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Polynomial solutions to boundary-value problems of the heat equation
S RADESMEREIC RS 5 2 EHA M
Dedicated to Professor Masayuki Ité in honour of his siztieth birthday

Gou NAKAMURA' and Noriaki SUZUKI't
hR 5 A

Abstract. In this paper we shall determine a polynomial ¥(z,t) of degree
at most 3 such that for any polynomial f(z,t) there exists a heat
polynomial u(z,t) which equals f(z,t) on the curve ¥(z,t) =0.

1 Introduction

Let P be the set of polynomials in two variables z and t with real coefficients, and P,, the subset of P of
degree at most m. The heat operator L is defined in R? by

u  Ou

Let HP be the set of heat polynomials in P.

Basic Problem. Let % € P. Then for any f € P, is there a polynomial solution u € P satisfying the following
(1)-(2)?
Lyl = 0 in R (1)
uw(z,t) = f(x,t) on Y(x,t)=0. (2)
Definition 1.1 A polynomial v is said to be square-free if
(1) v is minimal, that is, ¢ has no repeated factors such as p(z,t)™ (m > 2), and

(i1) for each irreducible factor 1; with real coefficients of ¥, ¥; = 0 has infinitely many points.

We have the following algebraic result [1].

Theorem 1.2 Let ¢ be square-free, and f € P. If u € P satisfies (2), then there exists g € P such that
u—f=1g.

Hence we can say that the Basic Problem is to find 9 such that
HP +yP ="7P.

Theorem 1.3 Let v be square-free, and m > 2. For any f € Pp,, if there exists u € Py, satisfying (1)-(2),
then degvy = 1.

Proof. Suppose that ¢ € Py, k > 1. Consider a linear mapping T from P,,_; onto P,,_; as follows:

T : Pntr — Pno1
w w

g = Llyg]
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We shall show that T is surjective. For any h € Pp,—;, there exists f € P,, such that L[f] = h because
{L[f] ; f € Pm} = Pm—1. From our assumption there exists a solution u € Py, for f. By Theoreml.2, we
have g € Py, such that u — f = —g. Then it follows T(g) = L[yg] = L[f — u] = L[f] = h. Thus we see
that T is surjective. The surjectivity of T gives

dim Pt = m—x+202 2> 1102 = dim Py, ;.

Therefore £k < 1. O

Put
(5] & -2k

2oy MT0b)

) vn(z,t) = n!

Then each v,(z,1) is a heat polynomial.

Lemma 1.4 The set {v,(z,1)} is a basis for HP.

Proof. A polynomial p(z,t) of degree n is of the form

p(z,t) = az™ + Z a;z™ 97 4 (terms of degree < n — 1).

j=1

If p(z, t) is a heat polynomial, then

Lip|=— Zjajzl:"—jtj_l + (terms of degree < n — 2) =0.

=1
Hence ja; =0forj=1,...,n and
p(z,t) = az™ + pp_1(z,t) (degp,_1 <n—1).

Since vy (x,t) = ™ + (terms of degree < n — 1), go—1(z,t) = p(z,t) — av,(z,t) is a heat polynomial of degree

at most n — 1. By the induction we see that any heat polynomial is constructed by {v,}. Uniqueness of the
linear conbination follows from the linear independence of {v,}. O

Lemma 1.5 Let ¢ € P of degv > 2. If the Basic Problem holds for 1, then the variable of the highest degree
term of ¥ is only x.

Proof. If the Basic Problem holds for 1, then Theorem 1.3 implies that for some f € P the solution u satisfies
deg f < degu. Since the solution u is of the form u = f + g by Theorem 1.2, we have degu = degg. By
Lemma 1.4, the highest degree term of a heat polynomial u is a polynomial of z, so is that of 1g. Hence the
variable of highest degree term of % is only z. O

2 Linear equations

Theorem 2.1 Suppose that ¢ has degt = 1, that is, the equation ¢(z,t) = 0 defines a line az + bt +c = 0.
Then the Basic Problem is solved according to the gradient of the line as follows:

() ifb+#0, then there ezists a unique solution,

(i) 4fb=0, then there ezists a non-unique solution.

Proof. Since the set of heat polynomials is invariant with respect to any parallel translation, we can take
Y(z,t) =0 as az + bt = 0.
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(i) If b # 0, we can take 9 = 0 as ¢ = az. Substitute it for each v, (x,t), then
[7] k. .n—k
aFx
vn(z,az) = nl E (Fi(n = Fi(n = 2%)1

= z" + (lower degree terms).

Therefore for any f € P of degree N, there exist cg,cy,...,cn € R such that

N
| f(z,ax) = Z can(z, az),

n=0

where cg,c1,...,cy are uniquely determined. Put u(z,t) = E,I:’:O €nUn(Z,t), then we see that u(z,t) is a
unique solution to the Basic Problem.

