B LERFHTRRE
% 38 5 A Tk 15

On the Riesz-type Decomposition Theorem
and its Applications
in Potential Theory of Function-Kernels

BEEERT Y L imic BT 5
) — 2B SHRER & DRIz oW T

Isao HIGUCHI*
MO zh

Abstract

In this paper we shall first obtain a Riesz-type decomposition theorem of super-
harmonic functions with respect to function-kernels of potentials.

Next, as an application of new decomposition theorem, we shall give some new
characterizations of the regularity of function-kernels which plays an important role
in the theory of Hunt kernels.

1. Introduction

Let X be a locally compact but non-compact Hausdorff space satisfying the second
axiom of countability.

A positive linear mapping from Cg to C is called a continuous kernel on X .

The family (V,),>0 of continuous kernels on X is colled a resolvent family associ-
ated with V | if it satisfies the following equalities:

B) Vo—-Vo=W@-p)Vo-Vo=a—0)Vg-V,, Vp, Vg > 0,

G.A.Hunt[11] verified that, when a continuous kernel V satisfies the complete maxi-
mum principle, we can associate a resolvent family (V,),>o with V', under the assump-
tion that V(Ck) C Cy and V(Ck) is dense in Cj .

The existence of a resolvent family may be developped to the theory of a semi-group.
So we can consider a continuous kernel as the elementary solution of the infinitesimal
generator of the semi-group and hence we can enter analytically into the arguement of
the generalized Poisson and Dirichlet problems.
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Subsequently, G.Lion[20] obtained the same result without the condition that V(Cg)
is dense in Cj .

On the other hand, P.A.Meyer[21], J.C.Taylor[22] and F.Hirsch[10] constructed the
resolvent family replacing the condition that V(Ck) C Cy with the weaker conditions
on the vanishing properties of potentials at infinity.

The weaker condition above mentioned is called the regularity of kernels in potential
theory.

Now, let us recall here the arranged results in the theory of convolution kernels on a
locally compact abelian group X

A convolution kernel N on X is called a Hunt kernel when there exists a vaguely
continuous semi-group ()t~ of positive measures on X satisfying

N:/Oooat dt (i.e.,/f sz/Ooo{/f day} dt for Vf € Cx ).

Concerning the characterization of Hunt kernel, the following rerults are well known.

A non-periodic convolution kernel N becomes a Hunt kernel if and only if N satisfies
one of the following conditios:

(A) N is balayable ,that is, there exists a balayaged measure on every open set not
necessarily relatively compact (cf. G.Choquet-J.Deny/[1]).

(B) There exists a resolvent family associated with N (cf. M.It6[12]).
(C) N satisfies the domination principle and N is regular (cf. M.It6[12]).

(D) N satisfies the domination principle and has the dominated convergence
property (cf, M.It6[12] and M.Kishi[19]).

Remark 1. In the theory of continuous function-kernels, the author has investi-
gated the relations (A) ~ (D) and he has already verified the equivalence of (C) and
(D) and obtained the relations (C') — (A) and (C') — (B) (cf. L.Higuchi[5], [6], [7]).

But the inverse relations (A) — (C) and (B) — (C) fail to hold in general (cf.
I.Higuchi[7] and M.It6[14]).

These facts suggest that the treatments of the function-kernels are more complicated
than that of the convolution kernels.

The regularity of function-kernel is concerned deeply with the vanishing property of
potentials in the neighbourhood of the point at infinity.

Indeed, the author proved that a continuous function-kernel G = G(z,y) is regular
if and only if at least one of G and its adjoint G converges to 0 quasi-everywhere at infinity
in the case that both G and CVJ‘ satitfy the complete maximum principle (cf. I.Higuchi[9]).

The purpose of this paper is to obtain a Riesz-type new decomposition theorem
of superharmonic function with respect to a continuous function-kernel G and to prove
that G is regular if and only if both G and G are reduction regular , in the case that
G satisfies the domination principle.
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2. preliminaries

Let X be a locally compact but non-compact Hausdorff space satisfying the second
axiom of countability. A function G = G(z,y) on X x X is called a continuous
function-kernel on X when it satisfies

0<G(z,z) <400 forVze X,
0<G(z,y) < +oco for V(z,y) € X x X with = # vy .

The G-potential Gu(x) of a Radon mesure u on X is defined by

Gu(e) = [ Gla,y) du().

