (/F I , 2, ･ ･ ･) with an identlcal drstribution 

J" [1 - ( )] G(t) E~ pr{Yk ~ t} and a fmite mean time p = o G t dt < OQ , and is executed 

successively. To detect errors, we provide two independent modules where they compare 

two states at checkpoint times. Furthermore, the probability that a modular system for 

task k has no error during ( O, t J is assumed to be e~Alt for Scheme I and e~~kt for Schemes 
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2 and 3, irrespective of other tasks and rollback operation. Then, we conslder the 

following three schemes: 

(1) Scheme 1 

CSCP is placed at each end of task k: When two states of modules match with each other 

at the end oftask k, the process oftask k is correct and its state is stored. In this case, two 

modules go forward and execute task k+ I . However, when two states do not match, it is 

judged that some errors have occurred. Then, two modules go back and re-execute task k 

again.' 

Let C be the overhead for the companson of two states and Cs be the overhead for 

their store. Noting that every task k has the same error rate ~l, the mean time execution 

time ofthe process 6f every task k for two modules is given by a renewal equation 

~ L1- 2h,t ¥C + t + Cs)+ ¥1 - e~2h,t XC + t + Ll)idG(t . (7.1) r_- ( ¥ ( ~ r ) 

Solving (7. 1) for Ll' 

L = C+p (7.2) + Cs ,. 
l G' (2~ ) 

where G'(s) is the Laplace-Stieltjes (LS) transform of G(t), i.e.. G' (s)s ~re~stdG(t) for 

s>0. 

(2) Scheme 2 

CSCP is placed only at the end of task N (Figure 6.2): When two states of all task k(~f I , 
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2, ･ ･ ･ , N) match at the end oftask N, its state is stored and two modules execute task N+ I . 

When two states do not match, two modules go back in the first task and make their 

re-executrons . 

Let Ll(k) be the mean execution time from task k to the completion of task N. 

Because the probability that no error oftwo modules for task k occurs is 

r e~2A,tdG(t) = G' (2 jLk ) (k=1 ,2, ･･･,N). (7.3) 

Thus, we have a renewal equation 

I~,2(N)= (NC+N/J+Cs)HG'(2;1;k)+LNC+Np+~(N) 1-HG=(2jLk) . (7 4) 

k=1 k=1 Solving (7.4) for Z2(N), 

~(N) NC+N/1 +Cs . (7.5) -N H G' (2 jLk ) 

k=1 

Therefore, the mean execution time per one task is 

L2 (N) ~ ~ (N) Cs (7.6) C+p (N=1, 2, ･･･). + -N H G' (2~k ) 

k=1 

When N=1 , L2(1) agrees with (7.2). 

We find an optimal number N2' that minimizes L2(N). There exists a fmite N2' ( I ~ 

N2' < co ) because limN-bbL2(N) = oo. From the inequality L2(N+1)-L2(N) ~ O, 

[ ･ i> Cs (7.7) N(N+1)1-G (2~N.1) 

N+1 ~ C + Il HG'(2~ ) 
k=1 

From the assumption that ~k ~ ~k+1' G'(2~k+1) ~ G'(2~k), i.e., 1-G'(2~k) ~ 1-G*(2~k+1)' 

Thus, it is clearly noted that the left-hand side of (7.7) is strictly increasing to oo in N. 
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Therefore, there exists a finite and unique minimum N2' ( I ~ N2' < oo) that satisfies (7.7). 

If 

1 - G' (2~2 ) Cs 
G' (2~ )G' (2~2 ) ~ 2(C + p) ' 

then N*= I . 

When G(t)=1-e~t//'. Equatron (7 7) rs rewntten as 

N(N + 1 2;LN.1/J 

2;LN.11J+1 > Cs (7.8) 
N+1 - C + p 1 

H k=1 2~kP+1 

It is assumed that ~k=[1+a(k-1)]~, i.e., an error rate mcreases by I OOayo of an 

original rate h. Then, we compute an optimal number N2 which satisfies (7.8). Table 7. 1 

presents opiimum N2' for ~p and C/p when a=0. I and Cs/p = O. I . 

