On Complex Analytic Mappings into Compact Riemann Surfaces

閉リーマン面への解析写像について

Yuji HASHIMOTO[†]

橋本有司

Abstract. We consider the complex analytic mappings of the Riemann surface $\hat{C}-E$ into the compact Riemann surface *S* of genus $g \ge 2$, where \hat{C} is the extended complex plane and *E* is a totally disconnected compact set in the complex plane. We show that there exists no non-constant complex analytic mapping of $\hat{C}-E$ into *S* under some condition not depending on the logarithmic capacity of *E*.

1. Let *E* be a totally disconnected compact set in the complex *z*-plane *C* and let *R* be the complimentary domain $\hat{C}-E$ with respect to the extended complex plane \hat{C} . We consider the complex analytic mappings of *R* into *S* a compact Riemann surface of genus $g \ge 2$. According to Tsuji[10], if the logarithmic capacity of *E* is equal to 0, there exists no unramified complex analytic mapping of *R* into *S*. Further, according to Nishino[7] and Suzuki[8], if the logarithmic capacity of *E* is equal to 0, there exists no non-constant complex analytic mapping of *R* into *S*. In this paper, we shall show that, if *E* satisfies some appropriate condition, which is not depending on the logarithmic capacity of *E*, there exists no non-constant complex analytic mapping of *R* into *S*. The method used here is the one given by Carleson[1] and Matsumoto[5].

2. Let *E*, *R* and *S* be as in **1**. Let $\{R_n\}$ $(n = 0, 1, 2, \cdots)$ be an exhaustion of *R* with an additional condition such that each component $R_{n,k}$ $(k = 1, 2, \cdots, k_n)$ of $R_n - \bar{R}_{n-1}$ is doubly connected and branches off into at most ρ $(\rho \ge 1)$ components of $R_{n+1} - \bar{R}_n$. We denote by $\mu_{n,k}$ the harmonic modulus of $R_{n,k}$ and set $\mu_n = \min_{k=1,\dots,k_n} \mu_{n,k}$. In these settings, we can state our theorem as follows.

Theorem. If $\lim_{n \to \infty} \mu_n = \infty$, then there exists no non-constant analytic mapping of *R* into *S*.

For the proof, the following lemma is essential.

Lemma. Let f(z) be a complex analytic mapping of $G = \{1 < |z| < e^{\mu}\}$ into *S*. Then, the length *L* of the image $f(|z| = e^{\frac{\mu}{2}})$ with respect to the hyperbolic metric on *S* is dominated by $\frac{2\pi^2}{\mu}$.

Proof. Let $d\sigma_G$ and $d\sigma_S$ be the hyperbolic metrics on *G* and *S* induced by the Poincaré metric $\frac{2}{1-|\zeta|^2}|d\zeta|$ on the unit disk $|\zeta| < 1$ respectively. Then, we have

$$d\sigma_G = \frac{\pi}{\mu |z| \sin(\frac{\pi}{\mu} \log |z|)} |dz|$$

According to the decreacing principle of the hyperbolic metric, we have $f^*d\sigma_S \leq d\sigma_G$, where $f^*d\sigma_S$ is the induced metric of $d\sigma_S$ by f(z). Therefore, we have

$$L \leq \int_{|z|=e^{\frac{\mu}{2}}} \frac{\pi}{\mu |z| \sin(\frac{\pi}{\mu} \log |z|)} |dz| = \int_0^{2\pi} \frac{\pi}{\mu e^{\frac{\mu}{2}} \sin(\frac{\pi}{\mu} \log e^{\frac{\mu}{2}})} e^{\frac{\mu}{2}} d\theta = \frac{2\pi^2}{\mu}.$$

[†] Center for Genaral Education

Proof of the theorem. Let $\{R_n\}$ be an exhaustion of R. We may prove the theorem, without loss of generality, under the assumption that R_0 is simply connected and each component $R_{n,k}(k = 1, \dots, 2^n)$ branches off into two components $R_{n+1,2k-1}$ and $R_{n+1,2k}$. Now, let f(z) be a complex analytic mapping of R into S. Accoding to the above lemma, as $R_{n,k}$ is conformally equivalent to the anulus $G = \{1 < |\zeta| < e^{\mu_{n,k}}\}$, there exists a simple closed curve $\Gamma_{n,k}$ in $R_{n,k}$ corresponding to the curve $|\zeta| = e^{\frac{\mu_{n,k}}{2}}$ such that the hyperbolic length $L_{n,k}$ of the image $f(\Gamma_{n,k})$ is dominated by $\frac{2\pi^2}{\mu_{n,k}}$.

