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Abstract

This thesis treats several stochastic models of ubP systems. Using the theory of Markov
renewal processes, the reliability measures such as the mean times to system failure and
to completion of the process are obtained. Moreover, the expected costs are derived
and optimal policies which minimize them are analytically discussed. Finally, numerical
examples of each model are given and some useful discussions are made.

This thesis is divided into 9 chapters. Chapter 1 states fault tolerant techniques
and microprocessors (uPs). Chapter 2 considers a pufP system with a watchdog timer
(WDT) which is preventively maintained at time 7" and at reset number V. Next,
Chapter 3 treats a system where a main processor (MPu) has NV watchdog processors
(WDPs) with self-checking. To prevent that the MPu becomes faulty, the stochastic
model to determine the number of WDPs is formulated. The p/’ unit which consists
of uP and WDP has been recently used. Chapter 4 and Chapter 5 study a system
with NV P units. It is assumed in Chapter 4 that a u/° is in faulty state if more than
K resets have occurred at time 7". From the viewpoint of real-time processing of the
system, it would be necessary to have the function which completes one processing
within a certain limit time. It is assumed in Chapter 5 that a pP is in faulty state if
it does not finish one processing until a limit time 7. Chapter 6 considers a system
with N TMR (Triple Modular Redundancy) units in which each unit consists of ufF
and WDP. Introducing the concept of complexity, an optimal number of TMR units
which minimizes the expected cost is discussed. Chapter 7 deals with the problem for
improving the reliability of a uP system with network processing. An optimal policy
which minimizes the expected cost until a network processing is successful is discussed.
Further, Chapter 8 considers the reliability problem of a uf’ system whose errors can
be detected by using signatures. An optimal division number of a job is discussed.

Finally, Chapter 9 summarizes the results derived in this thesis.
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Chapter 1

Introduction

As a computer technology has remarkably developed, microprocessors (uPs) have been
used in many practical fields, and the strong demand for improvement of their relia-
bilities has been increased. However, uPs often fail through some faults due to noise,
changes in the environment, hardware errors and programming bugs [Nanya91]. Since
1Ps have been applied in many systems with high reliability and safety such as automo-
biles and airplanes, it is imperative that their faults have to be detected and removed
rapidly. Recently, several authors have studied and proposed many ideas and devices
which watch the behavior of uPs.

Two main approaches to improve the reliability of a system with puPs have been
well-known: One is the method of improving the quality of composition elements of
the system so that faults, which may cause a system failure, do not occur. This
is called fault avoidance. The other is the method of weakening the effect of faults
by introducing redundant techniques. This is called fault tolerance. There are three
principal stages in fault tolerant techniques [SS82, Mukaidono88]: Error detection and
correction, configuration and recovery, and diagnosis and repair.

In this thesis, we consider the reliability of a pP system from the viewpoint of
fault tolerance and concentrates our interest on error detection and correction, and
configuration and recovery techniques in fault tolerant systems. System configuration

and recovery techniques have a closely mutual relation with the concept of redundant

1



2 CHAPTER 1. INTRODUCTION

ones in reliability theory. The system is composed of the redundancies of several
processors and memories. A high reliability system can be realized by combining these
techniques well. Further, to protect faults which may be caused by errors, various
kinds of fault tolerant techniques have been used in error detection and correction by
a watchdog timer or processor, and the operation of reset.

The theory of Markov renewal processes is used in this thesis to analyze the
above stochastic systems: Markov renewal processes were first studied by Lévy (1954)
[Lévy54] and Smith (1955) [Smith55]. Pyke (1961a. 1961b) [Pyke6la, Pyke61b] gave a
careful definition and discussions in detail. Recently, (;inlar (1975a, 1975b) [ginlar75a,

inlar75b] surveyed many results and gave diverse applications in an extensive bibliog-
raphy. In reliability theory, these processes are one of the most powerful mathematical
techniques for analyzing complex systems. Barlow and Proschan (1965) [BP65] gave
a table of applicable stochastic processes associated with repairman problen\m. Fuar-
ther, Nakagawa and Osaki (1979) [NO79] analyzed two-unit systems. using a unique
modification of the regeneration point techniques of Markov renewal processes.

This thesis forms several stochastic models of a uP system which reflect actual
ones. Using the theory of Markov renewal processes [Osaki92], the reliability measures
such as the mean times to system failure and to completion of the process are obtained.
Moreover, the expected costs are derived, and optimal policies which minimize them
are analytically discussed. Finally, numerical examples of each model are given and

some useful discussions are made.

1.1 Fault Tolerant Techniques

Fault tolerant techniques are the method by which a system can realize to tolerate
faults, under the condition that they cannot be completely prevented. Actually, as
computer systems which have been able to realize the fault tolerance, a multiprocessor
system, a dual system and a duplex system have been well-known. In this thesis, some

fault tolerant techniques are introduced to improve the reliability of systems.
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As a simple method of monitoring the behavior of a uP, a watchdog timer (WDT)
has been widely used because it is sirﬁple and its cost is low [FN88, NK85]. A WDT
can detect some errors of a uP by monitoring periodic signals from a pP. If the signal
from a uP does not come within a certain time, a pP is reset by a WDT and the
system is recovered. Recently, a WDT with self-checking function has been used in the
system because faults of a WD'T sometimes occur.

A watchdog processor (WDP) [MM88, Lu82, SM90] is a small and simple copro-
cessor extending the function of a WDT, and it can detect errors by monitoring the
control flow and memory access behavior. For example, an error detection is carried
out by memorizing the characteristic information of the monitoring target and by com-
puting the bus information in the operating state, after which results are compared. If
its comparison does not agree, a uP is reset by a WDP and the system is recovered.

Generally, when we consider the reliability of a system on an operational stage,
we should regard the cause of error occurrences of a uP as faults of software, such
as mistakes of operational control and memory access, rather than faults of hardware.
That is, when errors of a uP have occurred, it would be effective to recover a system

by the operation of reset [Nanya91].

1.2 Microprocessors

The development of fault tolerant techniques relates to the expansion of applicable
fields of a pwP. In this section, a uP is explained simply.

A CPU (Central Processing Unit) which makes the central part of a computer
consists of execution unit and control unit. As IC (Integrated Circuit) technologies
have rapidly developed, a CPU has been miniaturized. Such a CPU consists of one
chip of LSI (Large Scale Integration) and is called a uP. Moreover, memory systems
and input / output devices are connected to a uP [Kaneda91, Ono96, Shima99].

A uP was first produced by Intel Corp. in 1971 and was named Intel4004 [IEICEOS).
This p#P had 2300 transistors per one chip and had the arithmetic register of 4 bits in
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length. After that, uPs which have the arithmetic register of 8 bits, 16 bits and 32
bits in length, respectively, were developed. Recently, the uP” which has the register of
64 bits in length was produced and its integration level became 15 million transistors
per one chip. Thus, uPs become to have advanced functions and high performances.
As a result, uPs have been applied in many actual systems such as electrical products,

automobiles, communications, and so on.

1.3 Outline of Thesis

This section describes the outline of this thesis. This thesis is divided into Introduction,
Chapters 2-8, Conclusions and Bibliography.

Chapter 2 considers a uP system with a WDT which is preventively maintained
at time T and at reset number N. The availability of the system is obtained, and
an optimal inspection time and reset number which maximize it are analytic:ally dis-
cussed. Numerical examples are given when errors of a uP occur according to a Weibull
distribution.

Chapter 3 treats a system where a main processor (MPu) has N WDPs with self-
checking. If a WDP cannot detect errors of the MPu, the MPu goes to faulty state.
To prevent that the MPu becomes faulty, the problem to obtain how many number of
standby WDPs is optimal is presented. The reliability function and the expected cost
until the main processor becomes faulty are derived, and an optimal number of WDPs
which minimizes the expected cost is analytically discussed. Numerical examples are
finally given when errors of MPu occur according to an exponential distribution.

The P unit which consists of 4P and WDP has been recently used. Chapter 4
studies a system with N pP units. It is assumed that a pP is in faulty state if more
than K resets have occurred at time 7. Then, the mean time until system failure is
derived. Introducing the cost of a uP, the problem to obtain how many number of
pP unit is optimal is analytically discussed. Numerical examples are given when the

failure time of a uP is exponential.
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From the viewpoint of real-time processing of the system, it would be necessary to
have the function which completes oné processing within a certain limit time. Chapter
5 discusses the model of a system with N pP units. It is assumed that a pP is in faulty
state if it cannot finish one processing until a limit time 7. Then, the mean time and
the expected processing number until system failure are obtained. Moreover, the cost
effectiveness is derived, and an optimal number of uPs which minimizes it is discussed.
Numerical examples are finally given for several standard parameters.

Chapter 6 considers a system with N TMR (Triple Modular Redundancy) units in
which each unit consists of 4P and WDP. Introducing the concept of complexity, the
mean time to system failure and the expected cost are derived, and optimal numbers
of TMR units which maximize the mean time and minimize the expected cost are ana-
lytically discussed. Numerical examples are given when errors of a uP? occur according
to an exponential distribution.

Chapter 7 deals with the problem for improving the reliability of a uP system with
network processing: After the system has made a stand-alone processing, it executes a
network communication procedure successively. The mean time and reset number until
the success of a network processing are obtained. The expected cost until a network
processing is successful is derived, and an optimal reset number which minimizes it is
discussed. Numerical éxamples are given when errors of a P occur according to an
exponential distribution.

Chapter 8 proposes the reliability problem of a uP system whose errors can be
detected by using signatures: When a system consists of DMR (Double Modular Re-
dundancy), the same job is executed on two processors and is divided into N tasks
with signatures. The mean time and the total processing number of tasks until a job
completes successfully are derived. An optimal policy which minimizes the mean time
is discussed. Finally, numerical examples are given under suitable conditions.

Finally, Chapter 9 summarizes the results derived in this thesis.






Chapter 2

Optimal Maintenance Policies for
a Microprocessor System with
Watchdog Timer

This chapter considers a microprocessor (uP) system with a watchdog timer (WDT):
When errors of a uP have occurred, a WDT detects them with a certain probability
and resets a uP to an initial state. Otherwise, a uP goes to faulty state. To prevent
a P from faults, it is preventively maintained at constant time 7" or at N-th reset,
whichever occurs first. The availability of the system is derived, using the theory of
Markov renewal processes. An optimal time 7™ and number N* which maximize the

availability are analytically discussed. Finally, numerical examples are given.

2.1 Introduction

As a simple method of monitoring the behavior of a microprocessor (uP), a watchdog
timer (WDT) has been widely used because it is simple and its cost is low [FN88,
NK85]. A WDT can detect some errors of a uP by monitoring periodic signals from
a uP, however, it is impossible to detect any errors. Therefore, it would be necessary
to develop a WDT with more advanced capabilities and to improve the reliability of a

whole system including a pP.
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This chapter considers a uP system with a WDT: When errors of a uP have oc-
curred, a WDT detects them With a certain probability and resets a P to an initial
state. Otherwise, a uP goes to faulty state. To prevent a uP from faults, it is preven-
tively maintained at constant time 7" or at N-th reset, whichever occurs first. Using the
theory of Markov renewal processes [Osaki92], we derive the availability of the system,
and discuss analytically an optimal time 7™ and number N* which maximize it. When

errors of a uP occur according to a Weibull distribution, numerical examples are given.

2.2 Model and Availability

A WDT monitors the behavior of a uPP. When a WDT detects errors of a uP, it resets

a pP to an initial state. We assume that:

(1) A WDT works independently of a 4P and does not fail.

(2) Errors of a uP occur at a non-homogeneous Poisson process with an intensity
function A(t) and a mean-value function A(t), i.e., A(t) = [¢ A(u)du. Hence, the
probability that the j-th number of errors have occurred during (0,t] is H,(t) =
{[AOY/%e"P(j =0,1,2,--).

(3) Errors of a uP can be detected with probability p (0 < p < 1) and it is reset to an
initial state with probability o (0 < a@ < 1) by a WDT. Otherwise, errors cannot
be detected with probability 1 —p and it is not reset with probability 1 —c. Thus,

when errors have occurred, a uP goes to faulty state with probability 1 — pa.

(4) When a pP has gone to faulty state, it undergoes the corrective maintenance by a
user and returns to an initial state according to a general distribution G(t) with

finite mean 1/pus.

(5) A pP is inspected and preventively maintained at time T or at IN-th reset,

whichever occurs first. When time 7' comes or N-th reset is made before the
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occurrence of fault, a P returns to an initial state according to a general distri-

butions G3(t) with finite mean 1 /3 or G1(t) with finite mean 1/uq, respectively,
where 1/ug < 1/pg and 1/py < 1/ps.

We define the following states of the system:
State 0: A pP begins to operate as an initial condition.
State 1: A WDT makes the N-th reset of a uP.
State 2: A uP goes to faulty state.
State 3: The maintenance of a uP begins at time 7.

