A note on symbolic powers of regular prime ideals

Atsushi ARAKI

荒木 淳

Abstract. Let k be a field of arbitrary characteristic and let R be a k-algebra of finite type. In this paper we shall show that for $p \in \operatorname{Reg} \operatorname{Spec} R$ suppose the residue class field K of R_p is separable extension of k, then $D^n(p) = p^{(n+1)}$ for all $n \ge 1$.

1. Preliminaries.

Throughout this paper, let us denote by k a field of arbitrary characteristic and let R be a k-algebra. By a k-higher derivation $\delta = \{\delta_q\}$ of finite rank n on R, we shall mean a finite sequence of endomorphisms $\delta_0, \delta_1, \dots, \delta_n$ of R as a k-vector space which satisfy the following two properties:

- (1) δ_0 is the identity map of R, and
- (2) for every $r (0 \le r \le n)$, and for all $x, y \in R$, we have

$$\delta_r(xy) = \sum_{i+j=r} \delta_i(x) \,\delta_j(y) \,.$$

We shall denote the collection of all such k-higher derivations of finite rank n on R by $H_k^n(R)$. On the other hand let us denote by $\operatorname{Der}_k^n(R)$ the R-module of all n-th order k-derivations of R to R. Thus $\varphi \in \operatorname{Der}_k^n(R)$ if and only if $\varphi \in \operatorname{Hom}_k(R, R)$, and for all $x_0, x_1, \dots, x_n \in R$ we have

$$\varphi(x_0x_1\cdots x_n) = \sum_{s=1}^n (-1)^{s-1} \sum_{i_1 < \cdots < i_s} x_{i_1}\cdots x_{i_s} \varphi(x_0\cdots \hat{x}_{i_1}\cdots \hat{x}_{i_s}\cdots x_n) \, .$$

For every component δ_r of $\delta = \{\delta_r\} \in H^n_k(R)$, δ_r is an *r*-th order derivation of *R*. Let D^n denote the set of composites $\delta^{(1)}_{\alpha_1} \cdots \delta^{(q)}_{\alpha_q}$, where each $\delta^{(i)}_{\alpha_i}$ is a component of an element of $H^n_k(R)$, and $\alpha_1 + \cdots + \alpha_q \leq n$, *q* arbitrary. For an ideal *I* of *R*, define

$$D^n(I) = \{ f \in I : \varphi(f) \in I \text{ for every } \varphi \in D^n \}$$

Lemma 1 ([1] Proposition 1). $D^n(I)$ is an ideal of R, and we have $I^{n+1} \subset D^n(I)$.

Lemma 2 ([1] Proposition 2). If Q is a primary ideal of R, then so is $D^n(Q)$.

Consider now a localization $\lambda: R \longrightarrow S^{-1}R$ of R. For every ideal I of R let $S(I) = \lambda^{-1}(S^{-1}I)$ be the S-saturation of I. On the other hand, every higher derivation $\delta = \{\delta_r\}$ on R can be extended uniquely to $\bar{\delta} = \{\bar{\delta}_r\}$ on $S^{-1}R$. Then let \bar{D}^n denote the set of composites $\bar{\delta}^{(1)}_{\alpha_1} \cdots \bar{\delta}^{(q)}_{\alpha_q}$, where each $\bar{\delta}^{(i)}_{\alpha_i}$ is a component of a unique extension to $S^{-1}R$ of an element in $H^n_k(R)$, and $\alpha_1 + \cdots + \alpha_q \leq n$. It is clear that we have

$$\bar{D}^n \subset \operatorname{Der}^n_k(S^{-1}R)\,,$$

where $\operatorname{Der}_k^n(S^{-1}R)$ is the set of all *n*-th order *k*-derivations of $S^{-1}R$ to $S^{-1}R$. For an ideal \overline{I} of $S^{-1}R$, denote by $\overline{D}^n(\overline{I})$ the set of $f \in \overline{I}$ such that $\overline{\varphi}(f) \in \overline{I}$ for every $\overline{\varphi} \in \overline{D}^n$.

