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On the regularity of function-kernels and the behavior of potentials
in a neighborhood of the point at infinity

Dedicated to Professor Mitsuru NAKAI on the occasion of his 60th birthday
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Abstract.

Let G be a symmetric and continuous function-kernels on a locally compact Hausdorff space X and ¢ be
the point at infinity.

In this paper, first we define the several notions of thinness of a closed set at infinity ¢ and investigate the
mutual relations among them.

For a non-negative G-superharmonic function #, we denote by Ry¥°(x) the G-reduced function of « to .
A kernel G satisfying the domination principle is said to be regular when we have R¥ °(Gu)x)=0 G-nearly
everywhere on X for the potential Gu of any positive mesure x with compact support.

The regularity of kernels plays an important role in the theory of Hunt kernels.

The purpose of this paper is to characterize the regularity of function-kernels by the behavior of potentials
in a neighborhood of infinity ¢.

We shall prove that a continuous function-kernel G is regular if and only if, for every mesure x with finite
G-energy, the potential Gu is equal to 0 G-quasi-everywhere at infinity ¢ under the assumption that G

satisfies the complete maximum principle.

1. Preliminaries

Let X be a locally compact Hausdorff space with countable basis. A non-negative function G=
G(x, y) on X X X is called a continuous function-kernel on X if G(x, y) is continuous in the extended
sense on X X X, finite except for the diagonal set of X X X and 0 < G(x, x)=< +oo for any x&X. The
kernel G defined by G(x, y)= G(y, x) is called the adjoint kernel of G.

We dengte by M the set of all positive measures on X. The potential Gu(x) and the adjoint
potential Gu(x) of &M are defined by

Gu@)= /G, )du(x) and  Gulx)= /Gulx)du(x)
respectively.
The G-energy of | x|l of x €M is defines by |l x Il 2= / Gu(x)du(x).
Put

={uEM ; support Su of u is compact},
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Ea(G):{IJEMo ’ ” M “ <+OO},
FAG)={uEE,(G) ;Gu(x) is finite and continuous on X }.

A Borel measurable set B is said to be G-negligible if x(B)=0 for every u&E,(G). We say that
a property holds G-nearly everywhere on a subset A of X (written symply G-n.e. on A), when it
holds on A except for a G-negligible set.

A non-negative lower semi-contionuous function #(x)<-+co G-n.e. on X is said to be G-
superharmonic when for any u<E,(G), the inequality Gu(x)<u(x) G-n.e. on Sy implies the same
inequality on the whole space X.

We denote by S(G) the totality of G-superharmonic functions on X and by Puy(G)(resp. Pe,(G))
the totality of G-potentials of mesures in M,(G)(resp. Eo(G)).

The potential throretic principles are stated as follows.

(1) We say that G satisfies the domination principle and write symply G <G when Pu,(G)CS(G).

(IT) We say that G satisfies the maximum principle when 1 & S(G)

(I) We say that G satisfies the complete maximum principle when, for any non-negative number
a, Pu,(G)U{a}CS(G).

(V) We say that G satisfies the balayage principle if, for any compact set X and any u & M,, there
exists a measure u’ in M,, called a balayaged measure of u on K, supported by K satisfying

Gu'(x)= Gu(x) G-n.e. on K,
Gu’'(x)= Gu(x) on X.

(V) We say that G satisfies the equilibrium principle if, for any compact set K, there exists a
measure y in M,, called an equilibvium measure of K, supported by K satisfying

Gy(x)=1 G-n.e. on K,
Gy(x)=1 on X.

(VI) We say that G satisfies the continuity principle if, for u&M,, the finite continuity of the
restriction of Gu(x) to Sy implies the finite continuity of Gu(x) on the whole space X.

REMARK 1. On the relations between the potential theoretical principles, the following results are
well known.

(1) If a continuous functiong-kernel G satisfies the domination principle, then both G and G satisfiy
the continuity principle(cf. [6]).

(2) For a continuous function-kernel G, the following four statements are equivalent (cf. [6] and
(9 :
(a)g satisfies the domination principle.
(b)G satisfies the domination principle.
(c)Cj satisfies the balayage principle.
(d)G satisfies the balayage principle.
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(3) For a continuous function-kernel G, the following statements are equivalent (cf. [3]and[9]) :
(a)G satisfies the maximum principle.
(b)G satisfies the positive mass principle, namely, for u&E,(G)and v& M,, an inequality G,u )=
Gv(x) on Sy implies the mevquahty Sdu= [dv.
If we suppose further that G satisfies the continuity principle, then (a) and (b) are equivalent to (c) :
(c)G satisfies the equilibrium principle.