We denote by $\Delta_{n,k}$ the triply connected domain bounded by $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$ and $\Gamma_{n+1,2k}$ and consider the analytic mapping f(z) in $\Delta_{n,k}$. By the condition of the theorem $\lim_{n\to\infty} \mu_n = \infty$ and the estimate of the lemma $L_{n,k} \leq \frac{2\pi^2}{\mu_{n,k}} \leq \frac{2\pi^2}{\mu_n}$, we can take an integer n_0 sufficiently large so that for $n \geq n_0$ the images $f(\Gamma_{n,k})$, $f(\Gamma_{n+1,2k-1})$ and $f(\Gamma_{n+1,2k})$ are contained in some sufficiently small schlicht hyperbolic disks $D_{n,k}$, $D_{n+1,2k-1}$ and $D_{n+1,2k}$ in *S* respectively. We call f(z) nondegenerate in $\Delta_{n,k}$ if f(z) takes the values outside of $D_{n,k} \cup D_{n+1,2k-1} \cup D_{n+1,2k}$ and we call f(z) degenerate in $\Delta_{n,k}$ otherwise.

We shall show that the nondegenerate case cannot occur for $n \ge n_0$. We suppose that f(z) is nondegenerate in $\Delta_{n,k}$ for some $n \ge n_0$. In the case where $D_{n,k}$, $D_{n+1,2k-1}$ and $D_{n+1,2k}$ are mutually disjoint, we can take the p-ply connected closed domain K_0 in $\Delta_{n,k}$ which is mapped properly onto the *q*-sheeted covering surface of $S - D_{n,k} \cup D_{n+1,2k-1} \cup D_{n+1,2k}$. According to the Hurwitz formula, we have p-2 = q(2g+1) + v, where p-2 and 2g+1 are the Euler characteristics of K_0 and $S - D_{n,k} \cup D_{n+1,2k-1} \cup D_{n+1,2k}$ respectively and v is the sum of orders of the multiple points in K_0 . Therefore, taking $g \ge 2$ into account, we have $p \ge 5q+2$. On the other hand, the boundaries of K_0 are mapped on the boundaries of $S - D_{n,k} \cup D_{n+1,2k-1} \cup D_{n+1,2k}$, so that we have $p \leq 3q$, which is a contradiction. In the case where one of $D_{n,k}$, $D_{n+1,2k-1}$ and $D_{n+1,2k}$, say $D_{n,k}$, and the union of the other two $D_{n+1,2k-1} \cup D_{n+1,2k}$ are disjoint, we take a hyperbolic disk D_0 containing $D_{n+1,2k-1} \cup D_{n+1,2k}$ and apply the same argument. Taking the *p*-ply connected closed domain K_0 in $\Delta_{n,k}$ which is mapped properly onto the q-sheeted covering surface of $S - D_{n,k} \cup D_0$, we have p - 2 = q(2g) + v, where p - 2 and 2g are the Euler characteristics of K_0 and $S - D_{n,k} \cup D_0$ respectively and v is the sum of orders of the multiple points in K_0 . Therefore, we have $p \ge 4q + 2$. On the other hand, we have $p \le 2q$, which is a contradiction. In the case where $D_{n,k}$, $D_{n+1,2k-1}$ and $D_{n+1,2k}$ are not disjoint, we take a hyperbolic disk D_0 containing $D_{n,k} \cup D_{n+1,2k-1} \cup D_{n+1,2k}$ and apply the same argument. Taking the p-ply connected closed domain K_0 in $\Delta_{n,k}$ which is mapped properly onto the q-sheeted covering surface of $S - D_0$, we have p - 2 = q(2g - 1) + v, where p - 2 and 2g - 1 are the Euler characteristics of K_0 and $S-D_0$ respectively and v is the sum of orders of the multiple points in K_0 . Therefore, we have $p \ge 3q+2$. On the other hand, we have $p \leq q$, which is a contradiction.

The above argument shows that f(z) is degenerate in $\Delta_{n,k}$ for all $n \ge n_0$. We take $\Delta_{n_0,k}$ and connect $\Delta_{n_0+1,2k-1}$ and $\Delta_{n_0+1,2k}$ with $\Delta_{n_0,k}$ in the universal covering surface of S. Further, we connect $\Delta_{n_0+2,4k-3}$ and $\Delta_{n_0+2,4k-2}$ with $\Delta_{n_0+1,2k-1}$ and connect $\Delta_{n_0+2,4k-1}$ and $\Delta_{n_0+2,4k}$ with $\Delta_{n_0+1,2k}$ in the universal covering surface of S. Continuing this process successively, we can see that f(z) is a complex analytic mapping of the end of R bounded by $\Gamma_{n_0,k}$ into the universal covering surface of S. Mapping the universal covering surface conformally onto the unit disk, we obtain a bounded analytic function in the end of R bounded by $\Gamma_{n_0,k}$. According to the Pfluger-Mori criterion, the subset $E_{n_0,k}$ of E contained in $\Gamma_{n_0,k}$ is the set of removable singularities for f(z) ($k = 1, \dots, 2^{n_0}$). Therefore, f(z) is a complex analytic mapping of \hat{C} into S and becomes a constant.

