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On Complex Analytic Mappings into Compact Riemann Surfaces
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Abstract. We consider the complex analytic mappings of the Riemann suffade into the compact Riemann
surfaceS of genusg > 2, whereC is the extended complex plane ads a totally disconnected compact set in the
complex plane. We show that there exists no non-constant complex analytic mapfrddfto S under some
condition not depending on the logarithmic capacityeof

1. Let E be a totally disconnected compact set in the compipbaneC and letR be the complimentary domat—E
with respect to the extended complex pl&héNe consider the complex analytic mappingRafito Sa compact Riemann
surface of genug > 2. According to Tsuiji[10], if the logarithmic capacity & is equal to 0, there exists no unramified
complex analytic mapping dR into S. Further, according to Nishino[7] and Suzuki[8], if the logarithmic capaciti of
is equal to 0, there exists no non-constant complex analytic mappiRgnid S. In this paper, we shall show that,&f
satisfies some appropiate condition, which is not depending on the logarithmic capd&sityefe exists no non-constant
complex analytic mapping d®into S. The method used here is the one given by Carleson[1] and Matsumoto[5].

2. LetE,RandSbe asinl. Let{R,} (n=0,1,2,---) be an exhaustion d&® with an additional condition such that each
componenR,x (k=1,2,---,k,) of Ry — Rn_1 is doubly connected and branches off into at mgp > 1) components
of Ryr1 — R.. We denote by, k the harmonic modulus d®, x and sefu, = k=kan Hnk. In these settings, we can state
our theorem as follows.

Theorem. If rI]im Un = oo, then there exists no non-constant analytic mappirgioto S.
For the proof, the following lemma is essential.

Lemma. Let f(z) be a complex analytic mapping & = {1 < |z] < €} into S. Then, the length. of the image

f(|7 = e%) with respect to the hyperbolic metric &is dominated byzinz.

Proof. Letdog anddaos be the hyperbolic metrics @ andSinduced by the Poincametric |[d| on the unit

2
1-1[¢[?
disk |{| < 1respectively. Then, we have

m

996 = LiZfsin(Zlogl2)

|dZ.

According to the decreacing principle of the hyperbolic metric, we Hawlos < dog, where f*dos is the induced
metric ofdos by f(z). Therefore, we have
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Proof of the theoremLet {R,} be an exhaustion d® We may prove the theorem, without loss of generality, under
the assumption thak, is simply connected and each componBak(k = 1,---,2") branches off into two components
Rnt1,2k—1 andRy41.2¢. Now, let f(z) be a complex analytic mapping Bfinto S. Accoding to the above lemma, Bsy is
conformally equivalent to the anul@= {1 < |{| < e"nk}, there exists a simple closed cuivgy in R,k corresponding

to the curvg{| = e“Lz'k such that the hyperbolic length, c of the imagef (I'n ) is dominated byi—nz.
n,k

We denote by, the triply connected domain bounded By, ni12k—1 and Mg 26 and consider the analytic

22 2mP

mappingf (z) in Ank. By the condition of the theorerr‘{im Un = o and the estimate of the lemmhgy < I < e we
) —® : n,k n
can take an integen, sufficiently large so that fan > ng the images (M), f(Mnt1,2k—1) andf(Mnp1.2¢) are contained in

some sufficiently small schlicht hyperbolic didRg, Dn1.2¢—1 andDpy 1 2« in Srespectively. We calf (z) nondegenerate
in A if f(2) takes the values outside Bf, x UDn 1,21 U Dny12« and we callf (z) degenerate i\, x otherwise.

We shall show that the nondegenerate case cannot occar>famy. We suppose that(z) is nondegenerate if,
for somen > ng. In the case wherBpk, Dni12k—1 andDpy1 2 are mutually disjoint, we can take thpeply connected
closed domairKg in A,  which is mapped properly onto tliesheeted covering surface $f Dy U Dn1 2k—1UDny 1,2k
According to the Hurwitz formula, we have— 2 = q(2g+ 1) + v, wherep— 2 and2g+ 1 are the Euler characteristics
of Kg andS— Dy U Dny1.2¢—1 U Dny1 2« respectively and is the sum of orders of the multiple pointski. Therefore,
takingg > 2 into account, we havp > 5g+ 2. On the other hand, the boundarie@fare mapped on the boundaries of
S— Dk UDnt1,2k—1UDny1,2«, S0 that we have < 3g, which is a contradiction. In the case where on®gfk, Dn+1.2¢—1
andDn1.2«, sayDnk, and the union of the other twbn; 121U Dny1 2« are disjoint, we take a hyperbolic digk
containingDn.1.2«—1 U Dn+1 2« and apply the same argument. Taking faply connected closed domaif in Ap i which
is mapped properly onto thegsheeted covering surface 8f Dy U Do, we havep — 2 = q(2g) + v, wherep— 2 and
2g are the Euler characteristics §§ andS— Dy, x U Dg respectively and is the sum of orders of the multiple points in
Ko. Therefore, we have > 4g+ 2. On the other hand, we haye< 2q, which is a contradiction. In the case where
Dk, Dnt1,2¢—1 andDp 1 2« are not disjoint, we take a hyperbolic diBlg containingDp, kU D1 2x—1 U Dny1,2« and apply
the same argument. Taking tipeply connected closed domalky in An which is mapped properly onto tlipsheeted
covering surface 08— Dy, we havep—2 = q(2g— 1) + v, wherep— 2 and2g— 1 are the Euler characteristics k§ and
S— Dg respectively and is the sum of orders of the multiple pointsky. Therefore, we have > 3gq+ 2. On the other
hand, we have < g, which is a contradiction.