(4) Let G be a continuous function-kernel on X. Then G satisfies the complete maximum
principle if and only if G satisfies both the maximum principle and the domination principle (cf. [3]
and[9]).

(5) Suppose that Cv¥ satisfies the continuity principle. Thevn a property holds G-n.e. on a subset A
of X, if and only if it holds u-a.e. on A for every u&F.(G) such that SuCA.

2. Thinness of a closed set at infinity

In this section, we define the several notions of thinness of a closed set at infinity ¢ and compare
these notions. We shall obtain the mutual relations holding among them.

For any compact K and any set A in X, the G-capacity cap,(K) of K and the inner G-capacity
capi, (A) of A are defined respectively by

cap (K)=inf{ fdu ;uEM, Gu(x)=1 G-n. e. on K and SuCK},
cap (A)=sup{cap (K);K is compact contained in A}.

DEFINITION 1. We say that a subset A of X is thin at infinity & in the sense of G-capacity (written
symply G-cap. thin at &) when we have

nf capé(A NCw)=0
[SRS= QO

where Q. denotes the totality of all relatively compact open sets in X.

For a Borel function u and a closed set F, we put
SHG) = { v ES(G) ;v(x) = ulx) G-n.e. on F}.

The G-reduced function of u on F and the G-reduced function of u at infinity & on F are defined
respectively by

inf {v(x) ;v E SHG)) if SHG) +¢
RE@) () = { -

+00 e if SHG) =4,
R @ = 2 Re @)

where we denote by Q. the totality of all relatively compact open sets.
For any closed set F, the subset So(F;G) of S(G) is defined by

S (F;G)= {u & S(G) ; R () (x) =0 G-n.e. on X}.

DEFINITION 2. We say that a closed set F' is G-u-thin at infinity & when u & S,(F;G).
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DEFINITION 3. We say that a closed set F' is G-thin at infinity & when Pu,(G) C S, (F;G).

THEOREM 1. Let G be a symmetric and continuous function-kernel on X satisfying the complete
maximum principle and F be a closed set in X. Suppose that every non-empty open set in X is not
G-negligible. Then the following three statements ave equivalent :

(1) F s G-cap. thin at infinity 6.

(2) (a) F is G-thin at infinity 6, and

(b) capé(F)< + 00,
(3) (c) F is G-1-thin at infinity 6, and
(b) cap [(F)< +co.

For the proof of THEOREM 1, we recall here the following well-known results.

PROPOSITION A (¢f [8]). For a continuous function-kernel G on X satisfying the domination
principle and for a closed set F in X, the following statements are equivalent -

(1) F is G-thin at infinity o.

(2) For every v& F(G), the potential Gv belongs to S,(F;G).

PROPOSITION B (cf. [5]). Let G be a continuous function-kernel on X and u be a G-superharmonic
SJunction on X. We assume that G satisfies the domination principle and that every non-empty open
set in X is not G-ngligible. If a closed set F in X is G-u-thin at infinity S, namely u=S,(F;G), then
there exists a positive mesurve yu’ such that

Su’CF,
Gu’(x) = u(x) G-n.e. on F,
Gu'(x) = ulx) in X.
PROOF OF THEOREM 1. (1)—(2). Suppose that F' is G-cap. thin at 6. The inequality in (b) is an

immediate consequence of the subadditivity of capacity. Therefore it suffices to obtain (a).
Given &> 0, there exists by (1) an open set @, & Qo such that

capé(FﬂCw)<e Jfor every o € Qq satisfying @O w,,.

For any ¢ and v in F¢(G), any compact set K and any @ & Q, such that @ D w,, we denote by
#'rncank @ balayged measure of x4 on the compact set F()Cw (K. Putting M =max Gu(x) and N =
max Gv(x), we have

ngncwnK(Gﬂ)dV: fCM’FﬂCmﬂKdV: fGleu)FﬂCmﬂK
SM LAy rpconx=MN du'sneoqx/ NSMN cap; (FNCw)
=<MNe.

Letting K and w tend to X and e to 0, we obtain (a).
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(2)—(3). Suppose (2). For any v& F:(G) and ¢>0, we can find by (a) an open set w, & Q,
such that

TREN™(Gy) dv < ce for every w EQ, satisfing o D .