The system states defined above form a Markov renewal process. Transition dia-
gram between system states is shown in Fig.2.1.
Let Q;; (t)(4,7 = 0,1,2,3) be one-step transition probabilities of a Markov renewal

process. Then, mass functions @), ;(¢) from state i at time O to state j at time ¢ are

given by
Quilt) = ()" [ A Hy 1w (w)da, (2.1)
Qult) = X (peP (1= pa) [ Aw)H A w)da, (22)
Qult) = j;o(po«)f [ HiwdA), (2.3)
where
A(t) = { . fi; (2.5)

is the degenerate distribution placing unit mass at T, and A(t) = 1 — A(t).
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Let q,j(s) and g;(s) be the Laplace-Stieltjes (LS) transforms of @,;(t) and G,(t),

respectively. Then, we have

an(s) = (pa)" / “ Hyoy (DMt (26)
doo(s) = Z 21 = pa) /OTe‘StHj(t))\(t)dt, (27)
qoa(s) = go(pa)~7e—3T[{j(T’), (2.8)
ao(s) = g(s) (i=1,2,3) (2.9)

We derive the steady-state availability of the system from (2.6) ~ (2.9). When the
system is in state 0 at time 0, the transition probability Pyy(t) that it is in state O at

time ¢ is given by

Poolt) =1 -ZQOJ t) + ZQOJ t) * Qjo(t) * Foo(t), (2.10)

where the asterisk mark denotes the Stieltjes convolution. Taking the LS transform of
(2.10), we have

3
1- Zqu(S)
oo(s) = [ st R S 2.11
Poo(s) /0 e **dPoo(t) 1= hals) (2.11)
where
hoo(*)——Z(Ioj )2j0(s), (2.12)

is the LS transform of the recurrence time distribution to state 0. Thus, the steady-

state availability P(N,T) of the system is given by

P(N, T) = tlll’glo Poo(t) = Li_l;%poo(s)
N-1

> (par)? /OT H,(t)dt
j=0
- ™ , (2.13)
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where
= 1 1 1 N
lo = Fo(poz) / HyO)dh + == (o = ) () J;VHJ(T)
1 1 N-1 i
—(;2 — ;;) j;)(pa) Hy(T), (2.14)

is the mean recurrence time to state 0.
In particular, when 7' — o0, i.e., a uP is preventively maintained only at N-th

reset, the steady-state availability is

P(N)

I

lim P(N,T)
T—oo

2

-1 o
nev ) Hdt
(wa) [ H,(t)d

TN o0 1 7 (2.15)
> (e [ Hy0de+ ) + o[ = ()]

<
I
=

J

Similarly, when N — o0, i.e., a uP is preventively maintained only at time 7, the

steady-state availability is

P(T) = Jlim P(N,T)
> [ Hye)ds
9=0
S — - — = ‘ . (2.16)
S bl [ A0+ 2= (o= 2> (o) Hy(T)

2.3 Optimal Policies

We consider optimal policies which maximize P(N,T) in (2.13) when A(t) is strictly

increasing and A(00) = limy_,o A(%).
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2.3.1 Optimal reset number

We seek an optimal number N* which maximizes P(N,T') in (2.13) for a specified 7.
From the inequality P(N + 1,T) — P(N,T) < 0, we have

o0

N—1 > Hi(T) N-1 T
wi . J=N+1 i
> (e Hy(T) + (pa)" Z Hy(T) + S5 Y (pa)i(1 - pa) [ Hy()dt
=0 / Hy(t)dt =0 0
1
N-1 Hn(T N-1 T -
~1-D)| X oy (1) = 2N [ by a)a| > 2 (217)
=0 Hpy (t)dt 3=0 0 —
0 Mtz M
where
1_1
_ My
D= i - j (2.18)
2 U1

Denote that the left side of (2.17) by Ly(N). Then, when D < 1, we have Ly(N) —
Lp(N — 1) > 0 from Appendix 2.1, and hence, Ly(N) is strictly increasing in N. It is
evident that from the assumption of 1/u; < 1/us,

1

He [
First, suppose that D = 1, i.e., 1/u1 = 1/p3. Then, since impy .o >3y H;(T)/
J& Hy(t)dt = M(T) from the reference [NK83], we have

LT(OO) = ]\135%0 LT(N)

T
— (=P 4 \(T)(1 __pa)/o e~ (1=PIA®) gy (2.20)

Thus, we have the following optimal policy:



2.3. OPTIMAL POLICIES 13

(a) If Lp(oo) > (1/p2)/(1/ 12 — 1/p1), then there exists a finite and unique minimum
N* which satisfies (2.17).

(b) If Ly(co) < (1/p2)/(1/ue —1/p1), then N* = 00, and the steady-state availability
is given in (2.16).

Next, suppose that D < 1, i.e., 1/u; < 1/us. Then, from Appendix 2.2, we have

Lr(oo) = Sm Lr(N) = 0. (2.21)

Thus, there exists a finite and unique N* which satisfies (2.17).
When D > 1, i.e., 1/u; > 1/u3, the mean maintenance time for time 7" is shorter
than that for N-th reset, and hence, we expect that N* = 0o. This obvious fact will

be indicated in a numerical example.

2.3.2 Optimal inspection time

We seek an optimal time 7™ which maximizes P(N,T') in (2.13) for a specified N.
Differentiating equation (2.13) with respect to T and setting it equal to zero, we have

>~ (pa H(T) + (pe)™ 3= H(T) + MT) X (po? (1 = p) [ Hy(e)i
+(D—-1) [Nizl( o) H,(T) + M\(T szl (1 — pa) /THj(t)dt
§=0 3=0 0
1
MT)( Z(m / L (t)dt - N_IHN*(T) } =3 K2 T (2.22)
ZO (Pl Hy(T)" 0~

Denote that the left side of (2.22) by Ly(T). If D > 1 and A(¢) is strictly increasing,
then Ly (T) is also strictly increasing in 7' from Appendix 2.3 and Ly(0) = 0.
First, suppose that D = 1. Then, we have,

Ln(oo) = Jim Ly(T)



14 CHAPTER 2. OPTIMAL MAINTENANCE POLICIES ...

N-1

= Ao0) X (paY (1 = pa) [ Hy(tydt + (po)". (2.23)

J=0

Thus, we have the following optimal policy:

(¢) If Ly(00) > (1/p)/(1/pi2 — 1/ 1), ie.,

z
1 M2 T (p(,Y)N
A(o0) > - M2 1 - ’
> (pa) (1 = pa) [ Hy(t)dt
7=0 0

then there exists a finite and unique 7™ which satisfies (2.22).

(d) If Ly(oo) < (1/p2)/(1/ug — 1/u1) then T = oo, and the steady-state availability
is given in (2.15).

Next, suppose that D > 1, i.e., 1/uy > 1/u3. Then,

Lv(o0) = DA(oc) 3 (pa)i(1 — pa) [ H,(t)dt + (o). (2:24)
Thus, if
1 N 1 N
(= ()] + () (per)
Noo) > —— NP
(g = 70 2 P (L= [ (00

then there exists a finite and unique T* which satisfies (2.22).
If D<1,ie., 1/p < 1/us, then it is shown in a numerical example that T* = 0.

2.4 Numerical Examples

Suppose that A(t) = \gt?, i.e., errors of a uP occur according to a Weibull distribution
with shape parameter 2, and its mean time is ['(1 + 1/2)/v/Ag = 24 hours. Further,
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when errors have occurred, the probability that a uP is reset by a WDT is pa = 0.7 ~
0.9.

Table 2.1 gives the numerical example of optimal number N* when T = 72, 96, 120,
00. When T' = o0, this corresponds to the model where a uP is preventively maintained
only at N-th reset. When 1/u; = 1/us, it is indicated from Table 2.1 that N* decreases
with T and (1/ps)/(1/p1), however, increases with pa. For example, when pa = 0.8,
(1/p2)/(1/u1) = 3 and T' = 120 hours, the optimal reset number is N* = 3. It is shown
that V* = oo when 1/p; > 1/ps.

Table 2.2 gives the numerical example of optimal time 7™ when the upper reset
number N is 1,3,10,100,00. When N = o0, this corresponds to the model where a
wP is preventively maintained only at time 7. When 1/u; = 1/us, it is indicated from
Table 2.2 that 7™ decreases with N and (1/u2)/(1/11), however, increases remarkably
with pa. When pa is small, i.e., the performance facility of a WDT is low, we should

maintain a pF at small intervals. It is shown that 7* = oo when 1/u; < 1/u3.

2.5 Conclusions

We have investigated a uP system with WDT which is preventively maintained at
time 7" and at reset number N. We have derived the steady-state availability P(N,T)
of the system and have analytically discussed an optimal N* and T* which maximize
it. From the numerical examples, it has been shown that we have to maintain a uP
frequently when the performance facility of a WDT is low. So that, we should make
every possible efforts to develop the facilities of a WDT for improving the reliability of
the system. When 1/u; > 1/u3, i.e., the mean maintenance time for time 7T is shorter
than that for N-th reset, we have to maintain a uP only at time T". Oppositely, when
1/p1 < 1/u3, we have to maintain a uP only at N-th reset.
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3

Figure 2.1: Transition diagram between system states.



Table 2.1: Optimal reset number N*

p a T A/ u)/ A/ )=/ 1)/ /s |/ ud/(1/ 1) =15
2 3 4 5 10/(1/ u/(1/ g =2

72 5 2 2 1 1

0.7 96 4 2 2 1 1 oo
120 4 2 2 1 1
00 4 2 2 1 1
72 10 3 2 2 1

0.8 96 6 3 2 2 1 oo
120 6 3 2 2 1
o0 6 3 2 2 1
72 37 8 4 3 2

0.9 96 21 6 4 3 2 oo
120 13 6 4 3 2
(%) 12 6 4 3 2

17
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Table 2.2: Optimal inspection time 7™

p N A/u)/Q/ud=Q/u )/ ny |/ )1/ uy)=2
2 3 4 5 10{(1/ )/ 1/ 1) =15
1 67 41 32 27 18
3 55 37 30 26 17
0.7 10 54 37 30 26 17 oo
100 54 37 30 26 17
oo 54 37 29 26 17
1 92 54 41 34 22
3 70 46 37 32 21
0.8 10 67 45 36 31 21 oo
100 67 45 36 31 21
) 66 45 36 31 20
1 169 92 67 54 32
3l 111 68 53 45 29
0.9 10 94 64 51 44 29 co

100 94 64 51 44 28

co 83 64 51 44 29
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Appendix
2.1. Proof of Ly(N) — Lr(N —1) >0 when D <1

From equation (2.17),

Lr(N) - Lp(N —1)

N-1 T . i H;(T) {2 H;(T)
=Y (o)’ (1~pa) [ Hy(t)dt| " —— — =
jz=<:) e /0 [ /0 Hiy(t)dt /0 HN_I(t)dJ
H1-D)Y (o [ ! Hj(t)dt[ An(@)  __ HyalT) } (42.1)
=0 /0 HN(t)dt [) HN_l(t)dt
When A(t) is strictly increasing, we have, from the reference [NK83]
i H;(T) Z H;(T
il >0, (A2.2)
/0 Hy(t / Hy_1(t)dt
We show only the following inequality:
(T) = HN-—l(T) > 0. (A2.3)
/ Hu(t)dt / Hy_1(t)dt
It is evident that
(1) | " Hy_1(t)dt — Hy+(T) / " Hy()dt
~ fj\zv(g) [A(T) /0 " Hy_y(t)dt — /0 ! A(t)HN_l(t)dt]
= HN(Z;) /OT Hy_1(6)[A(T) — A(t))dt > 0. (A2.4)

Thus, it is proved that Lp(N) — Ly(N — 1) > 0 when D < 1 and A(f) is strictly

increasing.
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2.2. Proof of Ly(co) =00 when D < 1

From equation (2.17),

T

T
+(1 - D) / e-”—m)A(t)dt[ lim —T[iN—@L} (A2.5)

0 Moo / Hy(t)dt
0
When A(?) is strictly increasing, we easily have
[A(T)] o~ AD)
A}nn M A}lm
—m/ Hy(t)d -*OO/ —A(L)dt
I e X0 (A2.6)
= lim = 00. :
N—o0 /T[A(t) ]N —A®) gy
o "A(T)

Thus, Lr(c0) = 00
2.3. Prove that Ly(T) is increasing in T'

When D > 1 and A(t) is strictly increasing, we show that L (T") > 0. From equation
(2.22),

N—-1

I(T) = X(T) S (pa (1~ pa) [ Hj(o)d

7=0

T

N-
+(D —1) { Z pa )’ (1 —-pa)/o H,(t)dt

+N(T (pozNNZ1 7/0 H,(t)dt - 1HN‘1(T)
7= Z_(:J (pa) H,(T)

N-1
+XT)(pa)N >~ (pa) / ()t
7=0
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M) Th o(T) — (pe) Hua(T) + (’]’fj)lN[HN"l(T)P] }.(A2.7)
> (pa) Hy(T) ZO (par)’ H;(T)
j=0 =
The bracket on the last term in (A2.7) is
Hy—2(T) — (pa) Hy_(T) + (I;i)lN[HJ\T—l(T)]z
;)(Pa)” H;(T)
— s { D) olT)
;) (par)’ H;(T)
3 (o) H- T H(T) = Hu (D Hy (D)L (A28)

Since

Hy_o(T)H;(T) — Hy_1(T)H;_+(T) = e-%(T)%(N —1-7) >20,(A2.9)

we have Ly (T") > 0. Thus, Ly(T) is strictly increasing when D > 1 and A(t) is strictly

increasing.






Chapter 3

Reliability Evaluations of
a Fault Tolerant System with
N Watchdog Processors

This chapter considers a fault tolerant system where a main processor (MPu) has
N watchdog processors (WDPs) with self-checking: When errors of the MPu have
occurred, a WDP detects them with a certain probability and resets the MPu to an
initial state. Otherwise, the MPu goes to faulty state. If a WDP fails, it detects
the failure with itself and one of other WDPs in standby begins to monitor the MPu
again. The above procedures are repeated until all of WDPs have failed. The reliability
measures such as the mean time, the reliability and the expected cost until the MPu
becomes faulty are derived. An optimal number of WDPs which minimizes the expected

cost is analytically discussed. Finally, numerical examples are given.

3.1 Introduction

Generally, microprocessors (uPs) often fail through some faults due to noises and
changes in the environment, hardware errors and programming bugs [Nanya91, FN88].
As a simple method of monitoring the behavior of a P, a watchdog timer (WDT)
has been widely used in actual fields [FN88, NK85]. A watchdog processor (WDP)

23
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[MM88, Lu82, SM90] is a small and simple coprocessor, which extends the function
of a WDT, and can detect errors by monitoring the control flow and memory access

behavior [Nanya91].

This chapter considers a fault tolerant system where a main processor (MPu) has
N WDPs with self-checking. The purpose of this model is to improve the reliability
of a whole system including the MPu and to derive their reliability measures. If a
WDP cannot detect errors of the MPu, the MPu goes to faulty state. Therefore,
for prevention that the MPu becomes faulty, we formulate the stochastic model to
determine the number of WDPs.

Errors of the MPu occur according to a certain probability distribution and are
detected by a WDP. That is, when errors of the MPu have occurred, a WDP detects
them with a certain probability, which is called coverage of a WDP, and resets the
MPu to an initial state. Otherwise, the MPu goes to faulty state. The MPu has N
WDPs where one WDP monitors the MPu and the others are in standby. If a WDP
fails, it detects the failure with itself and one of other WDPs in standby begins to
monitor the MPu again. The above procedures are repeated until all of WDPs have
failed. We derive the mean time and the reliability until the MPu becomes faulty. An
optimal number of WDPs which minimizes the expected cost is analytically discussed.

Finally, numerical examples are given.

