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Generalized Sampling Theorem
and Approximate Sampling Function

by
Fukuko Yuasa* and Ei Iti Takizawa**

Abstract

Someya-Shannon’s sampling theorem? is generalized so as to include sampled
values and sampled derivatives. The sampling function can be chosen from many kinds
of continuous functions, which are very similar to the delta-function with narrow breadth
and low feet at both sides of the main peak. Several examples of the sampling functions
are given. For an approximation of the sampling formulae, a proposal is made to use
other kinds of sampling functions of character very similar to the delta function.

§ 1. Preliminaries

A generalized sampling theorem was presented by one of the authors, Takizawa
which can be conveniently applied to construct the generakized interpolation
formulae®~'? in the fields of physics'®!® and engineering.

The present authors wish to discuss the structure of the generalized sampling
theorem!”~2® and to make some comments to the generalized sampling functions. The
sampling functions used here are very similar to the delta-function with narrow breadth
at both sides of the main peak.

In practical application, one can make use of such ¢-function-like continuous func-
tions. The detailed examples of the approximate sampling functions shall be proposed
in§7.

24)
’

§ 2. Generalized Sampling Theorem
At first, we shall write the generalized sampling theorem?®. It reads:

Theorem I (Generalized Sampling Theorem)!”~2%28
An entire function f (Z) can be expressed by :

7 k=0 =0 7! k! (z— z,)™1
m; S . .
RIS A HE s @)
= nSZOj=O ]' (S_])' (Z Zn) (Z—zn)”‘"“
~ Zn)” d* 9(2)
(z sz!) (= {f(2) - H(z,z,,)}]hzﬂ.(_z___zn)_mn;l_ ,

n =0

(2-1)

where the series in the right-hand side of (2-1) converges uniformly in any bounded closed
domain in the complex z-plane, if the following conditions are satisfied:
(I) f(z) and g(z) are entire, (2—2)
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(IT) g(z) has zeros of (m,-+1)-th order at point z=z, (n=integer), i.e.

9(z2n)=g(zn)=g"(zn)=...=g"™ (2, )= 0, and g™ (z,)%* 0, (2-3)

for m, non-negative integer, which depands on z,, and

(m) lim 2

e I (2—4)

Here, for the sake of brevity, we write:

k
f5 =( jzk f(2))z=ze + (k=0,1,2,..) :sampled values and sampled derivatives
3
gl('lk) :[ dzk g(z)]Z=Zn ’ (lf: 0 ) ]- ’ 2 y)
e ;
| ,C, ) 0
k —1 ’ In ’
HP :[ jk H(Z,Zn)]z=2n = ( 7 ) h:n : : 5
z n hﬁ{‘“” .h(nk—z) Jie®
o #-1C1 7 , x-1C2 W 1
(k) (k—1) k—2)
thn’: +C1 hnhn s «C2 h(nhn ) veor kCr Z:
and
n =( dz—kh(z,zn)]z=zn - (k=0,1,2,..)
The summation in (2-1) is taken over all the points z=z, (n=integer). The function
oz = i = 92 , (2-6)

H(zz,)  (z— 2™

is called as a generalized sampling function, and points z=z, as sampling points. The
expression (2-1) shall be called as a generalized sampling formula.

The proof of theorem I is straightforward. Under the conditions (I) and (II), the
function f(z)/g(z) is meromorphic in the complex z-plane. It has poles of (m,+1)-th
orderat points z=z,.By means of the Cauchy theorem, the function f(z)/g(z) can be
expressed by a contour-integration along a circle of radius R with center at the origin,
including poles of f(z)/g(z) in the circle |z|=R. If one takes the radius R to be infinitely
large, then the contour-integration vanishes under the condition (III), and one has merely
to calculate residues at points z=z,. After calculating the summe of the residues, one
multiplies g(z) to both sides of the expression thus obtained, and proves theorem I . (cf.

Fig.1)
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Fig.1. Poles of f(z)/g(z) and integration contour C

§ 3. Special Cases of Theorem I
If all the m, are the same, one writes m instead of m,, and one obtains the following

Theorem II.
Theorem II Under the conditions (I), (IT), and (III), we have:
m S p
_ £ H s g(2)
flz)= ZZ Z il e TGN e . (-1

for m which denotes the same value of all the m,.
From Theorem II we obtain the following :

Theorem III If an entire function g(z) satisfies the conditions (I)~(III) and g(z) can
be expanded into the Taylor series as follows:

©

g(Z)zAmH . (Z_Zn)m+l+ZA2m+1+S ) (Z ‘Zn)2m+l+s ) (Am+1:f: 0)

s=1

then expression (3-1) is reduced to :

f(Z): z Z fr(lj) . ‘(Z _Zn)s . 1 . g(Z) . (3 o 2)

sl gglm-v-l) (Z_Zn)mﬂ
(m+1)!