(ii) If b= 0, we can take 9 = 0 as z = 0. Substitute it for each v, (x,1), then
2n)!
v2n.(0,1) = -(n—!)t" and v2,41(0,7) =0

Therefore for any f € P of degree N, there exist cg,c1,.-.,cn € R such that
N
f(0,t) = ch'uz,,(o,t).
n=0

Put u(z,t) = 3°N_; ca20 (2, t), then we see that u(z, t) is a solution to the Basic Problem. Since v2,11(0,t) =
0, w(z,t) + vant1(z, t) is also a solution. Hence the uniqueness of the solution does not hold. O

3 Quadratic equations

Theorem 3.1 Let ¢ be a square-free polynomial of degvy = 2. Then the Basic Problem is answered affirma-
tively if and only if P(z,t) = 0 is the following:

(i) two lines parallel to the t-axis, or
(i) parabolas obtained by parallel translations of z2 = 4pt (p > 0), or

(iii) parabolas obtained by parallel translations of 2 = 4pt (p < 0) such that \/—p is not a zero point of any
Hermite polynomials.

Furthermore, the solution u is unigque in each case.

Proof. Every quadratic polynomial ¢(z,t) is of form Az? + Bzt + Ct? + Dz + Et + F = 0. If the Basic
Problem holds for (z,t), then it follows that B = C = 0 from Lemma 1.5. Since 1 is quadratic, we have
A # 0 and assume that A = 1. Furthermore, translating the equation by £ — z— D/2, we can take 9(z,t) =0
as 2 +bt+c=0.

(i) If b = 0, we have 9(z,t) = 22 + ¢ = 0 and ¢ < 0 because 1 is square-free. In this case it is a pair of
lines parallel to the t-axis.

Any polynomial f(z,t) is reduced to the form f(z,t) = fi(t) + zf2(t) on z? + c = 0. Also, {v,(z,t)} is
reduced to the form

nk

van(z,8) = (2n)! Z k! (2n 2k)!

(=) k
= ! T 7o T 1 oI
Van+1(2, 1) (2n +1) I;O K(@2n+1- 2k)'
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on z? + ¢ = 0. Then there exist cp, ¢y, ...,cn and dg,dy, .. .,dys such that

N
fAi®) = D cavza(e,t) and
n=0

M

sz(t) = Z dnV2n 11 (:L',t)

n=0
on z2 + ¢ = 0. Therefore

N M
u(z,t) = Z CnVan(z,t) + Z dvon11(z,t)
n=0 n=0
is a solution. We shall show the uniqueness of the solution u. For f(z,t) = 0, there exists a solution
u(z,t) = Zﬁ:o ¢nn(Z,t). Then for any points (z,t) and (—z,t) on z2 +c =0, u(z, t) satisfies

(%] [#7
0=u(Ez,t) = coanv2a(®,0) £ Y Cant1ant1(x,t)-
n=0 n=0

x N1
Hence ELZZL CanVan(z,t) = 0 and ZL;O ]c2ﬂ+1'02n+1(:1:,t) =0on z?>+c¢ =0, and we have ¢, =0 (n =
0,1,...,N).

If b # 0, then we can take ¥(z,t) = 0 as z2 + bt = 0 by translating ¢ — ¢t —c/b. Put b = —4p, then we have
z? = 4pt. Substituting t = 22/ (4p) for {v,(z,t)}, we have

(3]
() =

(ii) If p > 0, then the coefficient of z" for v,(z,z?/(4p)) is non-zero. So that for any f € P, we can
construct f(z,z?/(4p)) by {v.(z,z?/(4p))}. Hence there exists a solution u and it is uniquely determined.

(5]

zz)k 2k o ( 1 )k e
4p) El(n—2k)! = \4p/) FKl(n—2k)

)

(iii) If p < 0, then the coefficient of z™ for v,,(x,z%/(4p)) may be zero for some m. In case it happens,
f(z,t) = 2™ cannot be constructed by {v,(z,z?/(4p))}. Since

vn(z,t) = (—t) 2 H, ( \/;47) , t<0,

where H,,(z) denotes the Hermite polynomial of degree n, we have

Therefore v, (z,z2?/(4p)) = 0 if and only if \/—p is the zero point of H,(z). O

4 Equations of degree 3

Theorem 4.1 Let 1 be a square-free polynomial of degt = 3. Then the Basic Problem is answered negatively.

Proof. If the Basic Problem holds for ¢(z,t), then it follows that ¥(z,t) = Az®+Bz?+Czt+Dt?*+Ez+Ft+G
from Lemma 1.5. Then we can assume that A = 1 and that B = 0 by translating £ — = — B/3. So that ¥ =0
is reduced to z* + Cxt + Dt? + Ex + Ft + G = 0.

First, we shall show that D = 0. Suppose that D # 0. Since ¥ = 0 is a quadratic equation of £, we have

t = p(a) = 515{_02- F+./(Cz+F)?—4D@ +Bz+C) }
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for sufficiently large > 0 or small z < 0 according to D < 0 or D > 0, respectively. Then ¢(z) = O(z%/?)

(z = o0 or — 00) and ‘
v (z, 0(x)) = =" + n(n — Dp(z)z" 2 + O(z™1).