3.2 Model and Mean Time

Figure 3.1 draws the outline of the model. We consider the system where a MPu has N
standby WDPs and make the following assumptions: A WDP monitors the signature
of execution process and judges whether the MPu is normal or abnormal. If a WDP
judges that the MPu is abnormal, i.e., a WDP detects errors of the MPu, a WDP resets
the MPu to its initial state, although the system cannot determine the cause of error

occurrences. That is, the MPu recovers from faulty state by the retrial [Nanya91].
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(1) Errors of the MPu due to mistakes of memory access or memory control occur

according to a general distribution F'(t) with finite mean 1/\.

(2) A WDP can detect errors of the MPu with probability p(0 < p < 1) and resets
the MPu to an initial state. This probability p is called coverage of a WDP. If a
WDP cannot detect errors of the MPu, the MPu goes to faulty state.

(3) Faults of a WDP due to its hardware errors occur according to an exponential

distribution (1 — e~'), and a faulty WDP cannot detect any errors of the MPu.

(4) A WDP has self-checking. When faults of a WDP have occurred, it detects them
with probability #(0 < 6 < 1) instantly, and changes to one of standby WDPs.
In this case, it resets the MPu to an initial state and begins to monitor the MPu
again. On the other hand, if a WDP cannot detect faults of itself with probability
1 —0, a WDP remains in faulty state. In this case, if errors of the MPu occur, it

goes to faulty state.

(5) The switch-over from a faulty WDP to a WDP in standby needs a random time
according to an exponential distribution (1 — e™#) where 3 > a. If errors of the

MPu occur during the switching, it goes to faulty state.
Under above assumptions, we define the following states of the system:

State i: The i-th WDP begins to monitor the MPu (i = 1,2,---, N).

State F': The MPu becomes faulty.

The system states defined above form a Markov renewal process [Osaki92] where
state F' is an absorbing state. Transition diagram between system states is shown in
Figure 3.2.

Let @, ;(t)(i = 1,2,---,N;j = 1,2,---, N, F') be one-step transition probabilities
of a Markov renewal process and ¢(s) be the Laplace-Stieltjes (LS) transform of any



26 CHAPTER 3. RELIABILITY EVALUATIONS OF A FAULT TOLERANT ...

function ®(t), i.e., #(s) = [5° e **dD(t) for Re(s) > 0. Then, from Appendix 3.1, we

have

ails) = pfls+a) (=12, N), (1)
wrld) = T a A P a4 1= O E) = Fls+ o)
2 A = S e} (=12, ), 52)
6l = Torray ey sl — S+ 6
—Sia[l-—f(s—ka)]} (i=1,2--,N—1), (3.3)
tnrls) = [l f(s) = pl(s + ) (3.4)

We derive the mean time ¢(N) until the MPu becomes faulty. Let Hy(t) be the

first-passage time distribution from state 1 to state F'. Then, we have

HN(t) = Q]‘-F(t) -+ Ql'g(t) k Q2,F(t) + -+ Ql,g(t) koove 3k QN—l,N(t) * QN,F(t)- (35)

Taking the LS transforms on both sides of (3.5) and arranging them, we have

L =2 ape 1 1-f(s+8) 1= f(s+a))’
) = j_z—.%{a——/a'l—pf(sm)[ s+8 s+a ]}
1

x 1‘__];7(;1‘;{){(1 —p)f(s+a)+ (1 —0)[f(s) — f(s+ )]

ab
+ s+ B) = fs a)]}
4 [ apl 1 1‘f(3+5)_1—f(8+a)]}N—1
{O/—/J’.l—pf(sw—oz)[ s+ s+ o
1
xw[f(s)—pf(s—ka)] (N=1,2,---), (3.6)

where 37;1; = 0. Hence, the mean time £(N) until the MPu becomes faulty is given

by

() = [ () = lim 2 [~h(s)]
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_ 1 1— AN-! 1 Ny B o
1_pf(a)( B+ A ) (N =1,2,-), (3.7)
where
_ 0 ol = f(B)] Bl - fla)]
A=A T pf) (35)
_ 9 ol = f(8)] BR—-fl@)]] 1
B = a—/}'{ 5 —~ = }+X(1_9)’ (3.9)

and from A = g;,41(0), note that 0 < A < 1. It is evident that when N =0, i.e., the
MPu does not have WDP, we have ho(s) = f(s) and ¢(0) = 1/A.

3.3 Analysis of Reliability

Let Ry(t) be the probability that the MPu does not become faulty until time ¢ and
we define Ry(t) = 1 — Hy(t). That is, Ry(t) denotes the reliability function when the
MPu has N WDPs.

Especially, suppose that faults occur at random, i.e., F\(t) = 1 — e~*. Then, from

Appendix 3.2, equation (3.6) is simplified as follows:

Lo A sp R a0 ’
hy(s) = s+ A 1—.5‘+a+)\(1—-p)Z{[S+a+)\(1—f9)](5+3+)‘)}]

=0
(N=1,2,--). (3.10)
Thus, taking the LS inverse transform of hy(s), from Appendix 3.3, we obtain Ry (¢)
(N =0,1,2,--) successively. For example, R;(t) is given by
— A _PA o lekA(-plt _ - 31
Ri(t) =€ a_/\p{e e M} (3.11)

In particular, when N — o0, from Appendix 3.4, we have

Rolt) = lim Rn(t)

N—oo

ﬂ + )\ — W1 e—w:t _ /J) + )\ — Wy €_w2t’
(w1 — we)(wy — A) (w7 — wa)(we — A)

p N
T o = N(ws =N } ’ (3.12)

= e M4 p)\{




28 CHAPTER 3. RELIABILITY EVALUATIONS OF A FAULT TOLERANT ...

where

[+ B+ A2—p)+ \/(a — [ — Ap)? + 4af0], (3.13)

Il

DN = DN =

un

[+ B+ M2 —p) — /(@ — B — \p)? + 4ap6]. (3.14)

ih

Wo

3.4 Optimal Policy

Let ¢; be the acquisition cost for a WDP and ¢g be the cost for the fault of the MPu.
Then, the expected cost C(N) per unit of time of the system with N WDPs is given
by

Ncy + ¢
W = Ty
— ey ]t_cf (N=1,2,---). (3.15)
1 1-— A B + }_AN—l
1—pfla)\ 1-A4 A

We seek an optimal number N* which minimizes C'(N) in (3.15). From the inequal-
ity C(N + 1) — C(N) > 0, we have

B

N— 1 vo1
-——————1__/1(1—14 1)+—):A __.(N__]_) B _l >C1+Cz B _l (316)
AN-1(1 = A) 1“4 2% & \i=a ) @

Hence, if B/(1— A)—1/A <0, ie., AB < 1— A then C(N) is strictly increasing in N.
In this case, N* = 0.
Next, assume that AB > 1 — A. Then, arranging inequality (3.16), we have

1-— A -1 -+ D C1 + Co
) —-1) > 3.17
AN-1(1 - A) (N-1)=z ¢ (3:17)

where A
1 —
= 1
D=5 % (3.18)

Denoting the left side of (3.17) by L(XN), we have

1-A"'+D
>

T 0, (3.19)

LINY=L(N—=1) =
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L) = /\B——%_—_/_ﬁ’ | (3.20)
L{co) = I\lrglgoL(N):oo. (3.21)

Hence, L(N) is strictly increasing in N from L(1) to co. Thus, if L(1) < (¢; + ¢3)/e1,

ie., AB— (1 — A) > c1/(c1 + c2) then there exists N*(> 1) which satisfies (3.17).

Otherwise, if L(1) > (¢; + ¢2)/c1, ie., AB— (1 — A) < ¢1/(c1 + ¢2) then N* = 1.
Thus, we have the following optimal policy:

(i) f AB — (1 — A) <0, then N* =0 and the expected cost C'(0) = Acy. In this case,
the MPu should have no WDP.

(ii) FO<AB—(1—A) <c¢1/(c1+ ¢2), then N* = 1.

(iii) If AB — (1 — A) > c¢1/(c1 + co), then there exists a finite and unique minimum
N*(> 1) which satisfies (3.17).

3.5 Numerical Examples

We compute numerically the reliability Ry (t) and the optimal number N* which min-
imizes C(N). Suppose that errors of the MPu occur according to an exponential
distribution F'(t) = 1 — e™*. Let the mean hung-up time (1 day ~ 10 days) of a uP
correspond to the mean time 1/X to error occurrences of the MPu and 1/A =1 (day).
Let the mean time (1 month ~ 1 year) to error occurrences of a WDT correspond
to the mean time 1/a to error occurrences of a WDP and 1/a = 30 ~ 365 (days).
Further, for the sake of convenience, suppose that the mean processing time of the
switching from a WDP to other WDPs in standby is 1/3 = 1/(30 x 10%). Moreover,
the probability that a WDP detects the failure with itself is § = 0.8 ~ 0.99 and the
coverage of a WDP is p = 0.8 ~ 0.99, the acquisition cost ¢; for a WDP is a unit of
cost and the cost rate of the fault of the MPu to a WDP is cp/c; = 102 ~ 107.

Figure 3.3 draws the reliability Ry (t) for N =0,1,2,3,4, 00 when 1/a = 30 (days),
p = 0.99 and # = 0.8. This indicates that Ry(¢) increases evidently with N. When
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N > 1, Ry(t) increases noticeably compared with the case of N = 0, i.e., the MPu
does not have a WDP, however, its increase rate decreases gradually with NV and nearly
converges to the value of Ry, (¢t). From this numerical example, it is estimated that the
system is enough to have about 3 WDPs.

Next, Table 3.1 gives the optimal number N* which minimizes C(N) when 1/ =1
(day), p = 0.8 and # = 0.8. This indicates that N* decreases with 1/, however,
increases with c/c;. For example, when 1/a = 180 (days) and cp/c; = 103, the
optimal number of WDPs is N* = 2.

Table 3.2 gives the numerical values for the mean time #(N*) until the MPu becomes
faulty when 1/\ = 1 day and 1/« = 180 days. This indicates that £(N*) increases with
¢o/cy, p and 6. It is easily seen that the coverage p gives a greater influence on the
mean time than 6. Hence, to develop the reliability of the MPu, we should improve

the coverage of a WDP.

3.6 Conclusions

Recently, several authors have studied and proposed many ideas for the improvement of
the reliability of the MPu. We have investigated the system where one WDP monitors
the behavior of the MPu and the others are in standby. We have derived the mean
time until the MPu becomes faulty and the reliability function by considering the mean
times to error occurrences of the MPu and WDP, the coverage of a WDP and so on.
Further, we have discussed an optimal number of WDPs which minimizes the expected
cost.

From the numerical example of the reliability function, it has been shown that it is
effective to have at least one WDP when the system requires a high reliability. Further,
the optimal number which minimizes the expected cost decreases with 1/a, however,
increases with cp/ci. Further, the coverage of a WDP gives a great influence on the

improvement of the system.
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Figure 3.2: Transition diagram between system states.
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Table 3.1: Optimal number N* to minimize C(N) when 1/)\ =1 day, p = 0.8, 0 = 0.8.

1/« C,/C4

(day)| 10 10% 10% 10Y 10% 105 10’

30 1 2 4 5 6 7 8

60 1 2 3 4 5 9 6

80 1 2 3 3 4 5 6

180 1 2 2 3 3 4 5

365 1 1 2 2 3 3 4




Table 3.2: Numerical values for £(N*) when 1/X =1 day, 1/a = 180 days.

(% 10° (seconds))

c,/ ¢,

10

10°

10°

10°

10°

10°

10’

0.8

0.8

0.423

0.430

0.430

0.430

0.430

0.430

0.430

0.9

0.423

0.431

0.431

0.431

0.431

0.431

0.431

0.99

0.423

0.432

0.432

0.432

0.432

0.432

0.432

0.9

0.8

0.823

0.854

0.855

0.855

0.855

0.855

0.855

0.9

0.823

0.858

0.860

0.860

0.860

0.860

0.860

0.99

0.823

0.861

0.863

0.864

0.864

0.864

0.864

0.99

0.8

7.156

7.733

7.780

7.784

7.785

7.785

7.785

0.9

7.353

8.103

8.181

8.189

8.190

8.190

8.190

0.99

8.217

8.546

8.587

8.592

8.593

8.593

8.593
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Appendix

3.1. Mass functions Q, ;(t) (¢ =1,2,---,N;j=1,2,---,N, F)
The mass functions (), ,(¢) from state ¢ at time 0 to state j at time ¢ are given by the

following equations:

Q.i(t) = p-[ e dF(u) (:=1,2,---,N), (A3.1)

Q) =[S0 + [0 =) [t + 1= 0) [0 e art)

‘7.__

0
N [)t a(i— /B(e_ﬂu _ e—au)dF(u):l (’L =1,2,---,N— 1)’ (A32)

Qunt) = |05+ | [ 22— (1 - Pl

(i=1,2--,N—1), (A3.3)

Qo) =[S0 [0 [[emart+ [ —eire)]. (434

j=1

where the asterisk mark denotes the Stieltjes convolution, at™(t)(n = 1,2, - - -) denotes
the n-fold Stieltjes convolution of a distribution a(t) with itself and a©(t) = 1 for
t > 0,0 for t < 0, ie., a™ () = a™ V(&) * a(t), alt) * b(t) = [Fb(t — u)da(u). For
example, Qy #(t) is the probability distribution that when the N-th WDP is monitoring
the MPu, the system transits to faulty state because of either case where errors of the
MPu occur and a WDP cannot detect them although a WDP is normal or where errors
of the MPu occur when a WDP is abnormal.

3.2. Derivation of equation (3.10)
Substituting f(s) = A/(s + A) in (3.6), and for simplicity of the equation, assuming
r=a+M1-p),y=p+ A we have
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-N—2 aBl o B SpA B a0
hN(S)"jg[(sm(sw)] [sﬂ (sta)(s+ ) (sta)st+y)(s+A)

+[ A SpA }[ a0 }N !

s+A (s+z)(s+AN)|[(s+x)(s+v)

xo (=2 30 it SP_ o530
_s+)\{z[s+z(s+y)][ s+ (s+x)(s+y)]

Sp a30 N-1
- )[( ) }

s+a”(s+a)(s+y
N Si)‘{ s+ Z_[(s—i-f;)ﬂz-l-y)]j} (N=1,2--). (43.5)

3.3. Derivation of Ry(t)
We can derive Ry(t)(N = 0,1,2,---) one by one by taking the LS inverse transform
of hy(s) in (3.10).