§ 4. Sampling Formula for small m
a) If all the poles of f(z)/g(z) are simple poles (i.e. m=0) at all the sampling points
Z,, then expression (2-1) is simplified and we obtain a sampling formulaZ?®:

R e - (4-1)

(2 —2n) *gn

b) If all the poles of f(z)/g(z) are of 2nd order (i.e. m=1) at all z,, then expression (2-1)
leads to a sampling formula containing sampled values f, and sampled derivatives f; of
first order:
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B Ny Loog® o 219(2) )
f(z)_g[fn‘F(Z zn) { /% 3 In @ 1 (z—2n)% - g2 (4—-2)

¢) If all the poles of f(z)/g(z) are of 3rd order (i.e. m=2) at points z,, then we obtain
sampling formula taking sampled heights f, and sampled derivatives f; and fj into
account:

(4)
A)=F otz —a) (5 —he S5} 45 G =2 U = s Lt

’f’i‘fn [4i( g5 2 — 1 g ]}] 31-g(2)

2 g 5 g (z—20)% g

(4-3)

d) In case of m>0, it is practically convenient to take
g(z)=¢™"(2), (4—-4)
where y(z) is an entire function which has merely simple zeros at all the sampling points
z=1z,. S0, the sampling formula is expressed as follows:

S . .
f’(lJ) H;[s—J) wmﬂ(z)

f(z)= - __~——'(Z_Z")S o \ymel

ZSZOJEO ]' (S ])' (Z Zn) (4_5 )
where H,® ’s are given in (2-5), with
hn=g,™*V/(m~+ 1= (y"n)"*, (4—-6)
and

(r) — 7’—'_ . Alm+147)
& (m+1+7)! gn
. , 1., 1o\
=) IR (T )
pP+a+ut..=m+1 : '
 P+2Q4BUb.=mAL+T (4 - 7)

Here the present authors want to emphasize that the sampling formulae above
mentioned can be conveniently applied as interpolation formulae, while these formulae
are not very useful as extrapolation formulae, when one truncates the sampling expan-
sion. Because individual term in the series plays equally a role and one can not simply
ignore certain number of terms in the expansion.

§ 5. Detailed Examples of the Generalized Sampling Formula for m=0
For m=0, formula (4-1) can be applied.
a) One takes an orthogonal system of polynomials in the domain a<z=bh:

(B@k=1,2.3 ... [0(2)¢n(2)ba(2)dz=0ma) (5-1)

a

with a polynomial ¢(z) of s-th degree, and density fumction w(z). From (4-1) and taking
g(z) as ¢s(z), one can obtain an approximation formula 1(2) for f(z):

2—2n) * ¢'s(zn)

A=Y fan) oD : (5-2)

This formula relates to GauB’ quadratur formula and Christoffel’s number, if we consider
an integral'®:
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b

[ w@ i

a

b) In order to obtain Lagrangean formula, one takes
S
9(2) =11 (z—z4), ,
k=1

and obtain an approximate formula f(z):

f@)= ) fa) - Lala)

with
S Z— 2K
Lu(z)= II ——— ,
k=1,k#n Zn— Rk
and

Li(zp)= Snp- (1=p=s)
¢) One takes a Chebyshev’s polynomial:
g(z)=cos (a arccos f8z), (a=positive integer and B+0)
and obtain an approximate formula 1(z) :

cos(a arccos (z)

A=t N1 ) - TR -

with
cos (a arccos f£z,)=0,,
ie.
Bz.=cos {@n+1)z/2a} . (n=integer)
d) One takes
g(z)=sin(az+f), (a, f=const, a+0)
and obtain Someya-Shannon’s sampling formula

foy= Y sk, smlestfonn L ar0)

Nn=-—oo

Shannon’s formulaV? corresponds to (5-12) when @ =1 and B3=0.
e) As for other examples, we can take:
i) g(z)=z sin(az), (a #0)
i) gz)=az sin(az)—Acos(az), (¢ A#+0)
iii) g(z)=az cos(az)—Bsin(«z), (af +0)
iv) g(z)=J(az), (v=integers, a+0)
v) g(z)=az](az)+hl(az), (v=integers, «h#0)
vi) g(z)="T(az, Bz), (v=integers, af+0)
with
T(x, v)=N&)Ly)—Lx)N(y), (v=integers, x>0, and y>0)
where J(z) and Ni(z) are Bessel and Neumann functions, respectively.
An example of the formula for g(z)=]J,(az) is given by Wheelon?”.
vii) Mathieu functions: cen(z) and seq(z),
vii) Inverted Gamma function, 1/T(z),
etc.