3. We shall give some examples for which the above theorem is applicable and also consider the relation among the existence of non-constant complex analytic mappings of R into S, the existence of transcendental meromorphic functions on R with three Picard exceptional values and the existence of transcendental meromorphic functions on R with five totally ramified values.

Example 1. Let *E* be a Cantor set with successive ratios $\{\xi_n\}$. If $\lim_{n \to \infty} \xi_n = 0$, then the condition of the theorem is satisfied for $\hat{C} - E$, so that there exists no non-constant complex analytic mapping of $\hat{C} - E$ into *S*. As the condition of the logarithmic capacity of *E* being equal to 0 is $\sum_{n=1}^{\infty} \frac{\log \xi_n^{-1}}{2^n} = \infty$, we can give a Cantor set *E* of positive logarithmic capacity for which there exists no non-constant complex analytic mapping of $\hat{C} - E$ into *S*. Further, according to the results of

Matsumoto[6] and Toppila[9], taking a Cantor set *E* satisfying $\lim_{n\to\infty} \frac{\xi_{n+1}}{\xi_n} = 0$, we can give the Cantor set *E* for which there exists no transcenental meromorphic function on $\hat{C} - E$ with three Picard exceptional values and no non-constant complex analytic mapping of $\hat{C} - E$ into *S*.

Example 2. (cf. Matsumoto[4]) Let $l_0 > l_1 > l_2 > \cdots$ $(l_0 < \frac{\sqrt{3}}{2}, l_{n+1} < \frac{l_n}{3})$ be a sequence of positive numbers satisfying $\lim_{n \to \infty} \frac{l_{n+1}}{l_n} = 0$. We denote by $A(r_1, r_2, r_3)$ the surface $\hat{C} - \bigcup_{k=0}^2 \{|z - e^{\frac{2k\pi}{3}i}| < r_{k+1}\}$ and by $B_k(r_1, r_2)$ the surface $\{r_2 \leq |z - e^{\frac{2k\pi}{3}i}| \leq r_1\}$ with a slit joining $(1 + \frac{2}{3}r_1 - r_2)e^{\frac{2k\pi}{3}i}$ and $(1 + \frac{2}{3}r_1 + r_2)e^{\frac{2k\pi}{3}i}$ (k = 0, 1, 2). Let F_0 be the surface $A(l_0, l_0, l_0)$. We connect $B_k(l_0, l_1)$ (k = 0, 1, 2) with F_0 and denote the resulting 6-ply connected surface with three slits by F_1 . Further, connecting $B_k(l_1, l_2)$ (k = 0, 1, 2) with F_1 , we connect $B_0(l_0, l_1) \cup B_0(l_1, l_2) \cup A(l_0, l_1, l_1) \cup B_1(l_1, l_2) \cup B_2(l_1, l_2)$ and $B_2(l_0, l_1) \cup B_2(l_1, l_2) \cup A(l_0, l_1, l_1) \cup B_1(l_1, l_2) \cup B_2(l_1, l_2)$ with $F_1 \cup B_0(l_1, l_2) \cup A(l_1, l_1, l_2) \cup B_2(l_1, l_2)$ and $B_2(l_0, l_1) \cup B_2(l_1, l_2) \cup A(l_1, l_1, l_2) \cup B_1(l_1, l_2)$ with $F_1 \cup B_0(l_1, l_2) \cup B_1(l_1, l_2) \cup B_1(l_1, l_2)$ crosswise across the three slits joining $(1 + \frac{2}{3}l_0 - l_1)e^{\frac{2k\pi}{3}i}$ and $(1 + \frac{2}{3}l_0 + l_1)e^{\frac{2k\pi}{3}i}$ (k = 0, 1, 2). We denote the resulting 24-ply connected 4-sheeted covering surface of $A(l_2, l_2, l_2)$ with 12 slits by F_2 . Continuing this process successively, we obtain the $6 \cdot 4^{n-1}$ -ply connected 4^{n-1} -sheeted covering surface F_n of $A(l_n, l_n, l_n)$ with $3 \cdot 4^{n-1}$ slits and we denote the limit surface of F_n by F. Here, as the surface F is of planar character, by taking a suitable totally disconnected compact set E, we can map the surface F conformally onto $\hat{C} - E$. By the construction of the surface F, there exists a transcendental meromorphic function on $\hat{C} - E$ with three Picard exceptional values and as the condition of the theorem is also satisfied for $\hat{C} - E$, there exists no non-constant complex analytic mapping of $\hat{C} - E$ into S.