(i) When N = 0, evidently, we have

A
ho(s) = TN (A3.6)
Thus,
Ro(t) =1 — Hy(t) = e, (A3.7)

(ii) When N = 1,

SpA
(s+z)(s+A)

hi(s) = ho(s) — (A3.8)
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Thus,

Ri(t) =1 — Hy(t) = Ry(t) + ve™ — ve™™,

where

A
a—Ap

'l\:—_

(iii) When N = 2,

spAaf30

has) = M(s) — G 1 G 1)

Thus,

Rg(t) =1- Hz(t)

= Rq(t) + vite ™ + vge % + vge ™Y + vy,

where
o _pAaﬂO 1 1
i = y— A (x—)\ +y—x)’
= pAa 30 1 n 1
T N [ R TR &
_ pAa 30

Vg = — D) )

(y — )y — A)

pia30

N ESY)

Similarly, when N = 3,4, .- -, we can compute Ry(¢) successively.

(A3.9)

(A3.10)

(A3.11)

(A43.12)

(43.13)

(A3.14)
(A3.15)

(A3.16)
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3.4. Derivation of Ry (t)
Taking N — oo in (A3.5), we have

heo(s) = 1\}1_141;{) hn(s)

“s—i—)\{ s+xz[(s—|—x(s+y)]}
A 3 sp(s+y)
s+ A [1 (s+x)(s+y) —aﬁ@]' (43.17)

Thus, we can derive R (t) by taking the LS inverse transform of hq(s):

Y —wy —unt
= Ry(t) + pA !
oft) +p [(wl——wz)(wl—)\)e

y— w2 —wat y—A -\t
- + , A3.18
(w1 — wa)(we — )\)e (w1 — A)(we — /\)e ] ( )
where
1
wy = E[rc +y+ \/("c —y)? + 4a 0], (A3.19)

wy = %[m +y— \/(a: —y)? + 4a0). (A3.20)






Chapter 4

Optimal Number of
Microprocessor Units with
Watchdog Processor

This chapter considers a system with /N microprocessor (¢ P) units, where each pP unit
consists of uP and watchdog processor (WDP): When errors of a uP have occurred, a
WDP detects them and resets a yP to an initial state. The reset number is checked
at constant time 7. If more than K resets have been made at time 7', a uP becomes
permanent fault and one of other uP units in standby begins to operate. The mean
time and the expected cost until system failure are derived. An optimal number N*

which minimizes the expected cost is discussed.

4.1 Introduction

Chapter 3 has considered the system where a main processor has several watchdog
processors (WDPs), and has shown that it is effective to have at least one WDP.
However, many microprocessor (uP) units which consist of uP and WDP have been
recently used in actual fields. This chapter considers the following system with N puP
units to improve its reliability by redundancy: Each pP unit consists of 4P and WDP.
When errors of a uP have occurred, a WDP detects them with a certain probability

41
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and resets a uP to an initial state. If a WDP cannot detect errors and the reset dose
not succeed, the system fails. The successful numbers of resets are checked at constant
time 7. If more than K resets have been made at time 7', it is judged that a uP is in
permanent fault, and one of other P units in standby begins to operate. The above
procedures are repeated until all of N uP units have become fault.

For the above model, we derive the mean time until system failure, using the theory
of Markov renewal processes [Osaki92]. Further, introducing the cost of a uP, we
discuss analytically the problem to obtain how many number of pP units is optimal.

Finally, numerical examples are given when failure times of a uP are exponential.

4.2 Model and Analysis

The system has N pP units, where each unit consists of uP and WDP shown in Figure

4.1. We assume that:

(1) Earors of a uP due to hardware errors and mistakes of memory access or control
occur at a non-homogeneous Poisson process with an intensity function A(t) and

a mean-value function A(t), i.e., A(t) = f§ Mu)du.

(2) A WDP can detect errors of a pP with probability p(0 < p < 1) and resets a uP
to an initial state. This probability p is called coverage of a WDP. A WDP works
independently of a uP and does not fail.

(3) If more than K resets have occurred at time 1" where T is previously specified,
we regard that a P is in faulty state, and switches over to one of other P units
in standby automatically with probability #(0 < § < 1). Any switching times are
neglected. On the other hand, if less than K resets have occurred at time T, a

pP finishes one processing and returns to an initial state.

(4) If a WDP cannot detect errors of a P or if it cannot be switched over from a

wP with fault to one of standby units, the system becomes failure.
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From assumption (1), the probability that the j-th number of errors have exactly
occurred during (0, ¢] is given by P;(t) = {[A(t))//4!}e ¥ (j =0,1,2,---). Under the

above assumptions, we define the following states of the system:
State j: The j-th uP unit begins to execute one processing (7 =1.2,---, N).
State F': System failure occurs.

The system states defined above form a Markov renewal process where state F' is
an absorbing state. Transition diagram between system states is shown in Figure 4.2.
Let Q;;(1)(i=1.2,---,N;j=1,2,---. N, F) be one-step transition probabilities of
a Markov renewal process. Then, the mass functions @, ;(¢) from state i at time 0 to

state j at time ¢ are:

K-1 T

Qi) = Z/])’Py(u)d/l(u) (=1,2,---,N), (4.1)
.7

Qunlt) = S0 *HZ/p’P YdA(w) (i=1,2.---.N—1), (42)
n=0

Qurl) = SIQD @) 2 - [P
n==0

—l—i/ Au)p’ (1 —p)PJ(u))\(u)du] (i=12,---,N—=1), (4.3)
Qnpt) = Z (n) Z/p’P (u)dA(u)

n=0

+ ;O /O A’ (1~ p) Py (w)M(u)du], (4.4)

where the asterisk mark denotes the Stieltjes convolution, a™(t) denotes the n—fold
Stieltjes convolution of a distribution a(t) with itself and a©@(¢) = 1 for ¢ > 0,0 for
t <0,ie, a™(t)=a™V(t) xa(t),at) *b(t) = [ b(t — u)da(u), and

1: t>1T.
A(t)E{O: tzT (4.5)
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is the degenerate distribution placing unit mass at 7, A(t) = 1 — A(t). For example,
Q. r(t) is the probability distribution that when the ¢-th P unit is operating, the
system transits to failure state because of either case where the switch-over to one of
standby units fails when more than K resets have occurred at time 7", or where a WDP
cannot detect errors of a P until time 7.

Let ¢(s) be the Laplace-Stieltjes (LS) transform of any function ®(¢). Taking the
LS transforms of (4.1) ~ (4.4), we have

Quo(s) = :lpjc:_STPj(T) (1=1,2,---,N), (4.6)
qz,Hl(s) = 2[1_0 ]ﬂe“sfp (T)]n-l » [9 ipje—STPj(T)]
(i=1,2---,N—1), 4.7)
qz7p(8) = i:l[ -:0 pJe~STPj(T)]n~1
<[(1-0) Z PeTP,(T) + i [ e (= PO
(i=1,2,---,N-1), (4.8)
oo K-1 1
anr(s) = Z_:][; PeTP(T)|"
X [i}ﬂc“STPj(T) -+ 2/: e Sl (1 — p)Pj(t))\(t)dt}. (4.9)

We derive the mean time ¢(N) from the beginning of system operation to system
failure. Let Hy(t) be the first-passage time distribution from state 1 to state F'. Then,

we have

HN(t) = Ql,F(t) + Ql,z(t) * Qz,p(t) + -4 qug(t) LRI 3 QN—-I,N(t) k QN,F(t) (410)

Taking the LS transforms on both sides of (4.10) and arranging them, we have



4.2. MODEL AND ANALYSIS

hN(S)

where

where

s 92{;% TR
- _[ = ]
=Y penTR(T)
J=0
(1=0)> pe TP(T +Z/ “Shpi(1 - p) Py(OA()dt
X =K
1- Z p'e” P (T)
7=0
Hio: pe T P;y(T)
o[- "

=0

j=K

K-1 .
1- S ple=TP(T

)

> pe T+ 3 [ - Ao

X

~1, = 0. Hence, the mean time £(IN) to system failure is

¢(N)

K-1

1-— Z ])76-STP]‘(T)

=0

i

td Hy (t)

1— AN

1-A

il

05 pPyT)

=K

K-—1

1- > p'Py(T)

J=0

/ T = (1-pA®) gy
0

K-1

1— > p'P(T)

B (N=12,--

.)’

(N=1,2,--
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(4.11)

(4.12)

(4.13)

(4.14)
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It can be easily seen that A = ¢,,41(0) in (4.7) and ¢(N) is increasing from B to
B/(1 - A).

4.3 Optimal Policy

Let c¢; be the cost for a uP unit and ¢ be the cost for system failure. Then, the

expected cost C(V) per unit of time of the system with NV P units is given by

NC1 + Co
¢(N)
=~ _Jl‘_l_fﬁci (N=1,2,--). (4.15)
1-A B
1—-A

C(N)

We seek an optimal number N* which minimizes C(N) in (4.15). From the inequal-
ity C(N +1) — C(N) > 0, we have

1- AN C2
- N> :
ai-a NEy (4.16)
Denoting the left side of (4.16) by L(NV), we have
1+ A"
L(N)—-L(N-1)= AN > 0, (4.17)
and
1—-A
L) = ==, (4.18)
L) = ]\}im L(N) = 0. (4.19)

Hence, L(N) is strictly increasing in N from (1 — A)/A to co. Thus, we have the

following optimal policy:

(i) If (1 - A)/A < cg/cy, then there exists a finite and unique minimum N* which
satisfies (4.16).



4.4. NUMERICAL EXAMPLES 47

(i) If(1— A)/A > ca/c1, then N* =1. In this case, it is evident that

|

which is an increasing function of K. Thus, if K increases then the case of N* =1

1-SN PP (T
LA Jgo 5(T)

= + 1} =1,
A

| =

i P Pi(T)
=K

increases. We can compute a minimum value K which satisfies (1—A)/A > ¢2/c¢;

for the case where N* = 1.

4.4 Numerical Examples

We compute numerically the mean time /(N) and the expected cost C(/N) when errors
of a uP occur at a Poisson process with constant rate A\. Suppose that the coverage
of a WDP is p = 0.8 ~ 0.99, the probability that the switch-over from a uP to other
units in standby succeeds is § = 0.9 ~ 1.0, and the cost rate of system failure to a uP
is cy/e1 = 10% ~ 10%. Further, the interval time T' of checks per the mean time 1/) of
error occurrences of a P is AT = 10~ ~ 10! and the upper limit number of resets
is K=2~4.

Table 4.1 gives the optimal number N* which minimizes the expected cost C(N).
This indicates that N*’s decrease with K, however, increase with p, AT and cy/¢;. For
example, when 6 = 0.9, p = 0.9, AT = 1072, K = 3 and ¢/c; = 10%, the optimal
number is N* = 2. This also indicates that N*’s depend little on # and are almost 1
for K > 4. Therefore, we can conclude that the system is enough to have only one
unit when the reset number K takes ordinary values from 4 to 8.

Figure 4.3 draws ¢(1) for 1/\ and p = 0.8,0.9,0.99 when T = 1 second and K = 4.
This indicates that ¢(1) increases noticeably with p. That is, to develop the reliability
of the system, we should improve the coverage of a WDP.

Moreover, we compute a minimum value K for the case where N* = 1 which satisfies

(1—A)/A > ¢3/¢q in Table 4.2. This indicates that these values increase with p and
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AT

4.5 Conclusions

It would be very important to evaluate and improve the reliability of systems with
wP. This chapter has considered a redundant system with N pP units to improve the
reliability. Under the assumption that a uP is in faulty state if more than K resets
have occurred at time T, we have derived the mean time and the expected cost until
system failure. Further, we have discussed an optimal number N* which minimizes the
expected cost.

From the numerical examples, it has been shown that the optimal number is almost
1 for K > 4, and hence, the system is enough to have only one unit. Further, we have
understood that the probability of coverage of a WDP gives a great influence on the

improvement of the system.
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Figure 4.1 : Outline of the model.
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Figure 4.2: Transition diagram between system states.



Table 4.1: Optimal number N* to minimize C(N).

AT=10"* | AT=10"° | AT=10"% ] AT=10"
cy/cy C,/Cq cy/Cy ¢,/ Cq

107 10°] 10*] 10%| 10°| 10*| 10% 10°] 10% 10% 10% 10°

2l 1] 1] 2| 1] 2| 2| 2| 2| 3 3 4 5
08 1 1 2
1 1 1
1 2 5
0.9 1 1 2
1 1 1
1 2 4
0.8 1 1 2
1 1 1
1 2 6
0.9 1 1 2
1 1 1
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2(1)
days

>
>

p=0.9
p=0.8

o

ours
Figure 4.3: Mean time (1) to system failure
when N=1, T=1 second, K=4 and p=0.8, 0.9, 0.99.



Table 4.2: Minimum value K for the case where N* = 1.

AT=10"* AT=10"2 AT=10"2 AT=10"

6| p cy/ ¢ cs/ ¢y s/ ¢y cp/ ¢y
10%] 10% 10% 10% 10°% 10 10% 10°| 10% 104 108 10
09 o8/ 2| 2| 3 2 3 3] 3] 3 a3 3 4 4
09/ 2| 2| 3 2| 3 3 3 3 af 4 4 s
10{ 08/ 2| 2| 3 2| 3l 3 3 3 3 3 4 14
09 2| 2 3l 2| 31 3 3 3 a| 4 4| s

93






Chapter 5

Reliability Evaluations of
a Microprocessor System with
Limit Processing Time

This chapter considers reliability problems of a system with N microprocessor (uP)
units where each P unit consists of uP and watchdog processor: If the operating unit
cannot finish one processing by errors until a limit time, it changes to one of standby
units. The mean time and the expected number of processings until system failure are
obtained. Using these results, the cost effectiveness is derived and an optimal number
of uP units which minimizes it is analytically discussed. Finally, numerical examples

are given under suitable conditions.

5.1 Introduction

A large number of microprocessors (uPs) have been widely used in many practical
fields. A watchdog processor (WDP) is the most convenient coprocessor to monitor
the behavior of a uP since it is simple and low-priced.

Yasui, et al. (1994) [YNHO4] considered a P system with watchdog timer (WDT)
which is simplified a WDP function. They also showed that it is effective to have a
WDT for the system which demands a high reliability.
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This chapter considers the reliability problems of a system with limit processing
time: The system consists of N pP units where each uP has a WDP. When errors of a
1P have occurred, a WDP detects them and resets a P to an initial state. Otherwise,
the system goes to failure. If the operating unit cannot finish one processing until a
limit time T', a uP becomes faulty and its unit changes to one of the standby units.
The above procedures are repeated until all of N units have become faulty.

