橋本有司 · 永谷 彬

The Mandelbrot set of $w = z^{2}+c$ is well-known. The purpose of this paper is to investigate the properties of the Mandelbrot set M_n of $w = z^n+c$ for n = 3, 4, 5, ---. As a consequence, we shall see that the shape of M_n is very close to the closed unit disc for sufficiently large n. Further, we shall give the explicit formulas for the 2-cycles of M_n and the 3-cycles of M_2 .

§1. The Mandelbrot set M_n . Let $w = P_{c,n}(z) = z^n + c$ be a complex-valued function of a complex variable z with some complex constant c and with some integer $n \ge 2$. We consider the iteration of $w = P_{c,n}(z)$ and denote the k-th iterate of $w = P_{c,n}(z)$ by $w = P_{c,n}^k(z)$. The Mandelbrot set M_n of $w = P_{c,n}(z)$ is the set of values of c's for which the sequence $\{P_{c,n}^k(0)\}$ $(k=1, 2, 3, \dots)$ is bounded, that is, $M_n = \{c \mid |P_{c,n}^k(0)| \le A_{c,n}, k=1, 2, 3, \dots\}$, where $A_{c,n}$ is a constant depending on c and n.

Theorem 1. Setting $L_{n, k} = \{c \mid |P_{o, n}^{k}(0)| \leq n^{-1}\sqrt{2}\}$, then, $L_{n, 1} \supset L_{n, 2} \supset L_{n, 3} \supset \cdots$, and we have $\mathbb{M}_{n} = \bigcap_{k=1}^{\infty} L_{n, k}$.

Proof. First, suppose $|P_{c,n}(0)| = |c| > n^{-1}\sqrt{2}$, then, we have

 $|P_{c,n^2}(0)| = |c^n+c| \ge |c|^{n-}|c| \ge |c|(|c|^{n-1}-1),$

and by induction,

 $|P_{c,n}^{k}(0)| \ge |c| (|c|^{n-1}-1)^{n^{k-2}+\dots+n+1}.$

From these inequalities, we see that if $c \notin L_{n, 1}$, then $c \notin L_{n, 2}$, $L_{n, 3}$, \cdots as $|P_{c, n}^{k}(0)| > n^{-1}\sqrt{2}$ for $k=2, 3, \cdots$ and $c \notin M_{n}$ as $|P_{c, n}^{k}(0)| \rightarrow \infty$ ($k\rightarrow\infty$). Therefore, we have $L_{n, 1} \supset L_{n, 2}$, $L_{n, 3}$, \cdots and $L_{n, 1} \supset M_{n}$.

Next, suppose $|P_{c,n}^{k}(0)|^{n-1}\sqrt{2}$, that is, $c \notin L_{n,k}$. If $|c|^{n-1}\sqrt{2}$, we have already seen that $c \notin L_{n,k+1}, L_{n,k+2}, \dots$ and $c \notin M_{n}$. If $|c| \leq n^{-1}\sqrt{2}$, setting $|P_{c,n}(0)| = h$, we have

 $|P_{c,n}^{k+1}(0)| = |\{P_{c,n}^{k}(0)\}^{n} + c| \ge |P_{c,n}^{k}(0)|^{n} - |c| \ge h^{n} - h \ge h (h^{n-1} - 1),$

and in a similar way,

 $|P_{c,n}^{k+s}(0)| \ge h (h^{n-1}-1)^{n^{s-1}+\dots+n+1},$

This implies that if $c \in L_{n, k}$, then $c \in L_{n, k+1}$, $L_{n, k+2}$, \cdots as $|P_{c, n}^{k+s}(0)| > n^{-1}\sqrt{2}$ for s=1, 2, \cdots and $c \in M_n$ as $|P_{c, n}^{k+s}(0)| \to \infty$ ($s \to \infty$). Therefore, we have $L_{n, k} \supset L_{n, k+1}$, $L_{n, k+2}$, \cdots and $L_{n, k} \supset M_n$.

Hence, we have $L_{n, 1} \supset L_{n, 2} \supset L_{n, 3} \supset \cdots$ and $M_n \subset \bigcap_{k=1}^{n} L_{n, k}$. As $M_n \supset \bigcap_{k=1}^{n} L_{n, k}$ is trivial, we obtain Q. E. D.

the theorem.

According to Theorem 1. M_n is the intersection of the closed subsets of the complex plain C bounded by $n^{-1}\sqrt{2}$, so that, M_n is also the closed subset of C bounded by $n^{-1}\sqrt{2}$. Further, if $C - M_n$ contains a bounded component, some $C - L_{n, k}$ also contains a bounded component, which is a contradiction by the maximum principle. Therefore, $C - M_n$ contains no bounded components and M_n is simply connected. Later, we shall see that M_n consists of only one component. We shall give the pictures of M_2 , M_3 and M_{64} by using the computor graphics.

§2. The main component of the interior of M_n . The interior of the Mandelbrot set M_n consists of infinitely many components. Among these components, we denote the largest one containing c = 0 by W_n .