Example 3. (cf. Hashimoto-Matsumoto[2]) Let $l_0 > l_1 > l_2 > \cdots$ be a sequence of positive numbers satisfying $\lim_{n\to\infty} \frac{l_{n+1}}{l_n} = 0$. We denote by $C(r_1, r_2, r_3, r_4, r_5)$ the surface \hat{C} with five slits joining $e^{\frac{2k\pi}{5}i}$ and $(1 + r_{k+1})e^{\frac{2k\pi}{5}i}$ $(k = 0, \dots, 4)$. Let F_0 be the surface $C(l_0, l_0, l_0, l_0, l_0)$. We connect $C(l_0, l_1, l_1, l_1)$, $C(l_1, l_0, l_1, l_1)$, $C(l_1, l_1, l_0, l_1, l_1)$, $C(l_1, l_1, l_1, l_0, l_1, l_1)$, $C(l_1, l_1, l_1, l_1)$, $C(l_1, l_1, l_1, l_0, l_1, l_1)$, and $C(l_1, l_1, l_1, l_1, l_1)$ with F_0 crosswise across the five slits joining $e^{\frac{2k\pi}{5}i}$ and $(1 + l_0)e^{\frac{2k\pi}{5}i}$ $(k = 0, \dots, 4)$ and denote the resulting 20-ply connected 6-sheeted covering surface of \hat{C} with 20 slits by F_1 . Continuing this process successively, we obtain the $5 \cdot 4^n$ -ply connected $(\frac{5}{3}(4^n - 1) + 1)$ -sheeted covering surface F_n of \hat{C} with $5 \cdot 4^n$ slits and we denote the limit surface of F_n by F. As the surface F is of planar character, taking a suitable totally disconnected compact set E, we can map the surface F conformally onto $\hat{C} - E$. By the construction of the surface F, there exists a transcendental meromorphic function on $\hat{C} - E$ with five totally ramified values and as the condition of the theorem is also satisfied for $\hat{C} - E$, there exists no non-constant complex analytic mapping of $\hat{C} - E$ into S.

It is not known whether there exists a totally disconnected compact set *E*, for which there exists a non-constant analytic mapping of $\hat{C} - E$ into *S* and for which there exists no transcendental meromorphic function on $\hat{C} - E$ with three Picard exceptional values or with five totally ramified values. In this respect, we remark that there exists a Riemann surface *R* of infinite genus and with one ideal boundary, for which there exists a non-constant analytic mapping of *R* into *S* and for which there exists no non-constant meromorphic function on *R* with three Picard exceptional values (cf. Ozawa[3]).

References

- [1] L. Carleson, A remark on Picard's theorem, Bull. Amer. Math. Soc., 67, 1961, 142-144.
- [2] Y. Hashimoto and K. Matsumoto, Picard sets admitting exceptionally ramified meromorphic functions, Kodai Math.
 J., 12, 1989, 316-324.
- [3] M. Ozawa, On complex analytic mappings, Kōdai Math. Sem. Rep., 17, 1965, 99-102.
- [4] K. Matsumoto, On exceptional values of meromorphic functions with the set of singularities of capacity zero, Nagoya Math. J., 18, 1961, 171-191.

愛知工業大学研究報告,第42号A,平成19年,Vol.42A,Mar.2007

- [5] K. Matsumoto, Some notes on exceptional values of meromorphic functions, Nagoya Math. J., 22, 1963, 189-201.
- [6] K. Matsumoto, Existence of perfect Picard sets, Nagoya Math. J., 27, 1966, 213-222.
- [7] T. Nishino, Plolongments analytiques au sens de Riemann, Bull. Soc. Math. France, 107, 1979, 97-112.
- [8] M. Suzuki, Comportement des applications holomorphes autour d'un ensemble polaire, C. R. Acad. Sc. Paris, 304, 1987, 191-194.
- [9] S. Toppila, Picard sets for meromorphic functions, Ann. Acad. Sci. Fennicae A. I., 417, 1967, 1-24.
- [10] M. Tsuji, On the uniformization of an algebraic function of genus $p \ge 2$, Tôhoku Math. J., 3, 1951, 277-281.

(受理 平成 19 年 3 月 19 日)