The mean time and the expected number of processings until system failure are
obtained. Using these results, the cost effectiveness is derived and an optimal number
of wP units which minimizes it is analytically discussed. Finally, numerical examples

are given.

5.2 Model and Analysis

The system has N pP units where each unit consists of uP and WDP shown'in Figure
5.1. We regard that a uP becomes faulty if it does not finish one processing until a

limit time 7.

(1) A uP repeats one time of processing which takes the total time of a main pro-
cessing and an initial processing for preparation to execute a main processing.
Its initial processing and main processing need the respective times according to

exponential distributions (1 — e~%') and (1 — e™#").

(2) Errors of a uP occur according to a general distribution F'(¢) with finite mean

1/

(3) A WDP can detect errors of a uP with probability p(0 < p < 1) and resets a uP
to an initial state of a main processing. This probability p is called coverage of a
WDP. A WDP works independently of a uP and does not fail.

(4) If the operating unit cannot finish one processing by errors until a limit time 7', it

changes to one of the standby units. The probability that the switch-over from
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a wP unit to other units in standby succeed is § (0 < # < 1), and its switch-over

time is constant wv.

(5) If a WDP cannot detect errors of a uP, if it cannot be switched over from a faulty
uP to one of the standby units or if errors of a uP occur before a uP finishes
an initial processing, the system becomes failure. Besides, if the N-th operating
unit cannot finish one processing until a limit time T, the system also becomes

failure.
Under the above assumptions, we define the following states of the system:

State i: The i-th P unit begins to execute one processing (i = 1,2,---, N).

State F': System failure occurs.

The system states defined above a Markov renewal process [Osaki92] where state
F'is an absorbing state. Transition diagram between system states is shown in Figure
5.2. We define the distribution U(t) of a limit time 7" and the distribution V(t) of the

processing time of switching as the following functions:

Ut) z{ 0y (5.1)
wo={l: 12 o

Let @, ;(t)(: = 1,2,---.N;j = 1.2.---, N, F') be one-step transition probabilities
of a Markov renewal process and ¢(s) be the Laplace-Stieltjes (LS) transform of any
function ®(t), i.e., @(s) = [5° e **dP(t) for Re(s) > 0. Further, we put that

T
hr(s) = /0 e~ SO (t). (5.3)

Then, from Appendix 5.1,
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(5) = af[l = f(s+a)] 1= F(T)e” DT — hr(s)
W T st a)sth) 1= phr(s)

ab(s + B)[1 — f(s + a)le” e *THIF(T)

renls) = (G ot DT ) | (=12, N )
— af[l = f(s+ a)][1 = F(T)e= AT — hp(s))
(5.5)
(s + B)[1 — phr(s)l[a + sf(s + a)]
B )~ (1 gpepme-sr oy
X [1 = hp(s) — (1 — @)e Ple—s(T+y o o
¢r(s) = { (st a)(s 1 A1 — phrls)] } (t1=1,2,---,N—1),
— af[l = f(s + @)][1 = F(T)e” DT — hp(s)]
(5.6)

(s+a)(s + B)[1 — phr(s)]f(s + a)
+ a(s+ B)[1 — f(s+ a)]

x [(1 = p)hr(s) + e~ CHATE(T))

wrls) = { (s + a)(s + B)[1 — phr(s)] } | &7)
— af[l = f(s+ a)][l = F(T)e= AT — hp(s)]

Note that ¢; ,(s) do not depend on i in (5.4) ~ (5.6).
We derive the mean time ¢(N) to system failure. Let Hy(t) be the first-passage

time distribution from state 1 to state F'. Then, we have

HN(t) = Ql’p(t) -+ Q1’2(t) * QQ’F(t) + -4 Q1,2(t) K oeee QN—l,N(t) k QN,F(t)- (58)

Hence, the mean time ¢(N) to system failure is

(N = [ i) =tim %["LN(S)]

= D=+ Ba-")) (V=129 69)

where
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q = %,Hl(o)
01 — f(@)F(T)e "

= T phe(@) = 1= (@] = PO kO] (10

{g[l — ph(0)] + 3[L = he(0) = F(T)e~*7] } 11— f(a
D = , (5.11)

1 = phr(0) — [1 = f(@)][1 = hr(0) — F(T)e~FT]
_ V(1) #T[1 - f(0)] 612

— 1=phr(0) = [1 = f()][L = hr(0) — F(T)e-FT]
Note that 0 < g < 1, and for N = 1,00, we have, respectively,

¢(1) = D, (5.13)
U0) = [fff | (5.14)

Next, we derive the expected number of processings to system failure. The expected
number M;(t) of visits to state 7 until time ¢, when the system starts from state i at

time 0, is given by the following renewal equation:

My(t) = Qui(t) *[1 + M(t)] (i=1,2,--,N). (5.15)

Thus, the LS transform m(s) of the expected number M(t) of processings until the

system moves from state 1 at time O to state F'is given by

m(s) = ml(s)+q12( )ma(s) + -+ q1,2(5)g2,3(s) - - - qn-1,n(s)Mmn(s)

= Zml (@1 ()P, (5.16)

where my(s) = my(s) (i = 1,2,---,N). Therefore, from ¢,,41(0) = ¢, we derive the

expected number M of processings until system failure in the following equation:

M = lim M(t) = hmm( )

1—00
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N .
= E m1(0)g?~!
=1

[1— f(@))[1 = F(T)ePT — hp(0)]
{ 1 — phr(0) — [1 — f()][1 = F(T)e T — he(0)] }

— 0T [1 = f(a)]F(T)
% _ He—ﬁT[l _ f(a’)]F(T) N
[1 {1 — php(0) — [1 — f()][l = F(T)eFT — hT(O)]} } (5.17)

5.3 Optimal Policy

Generally, the expected cost would be mutually exclusive against the effectiveness.
We discuss an optimal policy by introducing the concept of cost effectiveness: Let ¢;
be the acquisition cost for a uP unit and ¢ be the cost for system failure. Then,
we assume that the expected cost per unit of time of the system with N pP units
is C(N) = (Ney 4 ¢2)/¢(N), and the effectiveness which is the expected number of
processings per unit of time is M/¢(NN). Then, we define the cost / the effectiveness as

the following equation:

C(N) Ney + ¢
C(N)= = )
7(%7 M

(5.18)

That is, C(N) denotes the expected cost per one time of processing. From equation

(5.17), we have

o) = ate (5.19)
> ma(0)g’ !
j=1
Note that
A, =mq(0)g" 1, (5.20)

is strictly decreasing in j since 0 < ¢ < 1, and hence, lim,_,, A, = 0.
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We seek an optimal number N* which minimizes C'(N) in (5.19). From the inequal-
ity C(N + 1) — C(N) > 0, we have

f: N>& (5.21)
AN+ =1 - C1

Denoting the left side of (5.21) by L(N), we have

N 1 1
L(N)=L(N-1) = > A (-—-— - ——) >0, (5.22)
j=1 AN+1 AN
A; 1
L1l) = ~=—-1=>--1>0, 5.23
1) = £-1=1 (5.23)
N
> A
. . j=1 _
L(o) = A}l_r& Ane: N
> lim A (5.24)

Hence, L(N) is strictly increasing in N from L(1) to oo.
Thus, we have the following optimal policy:

(1) ¥ L(1) > ¢c2/c1, ie., g < c1/(c1 + ¢2) then N* = 1.

(ii) If L(1) < ca/c1, i.e., ¢ > ¢1/(c1+ o) then there exists a finite and unique minimum
N*(> 1) which satisfies (5.21).

5.4 Numerical Examples

We compute numerically the optimal number N* which minimizes the cost / the effec-
tiveness C(NV).

Suppose that errors of a uP occur according to an exponential distribution F(t) =
1 — e~ and the mean main processing time 1/3 of uP is a unit time of the system.

Further, suppose that the mean time to error occurrences is (1/X)/(1/8) = 3600 ~
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3600 x 24 (when 1/ = 1 second, 1/ corresponds to 1 ~ 24 hours), the mean initial
processing time is (1/a)/(1/8) = 1, the mean processing time of the switching of the
wP unit is v/(1/3) = 1/(30 x 10*). Moreover, the probability that the switching of
wP unit succeeds is 8 = 0.8 ~ 0.99, the coverage of a WDP is p = 0.8 ~ 0.99, the
acquisition cost ¢; for a uP unit is a unit of cost and the cost rate of system failure for
a pP unit is ¢ /c; = 10 ~ 102,

Table 5.1 gives the optimal number N* which minimizes the expected cost C(N)
when a limit processing time 7" of uP is 10 ~ 20 times of the main processing time
1/83 of pP, ie., T/(1/B) = BT = 10 ~ 20. This indicates that N* decreases with
BT, however, increases with 1/A, p, 6 and ca/c;. For example, when (1/\)/(1/8)
= 3600 x 24, p = 0.9, § = 0.9, BT = 15 and cy/c; = 102, the optimal number of uP
units is N* = 2. This also indicates that N* depends on 1/A, p and § when 3T takes
small values, however, when ST > 15, N* depends little on them and N* is almost
1~2. \

Next, Figure 5.3 draws C(N) for N and gives the optimal number N* when (1/))/
(1/8) = 3600, 3600 x 24, p = 0.8, § = 0.8, 1" = 10 and c3/c; = 10. This indicates
that C(N) decreases noticeably with 1/X. We can consider that N* increases with 1/A
in Table 5.1 so that the processing number of uP within a limit processing time 87T
increases and the expected cost decreases remarkably. That is, from Figure 5.3, as the
P unit becomes advanced, it seems that the optimal number N* becomes large so as

to decrease the expected cost for the effectiveness.

5.5 Conclusions

We have considered the reliability problems of a system with N uP units. Under the
agsumption that a P is in faulty state if it does not finish one processing until a
limit time 7', we have derived the mean time, the expected number of processings until
system failure by considering the mean time to error occurrences of a uP, the coverage

of a WDP and so on. Further, introducing the concept of cost effectiveness, we have
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discussed an optimal number which minimizes the expected cost for the effectiveness.

From the numerical examples, it has been shown that the optimal number N*
which minimizes the cost / the effectiveness decreases with 8T, however, increases
with 1/, p, 0, and co/c1, and N* depends little on them and N* is almost 1 ~ 2
when 3T > 15. Further, an interesting consequence has been obtained that when ST
is small comparatively, as the uP unit becomes advanced, the expected cost per unit

of processing decreases, and oppositely, the optimal number N* increases.
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Figure 5.1: Qutline of the model.



Figure 5.2: Transition diagram between system states.
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Table 5.1: Optimal number N* to minimize C'(V).

BT
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Figure 5.3: Cost effectiveness C(N) for N and N* when (1/ 1)/(1/ B)=3600, 3600 X 24,
p=0.8, 6=0.8, B T=10 and c,/c,=10.
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Appendix

5.1. Mass functions @, ,(t)(i =1,2,---,N;j=1,2,--- N, F)
The mass functions @); ;(t) from state 7 at time O to state j at time ¢ are given in the

following equations:

Quilt) = [ [ Flupda)] « { ki[p [ Buv@arw]*™ s [ FaTwbuw)

(G=1,2,---,N), (45.1)
Qe ()= i[Q’*‘“ﬂ T [ Flaaaw)] {g{p [ Bywarew)]

i /ot F(u)B(u)dU (u)] }*[HV(t)] (=19 N—1). (45.2)
Qurlt) = 3 [0u0) " ¢ | [ Awar )

#3200u@] " [ [ Feaa)] « Xlp [ BeTwar)]*”

*{(1 -9 [ BT (w)dF(u) + | / ’F(u)‘B‘(u)dU(u)] “Ja- a)V(t)]}
(i=1,2,---,N —1), (45.3)

Qn.r(t) i[QNN ](] Yy [fOtZ(u)dF(u)]

j=1

TS,

— (k—1)

)U (u)dF (u)]

+2[QNN ](] D*[/()FudAu] ij:[/

J=

*{(1—}7) / BT (w)dF(u) + /0 F(u)B(u)dU(u)}, (A5.4)
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where the asterisk mark denotes the Stieltjes convolution, a™ (t) denotes the n-fold
Stieltjes convolution of a distribution a(t) with itself and a®(t) = 1 for ¢ > 0,0 for
t <0,ie.,a™(t) =aV(t)xalt), a(t) *b(t) = f§ b(t —u)da(u). For example, Qn,r(t)
is the probability distribution that when the N-th uP unit is operating, the system
transits to failure state until time ¢ because one of the following three cases: (i) Errors
of a uP occur before an initial processing finishes, (ii) a WDP cannot detect errors of

wP, and (iii) one processing of uP does not finish until a limit processing time.






Chapter 6

Reliability of
a Multi-Microprocessor System
with Complicated Switching

This chapter considers a system with N TMR (Triple Modular Redundancy) units
in which each unit consists of microprocessor and watchdog processor, and a faulty
TMR . unit is switched over to a new one. The mean time to system failure and the
expected cost are derived, using Markov renewal processes. Optimal numbers N*
of TMR units which maximize the mean time and minimize the expected cost are

analytically discussed. Finally, numerical examples are given.

6.1 Introduction

In this chapter, we consider the following system with N TMR (Triple Modular Redun-
dancy) units to improve its reliability: A wP unit consists of microprocessor (uP) and
watchdog processor (WDP), and each TMR unit consists of three uP units with ma-
jority voting function. When errors of uPs have occurred, a WDP detects them with
a certain probability and resets a P to its initial state. This probability p is called
coverage of a WDP. Three pP units of a TMR unit make the same one processing,

and compare the results with each other at a specified time 7'. This is automatically
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switched over to a new TMR unit in standby in the following three cases: (i) More
than two results do not agree, (ii) more than two processings are not completed until
time 7', or (iii) one pP unit becomes faulty.

It has been well-known that even if a system consists of redundant units, its re-
liability often decreases because the quantities of hardware such as detecting faults
and switching circuits increase [Nanya91]. In this chapter, we regard the increase of
units as that of complexity, and introduce the measure of system complexity where its
reliability decreases as the number of units increases.

We derive the mean time and the expected cost until system failure, using the theory
of Markov renewal processes [Osaki92]. Optimal numbers N* of TMR units which
maximize the mean time and minimize the expected cost are analytically discussed.