(3) Scheme 3 

CSCP is placed at the end of task N and CCP is placed only at the end of task k (k=1 , 2, ･･･, 

N-1) between CSCP (Figure 6.3). When two states of task k match at the end oftask k, 

two modules execute task k+1 . When two states of task k (k=1, 2, ･･･,N) do not match, 

two modules go back in the first task I . When two states oftask N match, the processes 

of all N tasks are completed, and its state is stored. Two modules execute task N+ I . 

Let Z3(k) be the mean execution time from task k to the completion oftask N. Then, 

by the method similar to obtaining (7.4), 
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Table 7.1. Optimal number N2 and the resulting execution time L2(N2')/p for Scheme 2 

when G(t)= I -e~t//1 and Cslp=0. 1 

-Y -~ ~(k)= r{e~2;~t[C+t+L (k+1)]+(1 e 2h/ - ' IC +t + L3(1)JdG(t) 

Y - ~' ~(N)= f{e~2h~t(C+t+CS)+ I e~2h~tlC+t+L3(1)~uG(t). (-

SOIVing (7.9) and (7. I O) fOr Z3(1), 

N-] (C+p)~ rt[G'(2~ )] 

~(1)= j=0 k=1 + CS N 
n G' (2~k ) 

k=1 

TherefOre, the mean executiOn time per one task iS 

(k=1, 2, ･･･, N-1), 

(7.9) 

(7. I O) 

(7. 1 1 ) 
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N-1 j (C+p)~ n[G'(2~k)] 

L3(N) ~ ~(1) = j=0 k=1 Cs (7.12) (N=1, 2, "'), + N N Nn G' (2 j~k ) N 
k=1 

where ~~1. When N=1,L3(1)agrees with (7.2). 

k=1 

We fmd an optimal N3' that minimizes L3(N). From the inequality L3(N+1 ) - L3(N) ~ 

O, 

N-1 j N~ rtG'(2~k) - (N + 1)G'(2~N.1)~ n[G'(2~k)] Cs 

j=0 k=1 j=0 k=1 ~ C+p' N+1 
n G' (2 jLk ) 

k=1 

l'e., 

[N-(N+1)~'(2;LN.1)~ nG'(2;Lk) 

N+1+ j=0 k=1 > Cs HG'(2~k) ~C+p (N 1,2, ) (7 13) N+1 

k=1 

First, note that 

N-(N+ I )G'(2~N+1) 

is increasing because 

N-(N+ I )G*(2~N+1)~(N- I )+NG'(2~N)= I -G'(2~N+ I )+NIG'(2~N)-G'(2~N+1)]>0. 

Further, denoting the left-hand side of (7. 1 3) by Q(N+1 ), 
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Q(N + 1) - Q(N) 

~ N'I I N'IG'(2~k)+ N-(N+1)G'(2;~N.1)~ rtG'(2;1;k) N 

H [ HG'(2;~k) k=1 J=0 k=1 
k=1 

N-1 j lv - [ ･(2jLN.1 )~ HG'(2;~k) N - I - NG' (2 jLN ) 

j=0 k=1 

N N+1 

> N.1 1 lv' HG'(2~ ) TT r l IG'(2~k )+ LN - I - NG'(2~N ) (2~N.1 ) k 

HG'(2jLk) k I k=1 k=1 

[ ･ l = N1-G (2jLN) > O. 

Thus, the left-hand side of (7.13) is strictly increasing in N. Therefore, if a finite N* to 

satisfy (7. 1 3) exists, it is a fmite and unique minimum such that (7. 1 3). If 

(C + /J) I + G' (2~ )- 2G' (2 jl2 ) ~ CsG' (2~ )G' (2~2 ) ' 

then N3*= I . 

By comparing (7.6) with (7. 1 2), Scheme 3 is better than Scheme 2 for N such that 

N-1 j 

~ HG'(2~k) <N (7.14) j=0 k=1 

Because 

N-1 j N-1 j - =~ HG'(2jLk) I <0 ~ nG'(2jLk) N 

J=0 k=1 j=0 k=1 
Scheme 3 is better than Scheme 2 for the same number N (N=2, 3, ･･･). 

Table 7.2 presents the optimal number N3 and the resulting execution time 

L3(N3')/p for Ap and C/p when a=0.1 and Cs/p=0.1. This indicates that optimal N3 

decrease with All 
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Table 7.2. Optimal number N3 and the resulting execution time L3(N3')//1 for Scheme 3 

when G(t) 1-e~t/p and Cslp=0.1 

and Clp. Compared with Table 7.1, N3 are equal to or less than N2*, however, L3(N3') 

are less than L2(N2') for N3 ~ 2, i.e., Scheme 3 is better than Scheme 2. 