Put
M = { u : positive Radon mesure on X },
E=E(G)={neM; [Culx) dulz) < +oo ),
F=F(G)={pe M : Gu(z) is finite continuous on X },

D=DG)={peM : Gu(z) <+oco G-n.e on X }.
And we write their sub-families consisting of the measures with compact support by
My, Eqy, Fj respectively.

We denote by Py, (G) the totality of G-potentials of the measures in My. The notations
of the families of various class of potentiala are also denoted similarly.

A Borel measurable set B is said to be G-negligible if u(B) =0 for Yu € Ey(G) .
We say that a property P holds G-nearly everywhere on a subset A of X and write simply
that P holds G-n.e. on A, when it holds on A except for a G-negligible set.

A lower semi-continuous function v on X is said to be G-superharmonic when
0 < u(z) < 400 G-n.e. on X and for any p € Ey(G) , the inequality Gu(z) < u(z) G-n.e.
on Su implies the same inequality on the whole space X .

We denote by S(G) the totality of G-superharmonic functions on X.

For a function v € S(G) and a closed set F' C X, a positive measure ' supported by
F satisfying the following conditions is called a balayaged mesure of u on F', if it exists:

G (z) =u(z) G-n.e. on F,
Gu'(z) <u(z) on X .

We denote by Sy (F, G) the totality of G-superharmonic functions for which the bal-
ayaged nesure on F' exists and write simply Spq(G) instead of Spe (X, G) .
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Potential theoretic principles are stated as follows:

(i) We say that G satisfies the domination principle and write simply G < G when
Py, (G) € S(G). '

(i) We say that G satisfies the complete maximum principle and write simply
G < G+ 1 when we have

Pry(G)U{c} € S(G) for Ve > 0.

(iii) We say that G satisfies the balayage principle when we have

‘PMO (G) - ﬁk;compactCXSbal(I(a G)
(iv) We say that G is balayable when we have Py (G) C Spu(G) .

(v) We say that G satisfies the continuity principle if, for any u € My, the finite
continuity of the restriction og Gu(z) to Sp implies the finite continuity of Gu(z)
on the whole space X.

When a continuous function-kernel G satisfies the continuity principle, we can
verify, under the additional condition that every non-empty open set in X is of positive
G-inner capacity, that there exists a positive mesure ¢ everywhere dense on X satisfying

(1) G(z,y) islocally £ ® & -summable,
(2) VE(f)(z) = [G(z,y)f(y) dé(y) is continuous on X for Vf € Cx .
Then we can consider VGf as a continuous kernel on X .

For a non-negative Borel function u and a closed set F', the G-reduced function of
uw on F and the G-reduced function of v on F' at infinity ¢ , are defined respectively
by

RE(u)(z) = inf { v(z) ; v € S(G), v(z) > u(z) G-n.e. on F },

§ : w
Rg"(u)(2) = infuen, RE™ (u) (),
where 2y denotes the totality of all relatively compact open sets in X.

And we write simply R%(u)(z) instead of Ry’ (u)(z).
Put, for a closed set F,

So(F,G)={ueSG); RS (u)(z) =0 G-n.e on X },
And write simply Sp(G) instead of Sy(X,G) .
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Remark 2. When G satisfies the domination principle, the following (1) and (2)
hold:

(1) We have RE(u) € S(G) for any closed set F' and for any u € S(G).

(2) We have R%(u) € S(G) for any u € S(G) , where R%(u)(z) denotes the lower
regularization of RS (u)(x).

Further we put, for a closed set F',

So(F,G) ={ueS(G); R (u)(z) =0 G-ne on X },
and write simply Sp(G) instead of Sy(X,G) .

The kernel G is said to be regular when we have Py (G) C So(G) .

Remark 3(cf. I.Higuchi[7] and M.It8[15]). When G satisfies the domination prin-
ciple, the following statements are equivalent:

Therefore, it suffices to obtain the weakest condition (3) when we show the regulariry
of G and we may use the strongest condition (4) when we apply the regularity of G.
And the duality of regularity follows from the equivalence of (1) and (5).

Remark 4. Suppose that G satisfies the complete maximum principle and that,
for Vi € My , Gu(z) converges uniformly to 0 at infinity § , that is, for Ve > 0 and for
Vu € My ,there exists an w € ) satisfying Gu(z) < e on Cw. Then G becomes regular.
Therefore, regularity means a kind of vanishing property of potentials at infinity ¢ .