On the other hand, we consider the set of those c's for which the fixed point of $w = z^n + c$ has its multiplier λ satisfying $|\lambda| < 1$. We call this set the attracting cycles of $w = z^n + c$ and denote it by $D_{n, 1}$. Let α be the fixed point, then, we have $\alpha^{n}+c=\alpha$ and $n\alpha^{n-1}=\lambda$ with $|\lambda|<1$. Therefore, we have $D_{n,1} = \{c \mid c = \alpha - a^n, |a| < \frac{1}{n-1\sqrt{n}}\}$.

Theorem 2. $D_{n,1} = W_n$.

Proof. First, we shall prove $D_{n, 1} \in M_n$. Let c be the point of $D_{n, 1}$. If $c \notin M_n$, then, we have $|P_{c,n}^{k}(0)| \to \infty$ (k $\to \infty$) for the critical point z=0 of w=zⁿ+c. Therefore, the Julia set of w=zⁿ+c is totally disconnected. On the other hand, the fixed point of $w = z^{n}+c$ is attracting, so that the Julia set of $w = z^{n}+c$ is the boundary of the basin of attraction around the fixed point. This is a contradiction, and we have $c \in M_n$.

Next, we shall prove $D_{n,1}=W_n$. $D_{n,1}\subset W_n$ is trivial. Now, suppose there exists a point c of $\mathbb{W}_n - \overline{\mathbb{D}}_{n,-1}$, where $\overline{\mathbb{D}}_{n,-1}$ is the closure of $\mathbb{D}_{n,-1}$ in C. Then, as $c \in \mathbb{W}_n \subset \mathbb{M}_n$, the sequence $\{P_{c,n} \in \mathbb{W}_n\}$ (k=1,2,3,....), which are the functions of c, is uniformly bounded, so that, the subsequence of $\{P_{c,n}^{k}(0)\}\$ converges uniformly to the function $\phi_{n}(c)$ which is the fixed point of $w = z^{n} + c$. On the other hand, as $c \in \overline{D}_{n,1}$, this fixed point is repelling. Therefore, we have $P_{c,n}(0) = \phi_n(c)$ for some sufficiently large k. The values of c's satisfying these equations are countable. This is a contrdiction, and we have $D_{n, 1} = W_n$. Q. E. D.

According to Theorem 2, we see that the sequence of functions $\{P_{o,n}(0)\}$ of c converges in $D_{n,1}$ to the function $\phi_n(c)$ which is the branch of the algebraic function $\phi_n(c)^{n-\phi_n}(c)+c=0$ satisfying $\phi_n(0)=0$.

Further, combining Theorem 1 and Theorem 2, we obtain the following theorem.

Theorem 3. The boundary of M_n is contained in the closed set $\{c \mid \frac{1}{n^{-1}\sqrt{n}} (1 - \frac{1}{n}) \leq c \leq n^{-1}\sqrt{2}\}$, for which the equalites $\lim_{n \to \infty} \frac{1}{n^{-1}\sqrt{n}} (1 - \frac{1}{n}) = 1$ and $\lim_{n \to \infty} n^{-1}\sqrt{2} = 1$ are satisfied.

§3. The attracting cycles of M_n . We further investigate the set of values of c's for which the fixed point of $w = P_{\alpha, n}^{k}(z)$ has its multiplier λ satisfying $|\lambda| < 1$. We call this set the attracting k-cycles of $w = z^{n}+c$ and denote it by $D_{n, k}$. Let α be the fixed point, then, we have $P_{\alpha, n}^{k}(\alpha) = \alpha$ and $n^{k} \{P_{\alpha, n}^{k-1}(\alpha) \cdots P_{\alpha, n}(\alpha)\alpha\}^{n-1} = \lambda$ with $|\lambda| < 1$. But, it is difficult to give the explicit formula for $D_{n, k}$ from these equations. Here, we shall give the explicit formulas for $D_{n, k}$ in the case of k=2 and in the case of k=3 and n=2.

In the case of k=2, instead of these equations, we consider the following equations.

 $\alpha^{n}+c=\beta, \quad \beta^{n}+c=\alpha, \quad \alpha\neq\beta, \quad n^{2}\alpha^{n-1}\beta^{n-1}=\lambda, \quad |\lambda|<1.$

From these equations, setting $\alpha+\beta=\xi$, $\alpha\beta=\eta$, we have the following explicit formula for $D_{n,2}$.