Numerical examples are given and some useful discussions for these results are made.

6.2 Model and Analysis

A P unit consists of P and WDP, and the outline of the model is drawn in Figure
6.1.
6.2.1 Analysis of a 4P unit

A uP unit repeats one processing which needs a random time according to an expo-

nential distribution G(t) = 1 — e #*. We assume that:

(1) Errors of a uP occur according to an exponential distribution F(t) =1 — e~ .

(2) A WDP can detect errors of a uP with probability p (0 < p < 1) and resets a uP
to its initial state.
(a) If a WDP cannot detect errors with probability (1 —p), a uP becomes faulty.
(b) Reset times are neglected.

(c) A WDP works independently of a uP and does not fail.
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Under the above assumptions, we define the following states of a uP unit:

State 0: A uP begins to operate.

State S: A uP completes one processing.

State E: A puP becomes faulty.

The states defined above form a Markov renewal process where both states S and
E are an absorbing state.
Let Qo ;(t)(j = 0,5, F) be one-step transition probabilities of a Markov renewal

process. Then, we have following equations:

Qoolt) = p Ot‘é(u)dp'(u), 6.1)
Quslt) = [ FuwdG(w), (6.2)
Qoslt) = (1=p) [ GlwdF(w) (6:3)

From equations (6.1) ~ (6.3), the transition probabilities P, ;(¢) that it is in state j
(1 =0,5, F) at time ¢t when a uP unit is in state 0 at time 0 are given by

Poo(t) = 1—Qoo(t) — Qo,s(t) — Qor(t) + Qoolt) * Poo(t), (6.4)
Pos(t) = Qos(t)+ Qoolt) * Pos(t), (6.5)
Pop(t) = Qog(t)+ Qoo(t) * Py r(t), (6.6)

where the asterisk mark denotes Stieltjes convolution, i.e., A(t) x B(t) = [f B(t —

u)dA(u). Then, arranging above equations, we have the following equations:

Pog(t) = e RU-prtult, (6.7)
() = — H o ~-p)tult

Pstt) = s ). (6.8)

4 (1—=p)A (1

P = = W7 1 e~ AA=-p)tult )

where it is evident that Pyo(t) + Py s(t) + Por(t) = 1.
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6.2.2 Analysis of N TMR units

Each pP unit of a TMR unit repeats the same processing, and has to complete one
processing until a specified time T' to compare its result. It is assumed that the prob-
ability which the result of 4P unit is correct is (0 < a < 1). It is judged by the
voter of a TMR unit that if more than two results are correct, they are correct, and
otherwise, they are not. The system consists of N TMR units where one is operating

and the others are in standby.

(3) If more than two results do not agree, one unit becomes faulty, or more than
two processings are not completed until time 7', then an operating TMR unit is

switched over to one of other units in standby.

(4) If more than two pP units are faulty at time T or if a faulty TMR unit cannot be

switched over to one of standby units, then the system becomes failure.

The quantities of hardware of detecting faults and switching circuits would increase
in proportion to the number N of TMR units. That is, the quantities of hardware of a
whole system increases by those of detecting faults and switching circuits, adding to the
number of TMR units. In this chapter, we define V(N) as the measure of complexity,
which is given by the reliability of a TMR unit and the increased quantities of hardware
[1S76].

Let R, be the reliability of a TMR unit and a (a > 0) be the rate of quantities
of hardware of detecting faults and switching circuits for those of a TMR unit. Then,
we assume that the reliability of complexity for N TMR units is V(N) = (RY)M(N =
1,2,---). Evidently, when both N and a increase, V(IN) decreases, and hence, the
mean time to system failure decreases.

Under the above assumptions, we define the following states of the system:
State i: The i-th TMR unit begins to operate (i =1,2,---, N).

State F': System failure occurs.
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The transition probabilities ¢; ; from state ¢ to state j of the system states above

are given by the following equations:

Qi+l = i[A(T)]k_l[l - A(T) - B(T)]V(JV) (? =12, ,N- 1)7 (610)
Qr = i[A(T)]’““‘{B(T) +[1—-A(T)-BDV(N)} (i=1,2,---,N-1),
) (6.11)
ave = SIAMFL- AT, (6:12)
where
AT) = [a®+ 3021 — a)][Po.s(T)]® + 3a%[Po s(T)]2Poo(T), (6.13)
B(T) = 3[1 - Pos(T)[Poe(T) + [Poe(T)F, (6.14)

and A(T) is the probability that a TMR unit completes one processing correctly at
time T', B(T') is the probability that more than two units are in faulty state at time

\

T, and V(N) = 1 — V(N).

6.2.3 Mean time to system failure

We derive the mean time ¢z(N) from the beginning of system operation to system
failure. The expected processing number M;r of a TMR unit until transition from

state 4 at time O to state F' without transition to other states is given by

Mip = SSMATYBT)+ [1 - AT) - BDIV(N)}

BT+ [1- AT) - BOIV(N)

- T AT (i=1,2,---,N—1), (6.15)
Myr = SSMATF1— AT

1
= m (6.16)
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Hence, the mean time ¢r(N) to system failure is

g-1

N
le(N) = > 5T quort)Mjr
=1

=1

T al 7—-1 —
= T4 S_IDV(N)] (N=1.2,--), (6.17)

j=1
where [[., = 1 and D = [1 — A(T') — B(T)] /[1 — A(T)] which is the probability that

a TMR unit is switched over to one of standby units at time 7.

6.3 Optimal Policy

Suppose that R¢ = ¢=# and V(N) = e=#N(3 > 0), where 8 = aIn(1/R,) is a parameter
of complexity and represents the failure rate of switching. Then, we discuss an optimal
number N* which maximizes ¢z(N) in (6.17).

We put formally that

ey = A0 )

= i(De”ﬁN ¥, (6.18)

and seek N* which maximizes £z(N). It is evident that for 3 > 0,

lp(1) = 1, (6.19)
1 — DNeAN?

From the inequality £z(N) > (N + 1), we have
1 N .
S {(De N1 — [DemPN+D=1} > 1, (6.21)

DN e=BN(N+1) =

Denoting the left side of (6.21) by L1(N), we have

1

Li(N) = Li(N = 1) = DNe-BN(N+1)

N-1
Z (De—ﬁN)J[l — e P _ e=BAIN=-J+1) | e—ﬁN]
J=1
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1 N-—-1 B s ~ »
Z DN —BAN(NF1) _ZI(D"’ PN (1= e Pl —e PP >0, (6.22)
]:
and
L(1) =0, (6.23)
. 1 N i _ B

Li(oo) = I\}I—I&We‘—ﬁm;{(l)e ANYI=1 _ [De=AN+)] !

> I\}im eﬂN(N-l—l)[e—ﬁN _ 6—/3(N+1)] — . (6.24)

Thus, there exists a finite and unique minimum N*(1 < N* < o0) which satisfies
(6.21).

Next, we discuss an optimal policy which minimizes the expected cost. Let ¢; be
the cost for system failure and ¢y be the cost for a TMR unit. Then, the expected cost
C(N) per unit of time of the system with N TMR units is given by
ci + Neo

lr(N)

We seek an optimal number V* which minimizes C'(N) in (6.25). From the inequal-

ity C(N 4 1) — C(N) > 0, we have

C(N) = (6.25)

1
DNe-BN(N+1)

N-1 3
( +N) Z{ (DePNYi — [De=PNHIY 1 S (DePVy | — N > 2L
7=0

§=0 €2
(6.26)

Denoting the left side of (6.26) by Le(N), we have
Lo(N) = Ly(N — 1)
L €1 N De-fNYI - ~p(2N~-j)
S S— (—~+N)[Z(De Yi(1 — e™P7)(1 — DeP@N-1)

DNe=BNN+1) | Ve, =

F(DePNYN=1(1 e"ﬁ(N_l))} + Nf(pe-ﬂN)J(l - De-zﬂN)} >0, (6.27)
G=0

and

1 — De™2%8
Ly(1) = "D (6.28)

Ly(o0) = A}l_{rgo L(N) = o0. (6.29)



78 CHAPTER 6. RELIABILITY OF A MULTI-MICROPROCESSOR SYSTEM ...

Hence, Ly(N) is strictly increasing in N from Ls(1) to co. Thus, we have the following

optimal policy:

(i) If Ls(1) < c1/co, then there exists a finite and unique minimum N*(> 1) which
satisfies (6.26).

(ii) If Lz(l) _>_ 81/02, then N* =1.

Finally, we consider the special case where = 0 and V(N) = 1, i.e., we do not

consider the complexity of system. In this case, the mean time to failure is

Or(N) = BF(FT)(l _ DM, (6.30)

which is strictly increasing in N. Hence an optimal N* which maximizes ¢r(N) tends
to infinity.
Further, the expected cost is

B(T)ci + Neg

C(N) = T 1D (6.31)
From C(N + 1) > C(N), we have

—l—jg:lD’——N>El (6.32)

DN =0 T (‘2. '

The left side of (6.32) is strictly increasing from 1/D — 1 to co. Thus, there exists a
finite and unique minimum N*(1 < N* < 00) which satisfies (6.32).

6.4 Numerical Examples

We compute numerically the mean time ¢7(N) and the optimal number N* which
minimizes C(N). Suppose that the mean processing time 1/u of puP is a unit of time
of the system and the mean time to error occurrences is (1/\)/(1/u) = 3600 x 24.
Further, the coverage of a WDP is p = 0.8 ~ 0.99, the probability that the processing
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result is correct is @ = 0.999 and the cost rate of system failure for a TMR unit is
c1/cg=1~5.

Table 6.1 gives the optimal number N* which minimizes C(N) when p = 0.9, uT =
10. For example, when 3 = 0.05,¢1/ce = 2, the optimal number of TMR units is
N* = 3. This indicates that N* decreases with (3, i.e., the number of TMR units has to
be small as the system becomes more complex. However, even if the system becomes
more redundant, it is economical for small 4. Further, N* increases with ¢;/cy. That

is, if the cost of system failure increases, N* has to be large to prevent system failure.

Table 6.2 gives the mean time to failure {p(N) for N and # when p = 0.9 and
1" = 10, where an asterisk mark denotes the maximum value for each . For example,
when 3 = 0.1, the mean time to system failure reaches a maximum at N = 4, and
then, ¢r(4) = 3.587 x 10°. This indicates that £r(IN) decreases with 3 for the same
N, and optimal N* which maximizes ¢r(N) also decreases with /3. This has the same
tendency as that of Table 6.1. When ¢; = 1 and ¢ = 0 in (6.25), C(N) = 1/¢z(N),
and hence, the optimal policy which minimizes C(N) is equal to the same problem
which maximizes ¢r(N). It is of interest that optimal N* of Table 6.2 corresponds to
that of Table 6.1 for ¢;/cy = 00, and gives an upper limit number of TMR units.

Figures 6.2 and 6.3 draw ¢z(3) for 47" when p = 0.8,0.9,0.99, 3 = 0.05, and p =
0.9,8 = 107,102,103, respectively. Figure 6.2 indicates that ¢r(3) increases with
p, uT', however, Figure 6.3 indicates that it decreases with 3 and nearly converges to
the value of § = 107°. It is easily seen that the coverage p gives a greater influence on
the mean time than 3. Hence, to develop the reliability of the system, we should more
improve the coverage of a WDP. On the other hand, we can also estimate the coverage
p and the parameter /3 of complexity from Figures 6.2 and 6.3, respectively, when the

processing limit time y7" and the mean time £r(N) are given.

Further, noting that 4 = aIn(1/R,,), we can see in Table 6.1 that when R, increases,
/3 decreases, and hence, N* becomes large. Similarly, when a increases, [ also increases

and N* becomes small.
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6.5 Conclusions

We have considered the reliability of a system with N TMR units, and have derived the
mean time to system failure and the expected cost. We have introduced the concept
of complexity, from the viewpoint of complicated switching of the system, and have
discussed optimal numbers of TMR units. It has been shown from the numerical
examples that the optimal number decreases with the parameter 3 of complexity, and
increases with the cost rate ¢;/cg of \s%fstem failure.

Further, it has been shown that the optimal number decreases with the rate of
quantities of hardware of detecting faults and switching circuits for those of a TMR
unit, and increases with the reliability of a TMR unit. Thus, we could design more
redundant systems with high reliability as the reliability of each unit develops and the

complexity becomes small.
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Table 6.1: Optimal number N* to minimize C(N).

B ci/¢cy
1 2 3 4 5
0.01 4 6 6 7 7
0.02 4 4 5 5 6
0.05 3 3 4 4 4
0.1 2 3 3] . 3 3




Table 6.2: Mean time to failure ¢r(N).

(x10%)
B

0 0.01 0.02 0.05 0.1

1 1.482 1.482 1.482 1.482 1.482
2|  2964] 2934 2.906 2.823|  2.695
3|  4446] 4316 4.192 3.855|  3.393
4| 5928] 5588 5.278 4.502|  *3.587
5| 7.410]  6.721 6.127| %4780 3457
6| 8891 7.693 6.726 4773|  3.195
7| 10373] 8491 7.086 4585  2.922
8| 11.855|  9.111| %7.236 4.312| 2687
9| 13.337] 9558 7.216 4.018 2.497
10| 14819] 9844 7.069 3.741 2.344
11]  16.301 9.984 6.837 3495\ 2221
12| 17.783] *10.000 6.555 3.282| 2121
13| 19.265]  9.913 6.252 3.100]  2.037
14| 20.747 9.745 5.948 2.944 1.967
15| 22.229] 9518 5.654 2.809 1.908

* : maximum value of 4

33
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Chapter 7

Optimal Reset Number of
a Microprocessor System with
Network Processing

This chapter considers the maintenance problem for improving the reliability of a mi-
croprocessor (uP) system with network processing. After the system has made a
stand-alone processing, it executes successively a communication procedure of a net-
work processing. When either uP failures or application software errors in the system
have occurred, a uP is reset to the beginning of its initial state and restarts again. The
reliability quantities such as the mean time to success of a network processing and the
expected reset number are derived, using the theory of Markov renewal processes. An
optimal reset number, which minimizes the expected cost until a network processing is

successful, is analytically discussed. Numerical examples are finally given.

7.1 Introduction

As a computer network technology has remarkably developed, microcomputers (uPs)
which form a data terminal equipment (DTE) in a communication network have been
used in many practical fields. Recently, a new communication network combining

the information processing and communication has played an important role as the
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infrastructure in the information society has developed. Therefore, the demand for
improvement of reliabilities and functions for devices of a communication network have

greatly increased[Ono96, Akiyama97].