7 3 MaJOrlty DeclSIOn SyStem 

we take up a majority deciSiOn system with (2n+1) modules as an error masking system 
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that is called an (n+1)-out-of-(2n+ 1) system [17]. If more than (n+1) states of (2n+1) 

modules match, the process of task k is correct. In this case, the probability that the 

process oftask k for Scheme I is correct during ( O, t J is 

2n+1 2n + I ( n+1-m Fn+1(t)= ~f ~e~~t (1-e ~ty y -
m=n+1 m 

2n+1 2n+1 2n+1-m 2n+1-m ' ( 1) e~(m+1)~t (n 1 2 ) 

=~f ~f ' ~ ' m=n+1 m i=0 l 

Thus, by the method similar to obtaining (7.1), the mean execution time 

process of task k is 

¥ ( V ~l r fY 4 r ) L = LFn+1¥t/¥C +Cs +tj+Fn+1¥t/¥C+t+L4)J+dG(t . 

Solving (7. 1 6) for L4 

C + p + Cs (n=1, 2, ･･･). L4 - 2n+1 2n+1 2n+1-m 2n+1-m 

( )' *[( ･) l ~f ~ . -1 G m+1~ m=n+1 m i=0 l 
For example, when n=1 , i. e., the system is composed of a 2-0ut-of-3 system 

L4 = C + IJ 3G' (2~ )- 2G' (3~ ) + Cs . 

Similarly, the mean execution time per one task for Scheme 2 is, from (7.6) 

C+p Cs + 
L5 (N) = 

N 2n+1 2n+1 2n+1-m 2n+1 

n~ ~ . l m k=1 m=n+1 i=0 

m (- 1)' G' [(m + i)~ l N 
(N= 1 

, 

(7.15) 

of the 

(7. 16) 

(7. 1 7) 

(7. 1 8) 

2 ･･･ , ) 
, 

(7. 1 9) 
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and the mean time for Scheme 3 is from (7. 1 2), 

N-1 J 2n+1 2n+1 2n+1-m 2n+1-m ( 1) G [(m+i)jLk] 
(C+1J)~ H ~ ~ . - ' 

L6 (N)- j=0 k=1 m=n+1 m i=0 1 Cs + 
~ N 2n+1 2n+1 2n+1-m 2n+1-m N . (-1)' 'r( '¥ J Nn ~f ~ G L¥m+1);Lk k=1 m=n+1 m i=0 l 

(N=1, 2, "'). (7 20) 

Table 7.3. Optimal number N;5 ' and the resulting execution time L5(N5 ' )/p when ~p = 

0.01 and Cs/p = 10. 

2n + 1 
Suppose that C = Cl in (7.19) because we have to compare two states of 

2 

(2n + I ) ones for (2n + I ) modules. When CI rs the overhead for comparing two states, 

Table 7.3 presents the optimal numbers N5 which minimize L5(N) in (7.19) and its 

resulting execution times L5(N5~/p when Ap = O. O I and Cslp =10. This indicates that 

optimal N3' decrease with n and C/p, and L5(N5~ increase with n and C/p. Thus, from 

this table, an optimal decision system is a 2-0ut-of-3 system. 

- 92 -



7.4 Conclusrons 

We have considered two types of checkpoints for a double modular system with 

increasing error rates, and adopted three schemes for answering the problem in what 

places we set suitable checkpoints. It has been shown in the numerical examples that 

when an original error rate ~ and a mean processing time p increase and the overhead C 

for the comparison decreases, Schemes 2 and 3 are better than Scheme I . Furthermore, 

we have considered a redundant system as an error masking of a majority decision 

system, and obtained numerically what system is optimal for each scheme. 

- 93 -





Chapter 8 

Conclusions 

This thesis have formulated the stochastic models of a recovery mechanism and 

analyzed them theoretically, using stochastic processes. We have adopted checkpoint 

and backup operation as recovery techniques and obtained expected costs, expected 

overheads and mean times to the completion of processes. Using reliability theory, we 

have discussed analytically optimal policies which minimize such objective functions. 

Further, to understand the results easily, we have given numerical examples at the end 

of each chapter, evaluated numerically some measures and determined the best scheme. 