Remark 5(cf. I.Higuchi[8],[9]). We have already generalized Remark 4 and char-
acterized the regularity as follows:

Suppose that both G and G satisfy the complete maximum principle. Then the fol-
lowing (1) and (2) are equivalent each other:

(1) Gis regular .
(3) For Ve>0, Vd >0, Vyu, and for Vv € M, , we have

1é1£ capﬁ;[{xGX; Gulz) >c} N {zeX; le/(l‘)Zd}J = 0.
w 0
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3. Riesz-type decomposition theorem
In the rest of this paper, we discuss always on the following assumption:

every non-empty open set in X s of positive G-inner capacity .

After the classical model of Riesz, we shall have a following new decomposition the-
orem of superharmonic functions with repect to continuous function-kernels.

Theorem 1. Let G be a continuous function-kernel on X satisfying the domina-
tion principle.

Then for any u € S(G) and for any closed set F C X | there exist a positive measure
pr € D(G) and a function hp(z) such that

u(@) = Gup(z)+ h(z) on X,
Spur C F,
Hun 2, C Eo(G) s.t.
Sy, C F for ¥n,
Un — W (vaguely) as n — oo,
Ghin(@) < Guale) on X for Vn
lim Gun(z) = u(z) G-n.e. on F.
Gur(z) < u(z) on X,
he(z) < RE°(u)(z) G-n.e. on F.

Definition The sequence {u,}oe, C Eo(G) (resp. the measure pp € D(G) ) is
called an approximate sequence of balayaged mesure ( resp. a pseudo-balayaged
measure ) of u on F .

Remark 6. The proof of the classical decomposition theorem of Riesz concerning
the superharmonic functions on R" (n > 3) is done by using the relations held between
the Laplace operator A and the Newton kernel N = N(z,y) .

And by virtue of the celebrated lemma of Weyle, we can prove the harmonicity of the
function hp .

On the other hand, in our new decomposition theorem, the generalized Laplacian with
respect to the kernel G' does not appear on the stage.

So we can not derive the harmonicity of function hp in theorem 1.

But, approximating a G-superharmonic function u by the potential Gur(z) , we may
appreciate the function hp(z) by the G-reduced function R5°(u)(z) on F .

Therefore, we can investigate the behavior of v in the neighbourhood of the point at
infinity.
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For the proof of Theorem 1, we recall here the following two lemmas and the equiva-
lence held between the relative domination principle and the relative balayage principle(cf.
M.Kishi[18] and I.Higuchi[4]).

Lemma 1(cf. R.Durier [3]). Let G be a continuous function-kernel on X such that
its adjoint G satisfies the continuity principle and  {u, }15 be a sequence of measures

in D(G) .

Suppose that there ezists a superharmonic function u € S(G) satisfying
Gun(z) < u(z) G-ne. on X for ¥n .
Then, the set {pun}2 is vaguely bounded.

Lemma 2(cf. I.Higuchi[7]). Suppose that a continuous function-kernel G satisfies
the domination principle. Then there ezists, for any u € S(G) and for any clode set F
in X , a sequence {u, > C Eo(G) of measures verifying

Spn(z) C F for ¥V n,
Gun(2) < Gpp(z) < ulz) on X,
Aim Gun(z) = u(z) G-ne on F.
Proof of theorem 1. We denote by {Q,}/2 the exhaustion of X such that
Q,, is a relatively compact open set in X . Put
F,=FnQ,n{z € X;u(z) <n}.

Then F,, converges increasingly to F' as n tends to +oo .
Let wur € D(G) be a pseudo-balayaged measure of u on F' . We may concider
{1} 23 C Eo(G) as an approximate sequence of balayaged mesure of u on F and pp

as a vague adherent of {u, :{2 .

We denote by (i, the restriction of u, to CS2,, .
Then we have

Glimn(2) < Gpn(z) = u(z) = RE" (u)(z) on Spym,n and hence on X
and, by the inequality f, > fn — lmpn ,
Gup(z) = Iminf{Gun(z) — Gpinm(z)}
> lim Gpn(a) ~ BEO™ (u)(2)
= u(z) — RE"“" (u)(z) G-n.e. on F,
and thereforé, letting n tend to 400,
hp(z) = u(z) — Gup(z) < RE’(u)(z) G-n.e.on F .

This completes the proof of Theorem 1.
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4. Applications of Riesz-type decomposition theorem
The following result concerning the relation held between the regularity and the bal-
ayability is an immediate consequence of Theorem 1 .

Corollary 1. If G satisfies the domination principle, the following inclusion
relation holds:

So(G) C Sbal(G)-

Remark 7. The relation in Corollary 1 was already obtained by using the equiva-
lence held between the regularity and the so-called dominated convergence property
(cf. I.Higuchi[5]). ~ We emphasize here that Corollary 1 follows immediately from The-
orem 1.