Lemma 3 ([1] Proposition 3). $\overline{D}^n(S^{-1}I) = S^{-1}D^n(S(I))$. In particular, $\overline{D}^n(S^{-1}Q) = S^{-1}D^n(Q)$ for a primary ideal Q of R such that $Q \cap S = \phi$, the empty set.

Lemma 4 ([1] Proposition 4). Let $\lambda : R \longrightarrow S^{-1}R$ be a localization of R, and let Q be a primary ideal of R such that $Q \cap S = \phi$. Then

$$D^n(Q) = \lambda^{-1} \overline{D}^n(S^{-1}Q).$$

2. Results.

Proposition 5. Let R be a k-algebra of finitely generated type which is a regular local ring with the maximal ideal m. Let K be the residue class field of R. Assume that K is a separable extension of k. Then $D^n(m) = m^{n+1}$ for all $n \ge 1$.

Proof. By Lemma 1 we have $m^{n+1} \subset D^n(m)$. We shall show the converse inclusion relation. Let $\{z_1, \dots, z_r\}$ be a regular system of parameters for R. Consider \hat{R} , the m-adic completion of R. Then \hat{R} is expressed as a formal power series ring $K[\![z_1, \dots, z_r]\!]$. Let

$$\delta^{(i)} = \{\delta_j^{(i)}\}_{j \le n} \in H_K^n(\hat{R}), \qquad 1 \le i \le r$$

be the higher derivation defined by

$$\delta_j^{(i)}(z_1^{m_1}\cdots z_i^{m_i}\cdots z_r^{m_r}) = \binom{m_i}{j} z_1^{m_1}\cdots z_i^{m_i-j}\cdots z_r^{m_r},$$

where we put $\binom{m_i}{j} = 0$ for $j > m_i$. With $\hat{m} = (z_1, \dots, z_r)\hat{R}$ we have: If $f \in \hat{m}$ and if $\delta_{j_1}^{(1)} \dots \delta_{j_r}^{(r)}(f) \in \hat{m}$ for all j_1, \dots, j_r such that $j_1 + \dots + j_r \leq n$, then $f \in \hat{m}^{n+1}$. For, let $f = F_n + g$, where $F_n \in K[z_1, \dots, z_r]$ is a polynomial of degree n and $g \in \hat{m}^{n+1}$. Then it is easily seen that $F_n = 0$. Assume that we have already exhibited $\partial^{(i)} = \{\partial_j^{(i)}\}_{j \leq n} \in H_k^n(R)$ such that $\partial_j^{(i)} = \delta_j^{(i)} | R$ for all i, j. Then we obtain what we want : Let $f \in m$ be such that $\varphi(f) \in m$ for every $\varphi \in D^n$. In particular, we have

$$\partial_{j_1}^{(1)} \cdots \partial_{j_r}^{(r)}(f) \in m \quad \text{for all} \quad j_1, \cdots, j_r$$

with $j_1 + \cdots + j_r \leq n$, hence

 $\delta_{j_1}^{(1)}\cdots\delta_{j_r}^{(r)}(f)\in\hat{m}$ for all j_1,\cdots,j_r

with $j_1 + \cdots + j_r \leq n$. This implies $F_n = 0$ and thus

$$f = g \in \hat{m}^{n+1} \cap R = m^{n+1}$$

It remains to show that there exist $\partial^{(i)} = \{\partial^{(i)}_j\} \in H^n_k(R), 1 \leq i \leq r$, such that $\partial^{(i)}_j = \delta^{(i)}_j | R$ for every *i*, *j*. Let $\Omega_k(R)$ be the universal algebra of higher differentials on *R* over *k* and let

$$\delta = \{\delta_j\} : R \longrightarrow \Omega_k(R)$$

be the canonical k-higher derivation of infinite rank (Cf.[2]). Since K is a separable extention of k, we can choose $u_1, \dots, u_s \in R$ such that their images in K form a separating transcendence base of K over k. Then $\Omega_k(R)$ is a free R-algebra with a free base

$$\{\delta_j(z_l), \delta_j(u_m) : l = 1, \cdots, r, m = 1, \cdots, s, j = 1, 2, \cdots, \infty\}$$