Put E={x& X ; Gv(x) = c}. Given a compact K, we denote by yznc,nx an equilibrium measure
of F(1 Cw (N K and by vinenconx @ balayaged measure of v on E(1F(Cw (K. Then we have

TREM™ W dv= S Gyeneoncdv= S Grdysncans
=/t [ -

We shall estimate the last two integrals. First we obtain

fEGydyFﬂCmﬂK = fEGV’EﬂFﬂCmﬂKd’yFﬂCwﬂK
= S dviarnconx = %vadv’ = % ngﬂcw(Gv)dv

é%ce Jor any w € Q, satisfying @D @ .
On the other hand, the second integral is estimated as follows.
S eeGvavenconx=¢ L ad%nconx =C capy, (F).
Thus we have
SRENCNE N dy<e+c capi(F).
Letting @ and K tend to X and & and ¢ to 0, we obtain (c).
(3)—=(1). Suppose (3). F being G-1-thin at &, there exists, by virtue of PROPOSITION B,
an equilibrium measure yy of F.
It follows from (c) that
S REW)dyr=0 for any compact K.
Letting K tend to X, we have
I REMdyr=0.
Therefore, by the aid of (b), we can find, for a given €>0, an open set w, & Q, such that
SREW)dy, <& for any w € Q, satisfying @ O w,.

For any compact K and any @ & Q,, ¥rnc.nx denotes an equilibrium measure of /() Cw (K. For
any @ € Q, such that @ D @, we have

L dyenconr= SREV“Wdyrncopn = /S RE"“ ) dyr<e.
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Since K is arbitrary, we can deduce that F is G-cap. thin at 6.
This completes the proof.

COROLLARY 1. Let G be a symmetric and continuous function-kernel satisfying the complete
maximum principle and F be a closed set. Suppose that capé(F V< +co, Then the following three
statements are equivalent .

(1) F is G-cap. thin at infinity o.

2) F is G-thin at infinity 9.

3) F is G-I-thin at infinity o.

COROLLARY 2. Let G be a symmetric and continuous function-kermel satisfying the complete
maximum principle and F be a closed set. Suppose that F is G-thin at infinity 8. Then F is G-cap.
thin at nfinity & if and only if cap (F)<-+oo.

Next we characterize the G-thinness of a closed set at infinity ¢ by the behavior of potentials in
the neighborhood of &.
We begin with the following lemma.

LEMMA. Let G be a symmetric and continuous function-kernel. Assume that G satisfies the
complete maximum principle. Then, for any mesure u in M, and any positive number c, the
Jfollowing inequality holds

capl{ xE X ; Gulx) = ¢}) < %fd,u.

PROOF. For any compact set K contained in {x € X ; Gu(x) = c}, we denote by y, an
equilibrium measure of K. Then we have

Sdyy é%f@,ud'yl( = %fG'yKd,u = %fd,u.
Since K is arbitrary, we obtain the desired inequality.

THEOREM 2. Let G be a symmetric and continuous function-kernel and F be a closed set.
Suppose that G satisfies the complete maximum principle. Then the following statements ave equivalent :
(1) F is G-thin at infinity J.
(2) For any measure v in M, and any positive number c, the closed set
FN{xeX; Gvix) ¢}
is G-cap. thin at infinity .

PROOF. (1)—(2). Assume that F is G-thin at 6. By virtue of the above lemma, we have, for any
veEM, and any ¢> 0,

capy (FN{xEX; Gu(x) 2c})
< apl (xEX; Gvlw) = ¢ ) £ Lrav<+oo,

F being G-thin at 6, FN{xEX ; Gv(x) = ¢} is also G-thin at 8. Therefore the equivalence
betwee (1) and (2) in THEOREM 1 asserts that the clsed set FN{x € X ; Gv(x) = ¢ } is G-cap. thin
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at d.

(2)—(1). Suppose that, for any v & F(G) and any ¢>0, theset FN{x EX; Gv(x) = ¢ } is G-cap.
thin at S. For the sake of the simplicity of our description, we put £ = {x &EX ; Gv(x) = ¢ }.

It suffices to prove that the equality /S R(F;“(Gy)dv:() holds for every measure u in F.(G).

By our assumption (2), the closed set F(\E is G-cap. thin at . Therefore THEOREM 1 asserts
that FE is G-thin at 6. Hence, given &> 0, there exists an open set w, % Q, satisfying

capé (FNENCw) < & for any @ € Q, such that @ O w,.