The above argument shows thiiz) is degenerate i, for all n > ng. We takeAn, x and connectyn,, 121 and
Dny11,2¢ With A i in the universal covering surface 8f Further, we conned, ;2 ak—3 andAn, 2 a2 With An 1 2¢1
and connec, 2 4-1 andAn, 2 4 With Ay 11 2¢ in the universal covering surface 8f Continuing this process succes-
sively, we can see thdt(z) is a complex analytic mapping of the endRbounded by, k into the universal covering
surface ofS. Mapping the universal covering surface conformally onto the unit disk, we obtain a bounded analytic func-
tion in the end oR bounded by, x. According to the Pfluger-Mori criterion, the sub&g} x of E contained inp, « is
the set of removable singularities f6¢z) (k= 1,-- -, 2"). Thereforef(z) is a complex analytic mapping &finto Sand
becomes a constant.

3. We shall give some examples for which the above theorem is applicable and also consider the relation among the
existence of non-constant complex analytic mappingRioto S, the existence of transcendental meromorphic functions
onRwith three Picard exceptional values and the existence of transcendental meromorphic fundianithdive totally
ramified values.

Example 1 Let E be a Cantor set with successive ratids}. If l!im én = 0O, then the condition of the theorem is

satisfied foilC — E, so that there exists no non-constant complex analytic mappi@g-d into S. As the condition of the
® logé&;,t
=1 2" .
for which there exists no non-constant complex analytic mappin@ ofE into S. Further, according to the results of

logarithmic capacity ok being equal to 0 iS = oo, We can give a Cantor sEtof positive logarithmic capacity
n
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Matsumoto[6] and Toppila[9], taking a Cantor Elsatisfyingr!im E?Ll
— 00 n

= 0, we can give the Cantor s&t for which

there exists no transcenental meromorphic functio€enE with three Picard exceptional values and no non-constant
complex analytic mapping &—EintoS

3 I .
Example 2 (cf. Matsumoto[4]) Letlg > 11 > 12> - (lp < g, Inr1 < E”) be a sequence of positive numbers
2

satisfyin%mh;—:l = 0. We denote byA(r1,ro,rs) the surfaceC — kUo{|z—e%7i| <Trky1} and byBy(r,r2) the surface
{ra < |z— €| < r1} with a slit joining (1+ 2r1 —r2)e™¥" and (14 2r1+12)e" (k=0,1,2). LetF, be the surface
A(lp,lo,lp). We connecBy(lp,l1) (k= 0,1,2) with Fy and denote the resulting 6-ply connected surface with three slits by
F1. Further, connectinBy(l1,12) (k= 0,1, 2) with F;, we connecBy(lg,11) UBo(l1,12) UA(lg,l1,11) UB1(l1,12) UB2(l1,12),
B1(lo,11) UB1(l1,12) UA(l1,l0,11) UBg(l1,12) UB2(l1,12) andBy(lg,11) UBy(11,12) UA(l1,11,10) UBo(l1,12) UB1 (11, 12) with
F1UBo(l1,12) UB1(I1,12) UBs(l1,12) crosswise across the three slits joiniigt 2lo — 11)e™" and (1+ 2lo + 1)’
(k=0,1,2). We denote the resulting 24-ply connected 4-sheeted covering surfagdp, 1) with 12 slits byF,.
Continuing this process successively, we obtairgth®—1-ply connectedi"!-sheeted covering surfaég of A(In, In, In)
with 3-4"1 slits and we denote the limit surface |&f by F. Here, as the surfade is of planar character, by taking a
suitable totally disconnected compact Eetwe can map the surfade conformally ontoC — E. By the construction of
the surfacd=, there exists a transcendental meromorphic functiof erE with three Picard exceptional values and as
the condition of the theorem is also satisfied@# E, there exists no non-constant complex analytic mappirfgeE
into S.

Example 3 (cf. Hashimoto-Matsumoto[2]) Ldp > 11 > 1> > --- be a sequence of positive numbers satisfying
M}o lri—” = 0. We denote b¥(r1,rz,rs,ra,rs) the surfac€ with five slits joininge%Ti and(1+ rkH)e%Ti (k=0,---,4).
Let Ry be the surfac€(lo,lo, lo,lo,lo). We connecC(l,l1,11,11,11), C(l1,lo,11,11,11), C(l1,l1,l0,11,11), C(l1,11,11,10,11)
andC(ly,11,11,11,10) with F crosswise across the five slits joinie® " and (1+lo)e™" (k=0,---,4) and denote the
resulting 20-ply connected 6-sheeted covering surfad@ with 20 slits byF;. Continuing this process successively,
we obtain the5- 4"-ply connecteo(g(4” — 1)+ 1)-sheeted covering surfadg of C with 5- 4" slits and we denote the
limit surface ofF, by F. As the surfacd- is of planar character, taking a suitable totally disconnected compakt set
we can map the surfade conformally ontoC — E. By the construction of the surfade there exists a transcendental
meromorphic function of — E with five totally ramified values and as the condition of the theorem is also satisfied for

€ —E, there exists no non-constant complex analytic mappir(g{)E into S,

It is not known whether there exists a totally disconnected compakt, $et which there exists a non-constant analytic
mapping ofC — E into Sand for which there exists no transcendental meromorphic functiéh-e& with three Picard
exceptional values or with five totally ramified values. In this respect, we remark that there exists a RiemanrRsurface
of infinite genus and with one ideal boundary, for which there exists a non-constant analytic mapRiimgod and for
which there exists no non-constant meromorphic functioR@rith three Picard exceptional values (cf. Ozawa][3]).
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