B T EREITERE
#33EA ERR104E
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The Mandelbrot set of the quadratic polynomial p.(z) = 22 + ¢ is the set of those values
c such that the iteration sequence {p?(0)} of the finite critical point 0 of p.(z) is bounded.
Similarly, we can define the Mandelbrot set of the cubic polynomial g.(z) = cz(3 — 2%) + 1
with two finite critical points 1 and —1. And investigating this Mandelbrot set, we can
obtain some examples of Julia sets which are disconnected, but need not be totally discon-
nected.

§1. Introduction.

Let p.(z) = 22 + ¢ be a quadratic polynomial with a complex parameter ¢. The Mandel-
brot set M of p.(z) is defined by

M = C — {c| lim p}(0) = oo},

where C is the extended complex plane and oo is the point at infinity. The Mandelbrot
set is the set of those values ¢ such that the iteration sequence {p7(0)} of the finite critical
point 0 of p.(2) is bounded and can be written more precisely as

M= fjl{d 2(0)] < 2},

On the other hand, the Mandelbrot set is the set of those values ¢ such that the correspond-
ing Julia set J, of p.(z) is connected. Further, for the value ¢ of C — M, the corresponding
Julia set J. is totally disconnected.
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The similar situation occurs in the case of those polynomials with one finite critical point.
The investigation of the Mandelbrot set of p.,(z) = 2™ + ¢ is given in [4] along this line.
In the case of those polynomials with two or more finite critical points, the situation is
much more complicated. In this paper, we consider the polynomial g.(z) = cz(3 — 2%) + 1
with two finite critical points 1 and —1. In §2, we define the Mandelbrot set M of g.(z)
as the intersction of the sets M; and M_; which are the sets of those values ¢ such that
the iteration sequences {q%(1)} and {¢%(—1)} of the finite critical points 1 and —1 of g.(z)
are bounded respectively. We shall also give the computer graphics of My, M_; and M.
In §3, we shall investigate the Julia set J. of g.(2). We shall give the computer graphic of
the Julia set Ji.0.1; which is disconnected, but is not totally disconnected. Finally, in §4,
we shall give some problems left open.

§2. The Mandelbrot set of g.(z).

Let g.(z) = cz(83—22%) +1 be the cubic polynomial of a complex parameter c¢. The critical
points of g.(z) are given by the equation ¢.(z) = 3¢(1 — 2%) = 0, and are 1 and —1. We
define the sets My and M_; as the sets of those values ¢ such that the iteration sequences
{g?(1)} and {g?(—1)} are bounded respectively. That is,

My =C —{c| lim g¥(1) = oo}

and .
M_;=C-{c |nh_1;§o gy (—1) = co}.

As in the case of the Mandelbrot set M of p.(z), we have the following precise represen-
tations of My and M_;.

Theorem 1. M; and M_; are closed sets contained in the disk {|c| < g} and can be

written as
< 2
My = {cuq?(l)!g. —+s}
n=1 lc]
and

M= { [CENENE b

where ¢ = 0 is considered to be contained in M; and M_;.

Proof. We prove the theorem in the case of Mj. Let c be the value satisfying |c| > g

Setting |c| = 1;— + 6 (6 > 0), we have

, 3
g:(1)] = 20+ 1] 2 2le] 1> 2+ 25

Further, by induction, we have

a\ "N
ewl>2+(3) &
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3
Therefore, ¢ ¢ M; and M; C {!CI < 5}~

2 2
Next, let ¢ be the value satisfying |g7(1)| > 1/1 | + 3. Setting |¢2(1)| = ”H +3+4+94

(6 > 0), we have

It (D] = e (){3— (1)} +1]
> el )|(gr(1)* - 38) - 1

2
o] ( +3+ 5> —1
Vel | lc]
2
— + 3+ 26.
Vlel
Proceding by induction, we have

gk ()] > 1/ +3+2’“5

Therefore, ¢ ¢ M; and M; C {c [gH(1)] < I_I +3 } This inclusion is valid for all

V

\Y

prositive integers n, so that we have

wc Qi feneoisFs ).

n=1

Since the converse inclusion is obvious, we obtain

M, = fjl{cuqsans. %+3}.