For any @ € Q , satisfying @ O w, and compact K, we denote by x’rqc.nx @ balayaged measure
of x on F(N\Cw(\K. Then we have

RN (Gu)dv= 1 Guppconx@v= 1 Gvdu'op o
= [GvdupnconxT S e GVaAL N cons

M / pdirpconxtc [ du

MN capl, (FNENCw)+c [ du

MNe +c [du.

A 1IA

I\

where M =max Gv(x) and N =max Gu(x).
Letting first K and w tend to X and next & and ¢ to 0, we can conclude that F' is G-thin at o.
Thus the proof of theorem is completed.

We close this section by investigating the relations between the G-I-thinness at infinity & and the
existence of an equilibrium measure of a closed set.

THEOREM 3. Let G be a symmetric and continuous function-kernel and F be a closed set.
Suppose that every nowm-empty open set in X is not G-negligible. Then the following statements are
equivalent -

1) F s G-1-thin at infinity 6.

(2) (@) F s G-thin at infinity 6, and

(b) there exists an equilibvium mesure yr of F.

PROOF. (1)—(2). Obviously (1) implies (a). On the other hand, the implication (1)—(b) is an
immediate consequence of PROPOSITION B.
(2)—(1). Supose that (a) and (b) hold. We shall prove that the equality

IREW)dv=0

is valid for every measure v in F.(G).
Given & >0, we can find by (a), an open set w, in Q, satisfying

TRE(Gv)dy < e for every w EQ, such that © D w,.
For any compact K and any open set w & Q, satisfying @ D w,, we denote by ypnc.nx an

equilibrium measure of the compact set F()Cw K.
Then we have



8 B TEREMCHE, $299A, P64, Vol29-A, May.1994

SR Vdv= 1 Gy ppeonxdv
= S Gvdypneonx= JRE(GV)dyznconx

< JRE"(Gr)dy, <e.
Letting K and w tend to X and & to 0, we have
SR (Ddv=0.
This completes the proof.

3. Characterization of the regularity of function-kernels

DEFINTION 4. A continuous function-kernel G on X is said to be regular when the whole space
X is G-thin at infinity 6, that is, the inclusion relation Pu,(G)C So(X;G) is valid.

The regularity of kernels plays an important role in the theory of Hunt kernels (cf. for example
(11, [2], [7] and [10]).

In this section, we shall characterize the regularity of function-kernels by the behavior of
potentials in the neighborhood of infinity &.

REMARK 2. (cf, [4]and[5]). The author has proved in the previous papers that, for a symmetric
and continuous function-kernel G satisfying the domination principle, the following three statements
are equivalent :

(1) G is regular.

(2) G has the so-called dominated convergence property :

{u Voo CM and u,—u vaguely as n—o,

Su, EM, such that Gu,(x) = Guo(x) on X for all n.
—

Gu(x)=I1im inf Gu.(x) G-n.e on X.

n—>c0

(3) G is strongly balayable, namely, for every G-superharmonic function # dominated by a
potential in Pu,(G) and every closed set F, there exists a positive measure y’ such that

Sy’ CF,
Gu'(x)=u(x) G-n.e. on F,
Gu'(x)=u(x) on X.

REMARK 3. Suppose that G is regular. Then, for a closed set F', the following propositions hold
(see COROLLARY 2 and THEOREM 3) :

(1) F is G-cap. thin at infinity & if and only if capi(F)< +oo.

2) F is G-1-thin at infinity S if and only if there exists an equilibrium measure of F.
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DEFINITION 5. Let « be a non-negative function u on X. We say that « s equal to 0 G-quasi-
everywhere at infinity ¢ and write symply #=0 G-g.e. at & when, for any ¢>0, the following
equality holds :

inf capi{xECo;u@x) =c} = 0
w<EQ,

THEOREM 4. For a symmetric and continuous function-kernel G satisfying the complete maxi-
mum principle, the following statements are equivalent :

(1) G is regular.
(2) For every u&EM,, Gu=0 G-q.e. at infinity o.

PROOF. By our definition, G is regular if and only if X is G-thin at infinity &. On the other hand,
Gu=0 G-n.e. at ¢ if and only if, for every ¢>0, the set {x E X ; Gu(x) =c } is G-cap. thin at .
Put F=X in THEOREM 2 and our theorem follows immediately.
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