If some parameters of each model are estimated from actual models, we could apply 

such models to practical recovery models by modifying them. 

We have used some useful techniques to analyze models: One is how to formulate 

stochastic models, using the techniques of stochastic processes, and the other is how to 

derive optimal policies, using reliability theory. Within there techniques, it would be 
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instructive to derive optimal times for a finite time span and by solving simultaneous 

equations. These would be very useful to the analysis of other fields in reliability and 

computer systems. 

Some valuable contributions to the study of recovery techniques for computer 

systems have been made as follows: 

In Chapter 2, we have considered the modified inspection model where checking 

times of an operating unit are placed at sequential times Tk and the backup operation is 

carried out until the latest checking time when a failure was detected. The expected 

costs until the backup operation have been obtained, and optimal policies, which 

minimize them for two case of periodic and sequential times, have been analytically 

discussed. Further, modified models where the operating time of the unit is fmite and a 

fault remains hidden'have been proposed and analyzed. 

In Chapter 3, we have considered two-level recovery schemes; soft checkpoint (SC) 

and hard checkpoint (HC) as recovery techniques. When HCs are placed on the 

beginuing and at the end of the process, and SCs are placed between HCs, the total 

expected overhead of the process has been obtained, using Markov renewal processes. 

Optimal intervals of SCs to minimize the expected cost have been derived and 

computed numerically. It has been shown that a two-level recovery scheme can achieve -

a good perforrnance. 

In Chapter 4, we have considered multiple modular redundant systems as the 

recovery techniques of error detection and error masking on a finite process execution 

when checkpoints are placed at periodic times kT. Introduceing the overheads of 

- 96 -



comparison and decision by maj ority, we have obtained the mean times to the 

completion of the process and derived analytically optimal checkpoint intervals which 

minimize them. Further, it has been shown numerically that what a maj ority decision 

system is optimal. 

In Chapter 5, when checkpoints are placed at sequential times Tk, we have two 

models where error rates increase with the number of checkpoints and with the original 

execution time. We have obtained the mean times to the completion ofthe process and 

computed numerically optimal checkpoint intervals which min,imize them by solving 

simultaneous equations. Further, approximate checkpoint intervals have been derived 

by denoting that the probability of error occurrence during each checkpoint interval is 

constant. It has been shown that the approximate intervals give good approximate to 

optimal ones. 

In Chapter 6, we have taken up the random checkpoint model with two types of 

checkpoints such as compare-checkpoint and compare-and-store checkpoint, where 

tasks with random processing times are executed successively. When a double modular 

system of error detection for each task is adopted, we have considered three schemes, 

obtained the mean execution times per one task for three schemes, and derived optimal 

policies which minimize them. It has been shown in numerical examples which 

scheme is better. Further, extended models with majority decision modules and a spare 

module have been proposed. 

In Chapter 7, we have considered the modified checkpoint model of Chapter 6 

where error rates increase with the number of checkpoints. We have obtained the mean 
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execution times per one task for three schemes and derived analytically optimal 

policies which minimize them. Further, we have extended a double modular system to 

a majority system and discussed numerically what a majority system is optimal. 

It has been assumed in this thesis that the overheads for the generation of 

checkpoints and the probability of error occurrences are already known. However, it is 

important in practical applications to identify what a type of distribution frts the 

collected data and to estimate several kinds of overheads from the observation of 

actual models. If such distributions and overheads are given, we can determine optimal 

policies for recovery models and apply to real systems by modifying them. 

Recently, most systems consist of distributed systems as computer network 

technologies have developed rapidly. A general model of distributed systems is a 

mobile network system [l]. Coordinated and uncoordinated protocols to achieve 

checkpointing in such distributed processes have been introduced [1]: Uncoordinated 

protocols allow eaeh process to take its local checkpoint independently and 

coordinated protocols force each process to coordinate with other processes to take 

consistent checkpoints. Two protocols have one's own advantages. A typical advantage 

of coordinated protocols is to avoid the domino effect. From such viewpoints, a 

number of techniques of checkpoint protocols have been proposed and their 

perforrnance have been evaluated [1, 25, 26]. However, there are little research papers 

to study theoretically optimal policies for checkpoint intervals. Using the methods and 

techniques used in this thesis, we could analyze optimal intervals of checkpoints for 

distributed systems. 
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