In fact, a uP which is one of vital devices of a communication network often fails
through some faults due to noise, changes in the environment and programming bugs.
Hence, it is necessary to make the preventive maintenance for occurrences of such errors.
Generally, when we consider the reliability of the system on an operational stage, we
should regard the cause of error occurrences of a uP as faults of software, such as
mistakes of operational control and memory access, rather than faults of hardware.
That is, when errors of a P have occurred, it would be effective to recover the system

by the operation of reset [Nanya91].

This chapter considers the maintenance problem for improving the reliability of a
uP system with network processing: After the system has made a stand-alone process-
ing, it executes successively communication procedures of a network processing. When
either uP failures or application software errors in the system have occurred, a uP is
reset to the beginning of its initial state and restarts again. Most reliability evaluation
models of a P system until now have assumed that both errors of a uP and failures of
the data transmission occur unlimitedly [YMNO91, YNM92, SNK92, NYS93, YNS95)].
This chapter assumes that if the reset due to errors has occurred N times intermit-
tently, then a uP interrupts its processing and restarts again from the beginning of its
initial state after a constant time. That is, if the reset has occurred frequently, the sys-
tem has latent faults, and makes the preventive maintenance to check the operational

environment and to eliminate errors.

We derive the reliability quantities such as the mean time and the expected reset
number until a network processing is successful. Further, we regard the losses which
are the times for the reset and the interruption of processing and for the maintenance
to restart the system as expected costs, and discuss optimal policies which minimize

them. Numerical examples are finally given.
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7.2 Model and Analysis

We pay attention to only a certain DTE which consists of a workstation or a personal
computer and connects with some networks, and consider the problem for improving
its reliability.

Suppose that errors of a uP system occur according to an exponential distribution
F(t) =1 —e . If errors of a uP have occurred, a pP is reset to the beginning of its

initial state and restarts again. It is assumed that any reset times are neglected.

(1) After a uP begins to operate, it executes an initial processing immediately and a

stand-alone processing.

(2) The times for an initial processing and a stand-alone processing have a general
distribution V/(t) with finite mean 1/v and an exponential distribution A(t) =

1 — ¢~ respectively.

3) After a uP completes a stand-alone processing, it begins to execute a network
U

connection processing:

(a) A connection processing needs the time according to a general distribution
B(t) with finite mean 1/f and fails with probability v (0 < v < 1).
(b) If a connection processing has failed, a uP executes the same processing

again after a constant time w where W(t) =0 for ¢t < w and 1 for ¢ > w.

(4) After a connection processing has been successful, a uP executes a network pro-

cessing.

(c) A network processing needs the time according to a general distribution U (t)

with finite mean 1/u, and is successful with probability 1 if it has not failed.

(5) If the N-th reset has occurred since a uP begins to operate, once it interrupts the
processing, and restarts again from the beginning after a constant time u, where

G(t)=0fort < pand 1 fort > p.
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Under the above assumptions, we define the following states of the system:

State 0: An initial processing begins.
State 1: A stand-alone processing begins.

State 2: A stand-alone processing is completed and a network connection processing

begins.
State 3: A network connection processing succeeds and a network processing begins.
State F': A processing is interrupted.

State S: A network processing succeeds.

The system states defined above form a Markov renewal process [Osaki92] where state
S is an absorbing state. Transition diagram between system states is shown in Figure
7.1.

Let Q;,(t) (¢# = 0,1.2,3;j = 0,1,2,3,5) be one-step transition probabilities of a
Markov renewal process. Then, mass functions @, ;(t) from state 7 at time 0 to state j

at time | are:

Qo) = [ Vlwdrw), (7.1)
Quslt) = [ Fu)av ), (72)
Quolt) = [ Awdr(w) (7.3
Q) = [ Flwdaw, (74)
Qult) = £ XU00)« [ +9Bl «Far ). (79
@ualt) = 3o XU(0) (1 =) [ Flu)dBw), (7.)

-1

&
!l
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Quot) = [ TlwdF(w) (7.7)
Qssll) = Atf(u)dU(u), (7.8)

where , .
X(t) =~ /0 F(u)dB(u) * /0 F(w)dW (w), (7.9)

the asterisk mark denotes the Stieltjes convolution and a(™(t) denotes the n—fold
Stieltjes convolution of a distribution a(t) with itself, i.e., a™(t) = a®~ V() *a(t), a(t) x
b(t) = f§b(t — u)da(u).

We derive the mean time fg from the beginning of system operation until a network
processing is successful. Let Hy s(t) be the first-passage time distribution from state 0
to state S. Then, we have

Hos(t) = i DYU=D(t) « Z(¢), (7.10)

J=1

where

D) = Qoo(t) + Qoi(t) * Qio(t) + Qo1 (t) * Qr2(t) * Qao(t)
+ Qo1 (L) * Q1,2(t) * Qa3(t) * Qaplt), (7.11)
Z(t) = Qoa(t)* Qia(t) * Qas(t) * Q3.5(¢). (7.12)

It is noted that D(¢) is the distribution function which a uP is reset by the occurrence
of errors and Z(t) is the distribution function which the system moves from state 0
to state F' directly without being reset. Further, the first-passage time distribution
Hp r(t) from state O to state F' by the N-th reset of a uP is given by

Ho p(t) = D™(1). (7.13)

Therefore, the first-passage time distribution Lg(¢) until a network processing is

successful is given by the following renewal equation:

Ls(t) = Hos(t) + Ho p(t) + G(t) * Ls(t). (7.14)



92 CHAPTER 7. OPTIMAL RESET NUMBER OF A MICROPROCESSOR ...

Let ¢(s) be the Laplace-Stieltjes (LS) transform of any function ®(t), i.e., ¢(s) =
J5° e7%'d®(t). Taking the LS transforms on both sides of (7.14) and arranging them,

we have
hos(s)
= . . 1
Is(s) 1 —ho,r(s)g(s) (7.15)
Hence, the mean time /{g is given by
by = /ootde(t) = lim[ — M]
S = b 5 5—0 ds
_2'(0) +d'(0) pd(0)N (7.16)

1—d(0) ' 1—d{O)™

where ¢/(s) is the differential function of ¢(s), i.e., ¢'(s) = d¢(s)/ds. From equation
(7.16), it is noted that £g is strictly decreasing in N and is minimized when N = oo.
Next, we derive the expected reset number My from the start of system operation
or the restart by the reset until a network processing is successful. Let Mpg(t) be the
expected reset number until a network processing is successful in an interval (0,¢].

Then, we have

Mg(t) = %‘j FDW (&) x Z(t). (7.17)

Thus, the expected reset number is given by

Ma = Jim Malt) =lim > jld(s)=(s)
; i(gzm [1 — Nd(0)N=! 4+ (N —1)d(0)™], (7.18)

where it is noted that z(0) = 1 — d(0).
Further, let Mp(t) be the distribution of the expected interruption number of pro-
cessings from the start of system operation until a network processing is successful.

Then, we have the following renewal equation:

Mp(t) = Hop(t) * [L + G(t) Mg (t)). (7.19)
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Similarly, the expected interruption number My until a network processing is successful

is given by
d(0)"

A{F = T;W

(7.20)

7.3 Optimal Policies

We obtain two objective functions which are the total expected cost C;(N) and the
expected cost Co(N) per unit of time until a network processing is successful, and

discuss optimal policies which minimize them, respectively.

7.3.1 Policy 1

Let ¢; be the cost for the reset and ce be the cost for an interruption of processing.
Then, we define the total expected cost C(/N) until a network processing is successful

as the following equation:

]1(]\/) = C]MR -+ CQMF

D(1 — DN)

“=rop

where D = d(0) is the probability that a pP is reset.

— NDVN] +

(N=1,2,---),  (7.21)

We seek an optimal number N which minimizes C1(N). From the inequality

Ci1(N + 1) — C1(N) > 0, we have

N(1— DN)(1 - DV+1) > &, (7.22)

C1

Denoting the left-hand side of (7.22) by L,(NV), we have
Li(1) = (1-D)(1-D?%), (7.23)
Li(oo) = I\}l_rgo Li(N)=o00. (7.24)

Hence, L;(N) is strictly increasing in N from L;(1) to co. Thus, we have the following

optimal policy:
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(i) If Li(1) < cg/ci, then there exists a finite and unique minimum N7 (> 1) which
satisfies (7.22).

(i) If L1(1) > ca/c1, then Nf = 1 and the total expected cost is C1(1) = (c2 D) /(1-D).

In this model, ¢; is the cost for the increase of system resources such as spaces of
memory and times by the reset, and ¢, is the cost for the increase of system resources
by the preventive maintenance to eliminate the cause of errors. It could be generally
estimated that ¢y is greater than ¢y, ie., co > ¢;. Thus, we have Li(1) < ¢g/c1, and

hence, N > 1. Further, it is easily shown that N} increases with c¢y/¢;.

7.3.2 Policy 2

In the policy 1, we have adopted the total expected cost as an objective function.
However, it would be more practical to introduce the measure of the time until a
network processing is successful. Next, we consider an optimal policy which minimizes
the expected cost per unit of time until a network processing is successful. That is,
from equations (7.16) and (7.21), we define the expected cost Cy(N) per unit of time

as the following equation:

C1(N)
ls
Cl[—’l(%:%v—) — NDMN] + czT_%I;—N

_pDN
A+ 5w

a5t D (1= D) - 1‘3‘62 Ca

DN
A+ 5w H

Ca(N)

(N=1,2,--), (7.25)

where (
Z(0) + d’(0)
A= —————>0. 7.26
1-D  ~ (7.26)
We seek an optimal number Nj which minimizes Cy(/N). From the inequality

Cy(N + 1) — Co(N) > 0, we have
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N-1
N(1—DV)(1 = DNty + %[NDN(l -DNthY4+ (1-D) > jD) > 53 (7.27)
=1 1
Denoting the left-hand side of (7.27) by La(N),
L(1) = (1—=D¥H(1-D+ %D), (7.28)
La(o0) = Al}im Lo(N) = oo. (7.29)

Putting the second term on the bracket of the left-hand side of (7.27) by
N-1
L3(N)=NDV(1—-D Y4+ (1-D) > jD7, (7.30)
: =

we have

Ls(1) = (1-D*D, (7.31)
Ly(N +1) — L3(N) = DNI[1 — DV*?2 4 NDN(1 - D?)] > 0. (7.32)
Hence, L3(N) is strictly increasing in N. Further, since N(1—D")(1— DN*1)in (7.27)

is also strictly increasing in N, Lo(N) is also strictly increasing in N from Lg(1) to co.

Thus, we have the following optimal policy:

(1) If Ly(1) < co/c1, then there exists a finite and unique minimum Nj(> 1) which
satisfies (7.27).

(ii) If Lo(1) > co/cy, then Nj = 1, and the resulting cost is

CQD
(1=D)+uD’

Co(1) = y (7.33)

Further, we compare the optimal policy 2 with the optimal policy 1. Since from
equations (7.22) and (7.27),
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Lo(N) — Li(N) = %[NDN(l - DVt 4 (1-D) NZ—IjD’] >0 (N=1,2,---),
- (7.34)
and hence, Nf > N;.

This means that when the number N of reset is small, the mean time until a
network processing is successful is large, since fg strictly decreases in N. Thus, it
would be better to adopt Policy 2 where N is small when we consider only the cost of
the system on the whole. On the other hand, if we want a processing time to be small,

we should adopt Policy 1.

7.4 Numerical Examples

We compute numerically the optimal number N which minimizes Cy (V) for Policy 2.
Suppose that the mean initial processing time 1/v of uP is a unit of time and the mean
time to error occurrences is (1/A)/(1/v) = 30 ~ 60. Further, the mean stand-alone
processing time is (1/a)/(1/v) = 5 ~ 20, the mean network connection processing
time is (1/8)/(1/v) = 1, the mean waiting time when a network connection processing
fails is w/(1/v) = 1 ~ 4, the mean network processing time is (1/u)/(1/v) = 10, the
mean maintenance time after an interruption of processing is (1/u)/(1/v) = 10, the
probability that a network connection processing fails is v = 0.1,0.2,0.4, 0.6, and the
cost ¢; for the reset is a unit of cost and the cost rate of an interruption of processing
is cofcy =1~ 3.

Table 7.1 gives the optimal reset number Ny which minimizes the expected cost
Coy(N). For example, when (1/)\)/(1/v) = 60, wv =2, v = 0.2, (1/a)/(1/v) = 10 and
ca/c1 = 2, the optimal number is Ny = 3. This indicates that the optimal number
N3 decreases with (1/A)/(1/v), however, increases with wwv, v, (1/a)/(1/v) and ca/c;.
This can be interpreted that when the cost for an interruption of processing is large,

Ny increases with ¢2/c;, and so, the processing should not be excessively interrupted.
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That is, we should keep on executing the processing as long as possible by the reset.
Table 7.1 also shows that N; depends on each parameter when (1/)A)/(1/v) is small,
i.e., when errors of a uP occur frequently, however, Ny depends little on wv, v and
(1/a)/(1/v) when (1/A)/(1/v) > 60, and in this case, Nj is almost determined by

02/01.

7.5 Conclusions

We have investigated the problem for improving the reliability of a P system with
network processing, and have derived the mean time and the expected reset numbers
until a network processing is successful. Further, we have discussed optimal reset
numbers which minimize the total expected cost and the expected cost per unit of
time.

It has been shown from the mathematical analysis that the optimal reset number
which minimizes the total cost is larger than that which minimizes the expected cost
per unit of time. It has been also shown from the numerical example that the optimal
reset number which minimizes the expected cost decreases with the mean time to error
occurrences of a uP, however, increases with the mean stand-alone processing time,
the probability that a network processing fails and the cost for an interruption of
processing. Further, it has been shown that when the mean time to error occurrences
is large, the optimal reset number depends little on each parameter and is almost

determined by the cost for an interruption of processing.