We can see that M is closed, as the intersection of the closed sets is also closed.
The case is the same for M_; and we obtain the theorem. Q.E.D.

Theorem 1 sugests a simple algorithm to give the computer graphics of M; and M_;.
The following graphics are those given by this algorithm.

M; (|Rec| < 2,|Ime| < 0.5)



M T TEREMERE, %33 5 A, ¥ 10 £, Vol.33-A, Mar. 1998

M_; (|JRec| < 2,|Ime| < 0.5)

According to the computer graphic of M;, the number of the connected components of
M, seems to be two. But by magnifying this graphic, we can see that there exist many
other connected components of M;.

The 2-cycles of M are given by the equation

(2¢+1)(2¢* + 2¢— 1) = 0.

And the 3-cycles of M; are given by the equations
2c(2c+1)(2¢* +2c— 1) — 1 =0,
2¢(2c+1)(2¢ + 2 — 1) — 1+ V3 =0,

2c(2c+1)(2¢* + 2c—1) =1 -3 =0.

Among these cycles, we shall give the magnifications of M; near the 2-cycle ¢ = —1.36602 - - -
and the 3-cycle ¢ = —1.490597 - - -.

Ii
|
|
L

magnification of M; magnification of M;
(|Rec + 1.36602| < 0.005, |Imc| < 0.0025) (|Rec + 1.490597| < 0.00002, [Imc| < 0.00001)

Continuing this process, we can find the sequence of the connected components of M;

3 = c o o
tending to the point ¢ = —5 Therefore C' — M; is of infinite connectivity. The case is the

same for M_,.
The Mandelbrot set of g.(z) is to be defined as the set of those values ¢ such that the
Julia set J; of g.(z) is connected. Therefore, we define the Mandelbrot set M of g.(z) by

MZMlﬂM_l.

The computer graphic of M and the magnification of M near the point ¢ = 0.295740.2369 §
are the following.
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M magnification of M
(|Rec| < 1,|Imc| £ 0.5) (JRec — (0.2957 + 0.23697)| < 0.005, |Imc| < 0.0025)

3
Accoding to Theorem 1, M is contained in the disk {|¢| < 5} M is also consider to be
disconnected, which is contrary to the case of the Mandelbrot set M of p,(z) = 2% + c.

§3. The Julia set of ¢.(z).

Let H be the set of values c such that there exists an attracting or super-attracting fixed
point of g.(z). Concerning H, we have the following theorem.
Theorem 2. H is a domain bounded by the algebraic curves and is represented by

H= {c | dc® — 42 + (83X + 20)c— AA —1)2 = 0, )| < %}
Proof. According to the conditions on H, we have
() =cz(83-2)+1=2

and
|d.(2)] = |3c(1 - 2%)| < 1.

1

T oo Therefore, from these equations, we have

Setting A = ¢(1 — 2?), we have z =
4¢3 — 4 + (=30 + 20 )e— AA = 1)2 =0

and || < % QED.

The computer graphic of H is shown in the following.

H (|Rec| < 2, |Im¢| < 0.5)
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We can see that H is the union of the component of the interior of M containing ¢ = 0
and the component of the interior of M_; containing ¢ = 1.

The point ¢ = 1 is contained in M_; and is not contained in M. So that, the Julia set
Ji of ¢1(2) = 2(3 — 2%) + 1 is disconnected but is not totally disconnected. We give the
computer graphic of 7;10.1; which shows the fructal structure of Julia sets much better.

Jito.16 (|Rec| < 2,|Ime| < 0.5)
§4. Problems.

The investigation of the Mandelbrot set of g.(z) = cz(3 — 22) + 1 in §2 and §3 leads us
to some problems left open. Among these problems, we give the following two problems.

(1) Does the set M have uncountably many connected components?

(2) How can one expain on the semi-fractal sets appearing in the magnification of M?
Both problems seem to be difficult.
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