([2] Theorem 3). On the other hand it is easily shown that each $\delta^{(i)} = \{\delta_j^{(i)}\}_{j \leq n} \in H_K^n(\hat{R})$ can be imbedded into a higher derivation $\{\delta_j^{(i)}\}$ of infinite rank. Hence there are uniquely determined k-higher derivations $\partial^{(i)} = \{\partial_j^{(i)}\}$ on R of infinite rank such that

$$\partial_j^{(i)}(z_l) = \delta_j^{(i)}(z_l), \quad \partial_j^{(i)}(u_m) = 0$$

for all *i*, *j*, *l*, *m*. Consequently $\partial_j^{(i)} = \delta_j^{(i)} | R$ for all *i*, *j*. Hence $\{\partial_j^{(i)}\}_{j \le n} \in H_k^n(R), 1 \le i \le r$, are required ones.

Theorem 6. Let k be a field of arbitrary characteristic and let R be a k-algebra of finite type. For $p \in \text{Reg Spec } R$ suppose the residue class field K of R_p is separable extension of k, then $D^n(p) = p^{(n+1)}$ for all $n \ge 1$.

Proof. Let $\lambda : R \longrightarrow R_p$ be the canonical homomorphism and set $m = pR_p$. Then by Lemma 4, we have

$$D^n(p) = \lambda^{-1} \bar{D}^n(m) \,.$$

Let $\{\delta_j\}_{j\leq n}$ be a k-higher derivation of R_p of rank n. Then there exist elements $t_i \in R - p$, $i=1, \dots, n$, such that $\{\delta_0, t_1\delta_1, \dots, t_n\delta_n\}$ is a k-higher derivation of rank n on R ([3], Lemma 2). Let us set

$$\partial_i = t_i \delta_i, \quad i = 0, 1, \cdots, n, \quad t_0 = 1.$$

Denoting by $\{\bar{\partial}_i\}_{i\leq n}$ the unique extension of $\{\partial_i\}_{i\leq n}$ to R_p , we have $\delta_i = (1/t_i)\bar{\partial}_i$ on R_p , $i = 0, 1, \cdots, n$. Let

$$\varphi = \delta_{\alpha_1}^{(1)} \cdots \delta_{\alpha_q}^{(q)}$$

be a composite of components of higher derivations on R_p . Then there exist elements $t_i \in R-p$, $i = 1, \dots, q$, and a family of higher derivations $\{\partial_i^{(i)}\}, i = 1, \dots, q$, on R such that

$$\varphi = (\frac{1}{t_1} \bar{\partial}_{\alpha_1}^{(1)}) \cdots (\frac{1}{t_q} \bar{\partial}_{\alpha_q}^{(q)}).$$

Here we denote by $\bar{\partial}_{\alpha_i}^{(i)}$ the unique extension of $\partial_{\alpha_i}^{(i)}$ to R_p . It is obvious that φ is an R_p -linear combination of elements of \bar{D}^n and consequently $\bar{D}^n(m) = m^{n+1}$ by Lemma 5. Therefore we have

$$D^{n}(p) = \lambda^{-1}(m^{n+1}) = p^{(n+1)}$$
 for all $n \ge 1$.

REFERENCES

1. Y.ISHIBASHI, Symbolic powers of regular primes, Can.J.Math., 33 (1981), 1331-1337.

- 2. W.C.BROWN, An application of the algebra of differentials of infinite rank, Proc.Amer. Math.Soc.35 (1972),9-15.
- 3. W.C.BROWN and W.E.KUAN, Ideals and higher derivations in commutative rings, Can. J.Math.24 (1972), 400-415.

(受理 平成11年3月20日)