Theorem 4. $D_{n, 2} = \{ c \mid \begin{pmatrix} c \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & \eta \\ -1 & \xi \end{pmatrix}^{n-2} \begin{pmatrix} \eta \\ \xi \end{pmatrix} + \begin{pmatrix} \xi \\ 1 \end{pmatrix}, \quad |\eta| < \frac{1}{n-1\sqrt{n^2}} \}.$

According to this formula, we have

$$D_{2,2} = \{c \mid c=\eta+\xi, \xi+1=0, |\eta| < \frac{1}{4}\} = \{c \mid |c+1| < \frac{1}{4}\},\$$

which is the open disc of radius $\frac{1}{4}$ with its center c=-1. And also by this formula, we have

$$D_{3,2} = \{c \mid c = \eta \, \xi + \xi, \ \xi^2 - \eta + 1 = 0, \ |\eta| < \frac{1}{3} \} = \{c \mid c = \sqrt{\eta - 1} (\eta + 1), \ |\eta| < \frac{1}{3} \},$$

which is the domain inside the curve $c = \frac{1}{3\sqrt{3}}\sqrt{e^{i\theta/2}-3} (e^{i\theta/2}+3)$.

We remark that the sequence of functions $\{P_{c,n}^{2k}(0)\}$ $(k = 1, 2, 3, \dots)$ of c converges in $D_{n,2}$ to the function $\phi_n(c)$ which is the branch of the algebraic function $\{\phi_n(c)^n+c\}^n - \phi_n(c) + c = 0$ satisfying $\phi_n(0)=0$, and that the sequence of functions $\{P_{c,n}^{2k+1}(0)\}$ $(k=1, 2, 3, \dots)$ of c converges in $D_{n,2}$ to the function $\phi_n(c)^n+c$.

In the case of k=3, the equations are far complicated. We can give the explicit formula only for $D_{2,-3}$. In this case, we consider the following equations.

 $\alpha^2 + c = \beta$, $\beta^2 + c = \gamma$, $\gamma^2 + c = \alpha$, $\alpha \neq \beta$, $8\alpha\beta\gamma = \lambda$, $|\lambda| < 1$.

From these equations, setting $\alpha\beta\gamma = \eta$, we have the following explicit formula for D_{2, 3}.

$$D_{2,3} = \{ c \mid c^{3} + 2c^{2} + (1 - \eta)c + (1 - \eta)^{2} = 0, \quad |\eta| < \frac{1}{2} \}.$$

This is the domain consisting of three components of the interior of the Mandelbrot set M₂. One is located on the main antenna of M₂, and the other two are tangent to the main component W₂ at $c = -\frac{1}{8} \pm \frac{3\sqrt{3}}{8}i$. These latter two components are the image of the algebraic function c of η , so that, they are not the open discs.

We shall give the pictures of $D_{2, 1} \cup D_{2, 2} \cup D_{2, 4}$, $D_{3, 1} \cup D_{3, 2}$ and $D_{64, 1}$ in the following.

D_{3.1} U D_{3,2}

D_{64,1}

According to [2], each component of $D_{2, k}$ is conformally equivalent to the open unit disc. It is not known that all the components of the interior of M_2 coinside with all the cycles.

§4. The Green's function of $\hat{C} - M_n$. We consider the function $\phi_{n, k}(c) = {}^{n^k} \sqrt{P_{c, n}{}^{k+1}(0)}$. This is a well-defined, single-valued analytic function in $C-L_{n, k}$ and maps $C-L_{n, k}$ conformally onto $C - \{c \mid |c| \leq {}^{n^k} (n-1)\sqrt{2}\}$. Therefore, the limitting function $\phi_n(c) = \lim_{k \to \infty} {}^{n^k} \sqrt{P_{c, n}{}^{k+1}(0)}$ maps $C-M_n$ conformally onto $C - \{c \mid |c| \leq 1\}$. This shows $\hat{C} - M_n$, where \hat{C} is the extended complex plain, is symply connected and we see that M_n is connected.

According to the above consideration, the Green's function of $\hat{C} - M_n$ with its pole at ∞ is given by $G_n(c, \infty, \hat{C} - M_n) = \log |\phi_n(c)| = \lim_{k \to \infty} n^{-k} \log |P_{\alpha, n}^{k+1}(0)|$. Here, we can rewrite $\phi_n(c)$ as $\psi_n(c) = c_k \prod_{n=1}^{\infty} (1 + \frac{C}{P_{\alpha, n}^{k}(0)})^{\frac{1}{n^k}}$, so that, we have $G_n(c, \infty, \hat{C} - M_n) = \log |\phi_n(c)| = \log |c| + o(1)$. Therefore, the Robin constant of M_n is equal to 0, and the logarithmic capacity of M_n is equal to 1. Considering the results in §1, we obtain the following theorem concerning M_n .

Theorem 5. The Mandelbrot set M_n of $w = z^n + c$ is a connected and simply connected clsed set in C bounded by $n^{-1}\sqrt{2}$ with its logarithmic capacity equal to 1.

REFERENCES

- [1] L.Carleson and T.W.Gamelin : Complex dynamics, Springer-Verlag, 1993.
- [2] A. Douady and J. H. Hubbard : Itération des polynômes quadratiques complexes, C. R. Acad. Sci, Paris, 294, 123-126, 1982.
- [3] H. Serizawa : Complex numbers and fractals(in Japanese), Tokyo Tosho, 1995.
- [4] N. Steinmetz : Rational iteration, de Gruyter, 1993.

(Received Mar. 20. 1995)