For f(z,t) = 2, there exists a solution u(z,t) = Zﬁ:o cnUn(z,1t), ey # 0, so that

2 = u(z,e(z))

N
= 3 catala 0(a))

n=0
= cya’ +enN(N — D)z "2+ 0z 7).

Clearly N > 2. Since we can take  — 00 or —oo for (z,t) on ¥(z,t) =0,

1 _ - enN(IV = 1De(e) +o<i>

ZN—2 — C°N )
implies ¢y = 0, which contradicts ¢y # 0. Hence D = 0.

Next, we shall show that C # 0. Suppose that C = 0, then 2% + Ez + Ft + G = 0. We consider this

equation according to F' # 0 or F' = 0.
If F #0, then by translating t — t — G/F we have z3 + Ez + Ft = 0. Substitute t = (z° + Ez)/(—F) for
U (z,t), then

(3] -
23 +EBx\ (z* + Ez)*an—2*
Up (:v, 7 ) = nl ,; (=F)*k!(n — 2k)!

! n
ﬁiﬁwnﬂi] + (lower degree terms).
]!

For f(z,t) = z?, there exists a solution u(z,t) = 30, cavn(2,t), ey # 0, so that
N 3
z°> + Ex
a? = ) cavn (w, — )

k=0
N!
N P

N3] 4 (lower degree terms).

Consequently it follows that 2 = N + [N/2], which never occurs.
If F =0, then 9(z,t) = 23 + Ez + G is factorized to

¥(2,t) = (z - a)(z - b)(z — o),

where a,b, c € R are distinct because 9 is square-free. As we have seen in the quadratic cases, the solution of
the Basic Problem is uniquely determined by two lines parallel to the f-axis. Hence it does not hold in the
case of three parallel lines.

By translating z — z — F/C and t — t — 3F?/C® — E/C for 2 + Czt + Ex + Ft + G =0 (C #0), we
take ¥ = 0 as 3 + ax? + Cxt + 8 = 0. Then 8 # 0. In fact, if # = 0, then z(z? + az + Ct) = 0. For
f(z,t) = 22 + ax + Ct, a heat polynomial u satisfying u = f on the quadratic curve 2 + ax +Ct =0 is only
u© = 0 by Theorem 3.1. But u is not identically equal to f on the line £ = 0. Hence 8 # 0.

Last, we shall show that the Basic Problem does not hold even if # # 0. Hence it never holds for any 9 of
degree 3. Substitute ¢t = (z* + az? + 8)/(—Cx) for v,(z,t), then

(3] _
:1:3+a:1:2 +ﬁ _ (1.3 +aa:2 —l—ﬂ)k:ﬂ"’ 2k
Un (‘” —Cz ) = "’;) (—Cz)*kl (n — 2K)!

(3] 1o
k! az2 +[3 k—1,.n—3k+3l
S T o

(k—1)  (—C)*k!(n — 2k)!

= n!
k=0 I=0
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(3] & ~lgn 8t
(axz 4 ﬂ)k 1 n—3(k 1)}
n! Z Z (=O)*1! (k — 1)! (n — 2K)!

k=0 1=0
(3] (3] ;3
(az? + B)Izn—3
- ”!JZ:; ; (—O)Fl i {n — 20 +5)}!
5] (=] N
_ (02® + By
- n!; Z—; (=O)H3 1 {(n — 25) — 21}
. (3] Un—2j (1, -_LC) (az? + B)izn—37
- YL T e ot

Here if C < 0, then v,_2j(1,1/(~=C)) > 0. For f(z,t) = 2?, a solution u(z,t) = SN o cntn(z,t) (cv # 0)
satisfies .
3 2
2 z°+az® + 0
r = kEZOCn'Un <$, _———CY:L‘_—) .

By multiplying z3V/2—N to both sides and by comparing the coefficients, we see that N = 2. If N = 2, it is
obvious that z2 is not constructed by v, (z, (z* + az? + 8)/(—Cz)), n =0,1,2.
If C > 0, then

B +az?+p8\ . (2] Un—2j (1’ ‘—‘15) (az? + B)izn—3
"\ =0s ) T T T e-n) (=C)7j!
n! 3] Hy 3 (@

7T 2 2

) (—a:v2 _ ﬂ)jwn—iij

The highest degree term is
5.(5) .
ok .

If \/C/2 is a zero point of the Hermite polynomial of degree m, then f(z,t) = =™ is not constructed by
{vn(z, (2 + az? + B)/(—Cx))}.

If/C /2 is not a zero point of any Hermite polynomials, then we can follow the same argument in the case
C < 0. Hence if ¢ is of degree 3, then we see that the Basic Problem never holds. O

5 Equations of degree more than 3

In the case that degy = N > 4, we can show that the Basic Problem does not hold if ¢(z,t) = Az"™ + 1,
N

Zﬁ__l Arz*+ Bxt, E;:I:l ApzFtV—F or ELZL AxzN—2%t* 'We conjecture that the Basic Problem will not hold

for any 1 of degree more than 3.
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