Remark 8 . The inverse inclusion relation of Corollary 1 does not necessarily
hold in general. But if we suppose that G satisfies the domination principle and that
G is regular, then we have Sy(G)=Spu(G) and thereforethe, following (1) ~ (4) are
equivalent:

1 UGSO(G) .

3) RL(u) € So(G) .

(1)
(2) u & Sbal(G) .
(3)

) R%(u) & Sbal(G) .

(4

Remark 9 . By Corollary 1, we may discuss the vanishing property of super-
harmonic function G at infinity point using the balayability of u . Further, we may
derive the the vanishing property of v at infinity point from that of the smaller function

R (u)(z).
Corollary 2(cf. LHiguchi[7)). When G < G, G is balayable if G is regular.

Remark 10 . The inverse of Corollary 2 does not correct in general.

In fact, We denote by N = N(z,y) the Newton kernel on R"(n > 3) and by ¢ a
positive measure such that NE&(z) is finite continuous on X and that [df < +oo .

The the continuous function-kernel defined by

G(z,y) = N(z,y) + N¢(z)

satisfies the domination principle. Further we can prove that GG is balayable but not
regular and hence that the regularity is a stronger property than the balayability(cf.
I.Higuchi[7]).
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Now we consider the three definitions of regularity and obtain the mutual relations
held in them.

Theorem 2. For the contonuous function-kernel G satisfying the domiﬁation
principle, the following (1) ~ (4) are equivalent each other:

(1) G is regular, that is, the following inclusion holds:

Puy (G) C So(G) .

(2) G is regular, that is, the following inclusion holds:

PMO(G) C So(é)

(3) Both G and G are reduction regular, that is, the following inclusions hold
at the same time: ‘

R&(Piy (G)) © So(G)

RE(Pagy () € So(C) -

(4) Both G and G are strongly regular |, that is, every G-psel{do-potential
(resp. every G-pseudo-potential) is contained in So(G) (resp. in So(G) ) .

Remark 11 . A G-superharmonic function u is called a G-pseudo-potential when
u is dominated by a potential Gu(z) of some measure p € My(G) .

Corollary . Let G be a symmetric continuous function-kernel on X .  Then the
following three statements are equivalent each other:

(1) G is regular .
(2) G is reduction regular .

(3) G is strongly regular .

Proof of Theorem 2. The equivaleces (1) <— (2) <— (4) have been already
known (cf. Remark 3 and I.Higuchi[8]).

By virtue of the inequality wu(z) > R%(u)(z) on X the implication (1) — (3) is
trivial.

Therefore, we may suffice to verify the inverse implication (3) — (1) .
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To prove the implication (3) — (1) , we use the Riesz-type decomposition theorem
obtained in Theorwm 1.

For any u € Mp(G) and any wgy € €29 , we denote by puc., a pseudo-balayaged
measure of g on Cuwy .

Then we have first, for any measure v € Fy(G) , the following equality when both G
and G are reduction regular:

| RiGu)(@)dv(z) = [ RE(Gucu,)(@)dv(z)

In fact, we have by (3),
| RiGuydv < lim [ RE{Gpcu + REG (1) }dv
= lim [ RE(Gu)dv+ [ RE(RE(Gp)dv
= lim, [ Guoudv +0= lim [ Gude

_ : CwnK (A _ : a
- w,llyg)( RG " (Gy)d,u/Ccu - w}?llx/ GVCwﬂKd/UJCw

= lim /G,ucwdz/Cwan ].I_I)I’)l(/ ng(G,LLCwO)dI/

w,K—X
= [ Ri(Guou)dv
Consequently we have the following inequality:

| Ri(Guwdv < [ Ri(Gpcua)dv

The inverse inequality being trivial, we obtain the desired equality:

| Ba(Guw@)dv(e) = [ RE(Ghouw)(@)dv(x) |

In the above calculations, we used the theorem of Fubini and the dominated conver-
gence theorem of Lebesgue repeatedly.
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Finally we have
| RaGuav = [ RiGuouw)dv = [ R4(Gv)dpcu,
< / Rg“’O(R‘g—;(G’V))ducwl (w1 € Qg and w; Cwg ) .
Letting wy tend to X , we have
/ R(Gu)dv < / RE(R%(GV))dpicw, =0 .

The last equality follows from our assumption that G is also reduction regular.
Consequently, the implication (3) — (1) was verified and hence the proof of Theorem
2 was completed .
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