98 CHAPTER 7. OPTIMAL RESET NUMBER OF A MICROPROCESSOR ...

0:?9 oN0

Figure 7.1: Transition diagram between system states.
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Table 7.1: Optimal reset number N to minimize Ca(V).
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Chapter 8

Reliability of a Job Execution
Process Using Signatures

This chapter considers the reliability problem of a microprocessor system whose errors
can be detected by using signatures: A system consists of DMR (Double Modular
Redundancy) i.e., the same job is executed on two processors. A job is divided into
N tasks each of which takes signatures. Signatures are compared at the end of each
task. If signatures do not agree, its task executes again. The mean time and the total
processing number of tasks until a job completes successfully are derived, using the
theory of Markov renewal processes. Moreover, an optimal policy which minimizes the
mean time is discussed. Numerical examples show that it is effective to take signatures

when the size of a job is large.

8.1 Introduction

As the techniques of error detection of microprocessors (uPs), three checkpoints which
compare and store the states, or use signatures have been well-known [Touma90, ZB97,
Vaidya98]. A parity check to detect errors is also one kind of signatures. Recently,
watchdog processors, which detect errors by comparing signatures and computing re-
sults, have been widely used [Nanya91].

This chapter considers the reliability problem of a uP system with signatures: A

101
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job is executed on a pP system and is divided into tasks with signatures. If a job is
not divided, it has to be executed again from the beginning when some errors have
occurred. Consequently, this may incur a job execution time longer. Further, to detect
errors of a uP system, it consists of DMR (Double Modular Redundancy), i.e., two
processors execute the same job with signatures, which are compared at the end of
a task execution. If signatures do not agree, two processors execute again from the
beginning of a task execution. If they agree with each other, two processors continue
to the next task execution.

We are interested in the number of tasks to reduce a job execution time, by dividing
a job into tasks. For this purpose, we obtain the mean execution time to complete a
job successfully, using the theory of Markov renewal processes [Osaki92], and discuss
an optimal number of tasks which minimizes it. Finally, numerical examples are given,

and show that the division with signatures is effective when the size of a job is large.

8.2 Model and Analysis

(1) The system consists of DMR and two processors execute the same job.

(2) A job is divided into N tasks, which take signatures and are executed sequen-
tially. The processing times of each task have a general distribution A,(t)(: =
1,2,---, N). Signatures are compared with each other when each task terminates.

The comparison time has a general distribution B(t) with finite mean b.

(a) If the signatures are different, the processing result is not correct. In this
case, the task executes again after the time which has a general distribution

G(t) with finite mean p.

(b) If the signatures are identical, the next task executes. All processing results
of a job are compared after the processing of all tasks have completed. The
comparison time has a general distribution V(t) with finite mean v. Its

comparison agrees with probability p(0 < p < 1) and the processing result
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of a job is correct. On the other hand, its comparison does not agree with
probability 1 — p and the processing result is not correct. In this case, a
job executes again from the beginning after the time which has a general

distribution W (t) with finite mean w.

(3) Errors of a processor in the execution of each task occur independently according

to an exponential distribution (1 — ™).

(c) Some errors are detected by the signatures when the processing of each task
terminates. Undetected errors are detected finally by comparing all results

of a job.

(d) If errors have occurred, the signatures are different.
(4) When all processings of N tasks have completed, a job completes successfully.
Under the above assumptions, we define the following states of the system:

State 0: Processing of a job starts.
State i: Processing of task ¢ completes (¢ =1,2,---, N).
State S: Processing of a job completes successfully.

The states defined above form a Markov renewal process where state S is an ab-
sorbing state. Transition diagram between system states is shown in Figure 8.1.
Let Q;;(t) (¢ =0,1,---,N;j = 0,1,---, N, S) be one-step transition probabilities

of a Markov renewal process. Then, we have the following equations:
t
Qult) = [[[(1=eP)dAw)* BO+GE) (=01, N-1), (81)

Quin(t) = | /Ote‘z’\“dAz(u)}*B(u) (i=0,1,---,N—1), (8.2)
Qno(t) = 1 —=p)V(t)*W(t), (8.3)
Qns(t) = pV(t), (8.4)
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where the asterisk mark denotes Stieltjes convolution, i.e., a(t)*b(t) = [F b(t —u)da(u).
First, we derive the mean time fyg(N) until a job completes successfully. Let Hyg(t)
be the first-passage time distribution from state O to state .S. Then, we have

Hos(t) [ZQ(’"” t) * Qoa(t)] *[ZQ& D(t) * Qu2(t)] *
*[ZQ%-?N 1 (8) * Qno1,n(8)] * [Qn,s(t) + Qno(t) * Hos(t)],(8.5)

where a®(t) denotes the i-fold Stieltjes convolution of a distribution a(t) with itself,
ie., a®(t) = atV(t) * alt).

Let ¢(s) be the Laplace-Stieltjes(LS) transform of any function ®(t) and ¢'(s) be
the differential function of ¢(s), i.e., ¢(s) = [5° e~**d®(t) and ¢'(s) = d¢(s)/ds. Then,
the mean time fyg(NV) is given by

bos(N) = lim[— hyg(s)] = ; i(N) +v+ (1 —pw], (8.6)

where

:.4(0) + q;,41(0)
1—g:s(0)

which represents the mean processing time of task 3.

L,(N)=—

Next, we derive the total expected processing number S(N) of tasks until a job

completes successfully. The expected processing number S;(N) of task ¢ is given by

0 ] 1
N)=) jlg::(0 J‘qu-,z- 0)= ———. (8.8
) ; [ ( )] +1( ) 1 — CIz',z'(O) )
Thus, the total processing number of tasks is
=) j[1 - S.(N) == 8.9
j_; [ ; ( D ; — 4 z(O)

8.3 Optimal Policy

We discuss an optimal policy which minimizes the mean time £ys(/N) until a job com-

pletes successfully. We seek an optimal division number N* which minimizes £og(N)
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in (8.6). From the inequality fos(N + 1) — fos(N) > 0, we have

fje,(zv +1)— If 4(N) > 0. (8.10)
=0 =0

Denoting the left side of (8.10) by L(/N), we have

L(1) = bo(2) + £ (2) — 4(1), (8.11)
L(N)=L(N=1) = sz,-(zv +1)+ A.Ife,,(z\r _1)-— zlf GN). (8.12)

Hence, if SN 8(N + 1) + SN2L(N — 1) > 25 N5 4(N), then L(N) is strictly
increasing in N from L(1).

Thus, we have the following optimal policy:

(i) If ¢o(2) + £1(2) < £o(1), then there exists a finite and unique minimum N*(> 1)
which satisfies (8.10).

(ii) If £o(2) + £1(2) > £o(1), then N* = 1. In this case, we should not divide a job.

The processing times of each task would be random and proportional to the size
of a task. Thus, we assume that the processing times of each task have an identical
exponential distribution, i.e., A(t) = 1 —e~ N/ Then, the mean time ¢y5(N) in (8.6)

is

1
fos(N) = “{(N + 2Aa)(]% +b) + 2\ua + v + (1 — p)w), (8.13)
and the inequality (8.10) is simply rewritten as
9 2
N(N+1) > ’\b“ | (8.14)

Thus, if 1/\ < a?/b, then there exists a finite and unique minimum N*(> 1) which

satisfies (8.14). Further, the total processing number of tasks is

S(N*) = %(N* +2)a). (8.15)
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8.4 Numerical Examples

We compute numerically the mean time fgg(/N) and the optimal number N* which
minimizes £og(IN). Suppose that the mean comparison time b of signatures is a unit
of time of the system, the processing times of each task have an identical exponential
distribution (1 — e~ ®™/®%) the mean processing time when a job is not divided is
a/b = 100 ~ 400, where its parameter a represents the size of a job. Further, suppose
that the mean time to error occurrences is (1/A)/b = 3600 ~ 18000, the mean time
until each task executes again is u/b = 1, the mean comparison time of processing
results of a job is v/b = 1, the mean time until a job executes again is w/b = 1, the
probability that the comparison of processing results of a job agrees is p = 0.8 ~ 1.0.

~ Table 8.1 gives the optimal number N* which minimizes fys(NN). For example,
when a/b = 200 and (1/A)/b = 10800, the optimal division number is N* = 3. This
indicates that N* decreases with (1/))/b, however, increases with a/b, i.e., as the size
of a job becomes large, N* increases.

Table 8.2 gives the mean time {yg(/N*) when a job is divided into N* tasks and
fos(1) when it is not divided. This indicates that the mean time fos(/N*) decreases
with (1/))/b and p. From the comparison with mean times {yg(N*) and os(1), it can
be seen that the processing time becomes shorter about 15 percents by the division with
signatures. In particular, the division is much effective in shortening the processing

time when the size of a job is large.

8.5 Conclusions

From the viewpoint of accuracy and speeding-up of a job processing, we have inves-
tigated the reliability properties of a uP system where some errors are detected by
signatures. We have derived the mean time and the total processing number of tasks
until a job completes successfully. Further, we have discussed an optimal policy which

minimizes the mean time.
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From the numerical examples, we have shown the tendencies of the optimal division
number which minimizes fyg(N) for various parameters, and that the division with

signatures is effective when the size of a job is large.



108 CHAPTER 8. RELIABILITY OF A JOB EXECUTION PROCESS ...

(.

N

Figure 8.1: Transition diagram between system states.



Table 8.1: Optimal number N* to minimize fyg(N).

a/b (1/A)/b
3600{ 7200{ 10800 14400; 18000
100 2 2 1 ] 1
200 5 3 3 2 2
300 7 5 4 4 3
400 9 7 5 5 4

109
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Table 8.2: Mean times ¢yg(N*) and fy5(1).

(1/A) /b
a/b p 3600 7200 10800] 14400 18000
135 131 130 130 129
0.8 133 131 130 130 129
120 117 116 115 115
100 0.9 118 116 116 115 115
108 105 104 103 103
1.0 106 104 104 103 103
281 267 262 260 258
0.8 264 260 258 258 257
249 237 233 231 230
200 0.9 234 231 230 229 228
224 213 209 208 206
1.0 211 208 207 206 205
440 409 399 393 390
0.8 395 389 387 386 384
392 364 354 350 347
300 0.9 351 346 344 342 342
352 327 319 315 312
1.0 315 311 309 308 307
614 559 540 531 525
0.8 526 518 515 513 512
546 496 480 472 467
400 0.9 467 461 458 456 455
491 447 432 424 420
1.0 420 415 412 411 410




Chapter 9

Conclusions

This thesis has studied the stochastic models of a microprocessor (uP) system. Using
the theory of Markov renewal processes, we have obtained the reliability measures
such as the mean times to system failure and to completion of the process. Moreover,
we have derived expected costs and have analytically discussed optimal policies which
minimize them. Finally, to understand the results easily, we have given numerical
examples of each model and have evaluated them for various standard parameters. If
some parameters are estimated from actual data, we could select the best policy.

In Chapter 2, we have considered a uP system with a watchdog timer (WDT) which
is preventively maintained at time 7" and at reset number N. The availability of the
system has been obtained, and an optimal inspection time and reset number which
maximize it have been discussed. It has been shown from the numerical examples that
the coverage of a WDT plays an important role for providing the system with high
reliability.

In Chapter 3, we have treated a system where a main processor (MPu) has N
watchdog processors (WDPs) with self-checking. To show the number of WDPs for
prevention that the MPu becomes faulty, we have formulated the model where the
system has N standby redundant WDPs. The reliability function and the expected
cost until the MPu becomes faulty have been derived, and an optimal number of WDPs

which minimizes the expected cost has been analytically discussed. It has been shown
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that it is effective to have at least one WDP when the system requires a high reliability.

In Chapter 4, we have studied a system with N puP units, where each pP unit
consists of uP and WDP. Under the assumption that a uP is in faulty state if more
than K resets have occurred at time T', we have derived the mean time until system
failure. Introducing the cost of a uP, we have analytically discussed the problem to
obtain how many number of P units is optimal. It has been shown numerically that
the system is enough to have only one unit when the reset number K takes ordinary

values from 4 to 8.

From the viewpoint of real-time processing of the system, it would be necessary
to have the function which completes one processing within a certain limit time. In
Chapter 5, we have discussed the model of a system with N uP units. Under the
assumption that a uP is in faulty state if it does not finish one processing until a
limit time 7", we have obtained the mean time and the mean processing number until
system failure. Moreover, we have derived the cost effectiveness and have discussed
an optimal number of puPs which minimizes it. An interesting consequence has been
obtained numerically that when a limit processing time is small comparatively, as the
uP unit becomes advanced, the expected cost per unit of processing decreases, and

oppositely, the optimal number increases.

In Chapter 6, we have considered a system with N TMR (Triple Modular Redun-
dancy) units in which each unit consists of uP and WDP. Introducing the concept of
complexity, the mean time to system failure and the expected cost have been derived,
and optimal numbers of TMR units which maximize or minimize them have been ana-
lytically discussed. It has been found that to develop the reliability of the system, we

should more improve the coverage of a WDP.

In Chapter 7, we have dealt with the problem for improving the reliability of a uP
system with network processing, and have derived the mean time and the expected
reset number until a network processing is successful. Further, we have analytically

discussed an optimal reset number which minimizes the expected cost. It has been
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shown that when errors of a uP do not occur frequently, the optimal reset number is
almost determined by the cost rate of an interruption of processing.

The reliability problem of a puFP system whose errors can be detected by using
signatures has been proposed in Chapter 8. We have derived the mean time and the
total processing number of tasks until a job completes successfully. Further, we have
discussed an optimal division number of a job. It has been shown from the numerical
examples that the division with signatures is effective when the size of a job is large.

As VLSI (Very Large Scale Integration) technology has rapidly developed, uPs have
been used in many actual areas. It would be very important to evaluate and improve
the reliability of systems with uPs. The results obtained in this thesis would be applied
to practical fields by making some suitable modifications and extensions. As examples,
Chapters 3, 4, 5 and 6 could be applied to not only the system of automobiles but
also the systems of space rockets and deep sea explorations, which cannot undergo
corrective maintenances by repairmen. Further, Chapter 2 would be applicable to
the following policies: (i) The error detection policy of ROM (Read Only Memory)
programming on a design and development stage, (ii) the preventive maintenance and
replacement policies of a uP on an operational stage, and (iii) the policy to improve
mission availability when an operational time is given.

Finally, we enumerate the following questions for future studies:
(1) Is it possible to estimate statistically various parameters in the formulated models?
(2) What types of distribution are fit for the observed data?
(8) What are appropriate measures which show the reliability of the system?

Various kinds of larger and more complicated systems will be grown up in future
industries. We also would consider and formulate new stochastic models, and analyze
their characteristics and evaluate their performances, using the techniques and the

results of this thesis. Further studies for such subjects would be greatly expected.
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