(5-3)
(5—4)
(5—5)
(5—6)
(6—17)
(5—18)
(5-9)
(5—10)
(5 -11)
(5—12)
(5—13)
(5—14)
(5—15)
(5 —16)
(5—17)
(5-—18)
(5—19)
(5—20)
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§ 6. Sampling Formula for m=1

For the case m=1 or m=2, we can take in (4-4) squared functions or cubic functions
of g(z) expressed in (5-1), (5-3), (5-7), (5-11), and (5-13) ~ (5-20), and obtain sampling
formulae including sampled function and sampled higher order derivatives by means of
(4-2) or (4-3). The detailed expression of the sampling formulae we shall omit here.
§ 7. Approximate Sampling Formula

If we restrict ourselves to the case m=0 and want to have some approximate
sampling formulae, we may use a sampling function, which is very similar to the delta
function having narrow breadth and low feet at both sides of the main peak. This idea
is essentially based on the sampling theorems cited above, but the method provided here
is rather of approximation. In spite of this, it may be useful in the practical approxima-
tion of sampling formula.

Hitherto we used sampling functions, which are of height unity at the main peak and
have narrow breadth and low feet at both sides of the main peak, such as

9(2)
(z—zn) * 9" (2n)

with g(z,)=0 (n=integer), and function g(z) having simple zeros at points z=z,.
If one has interest, one can choose as g(z) in (4-1) the following functions:?¥

Now we shall propose to make an approximate sampling formula.?® At first, we
shall refer the following formula:

+o0

&= [ f@)-oe-e-d (7-1)

and approximate the right-hand side of (7-1), by replacing integration by summation and
by taking A(z-z,) instead of delta-function. F ormally the expresion (7-1) becomes to be:

£@)= ) f(an) - Alz=20) , (7-2)

where sampling function A(z-z,) is a continuous function of z, with main peak at points
z=1z, (n=integer), having low feet which extend to both sides of the main peak and
vanishing at |z| — +oo. The sampling formula (7-2) corresponds to (4-1).

For example, we can take:

—_ 2m
A(z—zn) =exp(— %] , (m=npositive integer, and 6>0) (7—3)
A(z—zn) ®sech™(z— zn) , (m=positive integer) (7—4)
A(z— z,) =Soliton-like functions, with 4(0)=1 for z=zx (7-5)
Az—2zn)= 1/ (a tan? {B(z—2n)}+ 1),(a,B=const) (7—6)
and
A(z—2z,) = unit function with small breadth, etc. 7-7
The approximate sampling formula (7-2) gives new formulae, by making use of (7-3)
~(7-7) etc.

§ 8. Numerical Examples
In practical applications, we are to take a truncated sampling fermulae (4-1)~(4-3),
i. e. we are to make sampling at a finite number of sampling points. Here in § 8 we shall
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show some numerical examples of such truncated sampling formulae (4-1)~(4-3) as well

as truncated formula (7-2).
In Figs. 2~10, a function f(z)=sin (2z) is sampled by means of g(z) used in (4-1)
~(4-3). m=0,1, or 2, indicates that the zeros of g(z) are of 1st, 2nd, or 3rd order,
respectdvely. ®(z) is a calculated function making use of truncated formulae (4-1)~(4-3),
being sampled at 6 points, which are marked with with small black circles “®”. We can
see that the truncated sampling formulae (4-1)~(4-3) are very useful for interpolation
formulae. While they are not so convenient for extrapolation formulae in the region at

the outside of the sampling interval.

9(2)= /}i(z—%n)z

m=1
m= 0 9(z)= kl§=11<z—%7r> o 6 points f(z)=sin(2z)
£(2) 6 points F(z)=sin(2z2) 152
1.0 '
?(2)
0.5 0.5
[
\ . e
0 I T 0 7 ‘
2 2
o(2) —05
Fig.3.
Fig.2.
3
o) "=2  g=]1(-£ -
Jf( ) 6 points 9 "131(2 6 7T> flz) m=0 !I(Z)=Sin(32)';ﬁ1<z_ e
z f(2)=sin(22) 6 points A)=si )
1.0 f\ 10 : 2)=sin(2z)
0.5 0.5
(1/)(2)
5 = - z 5 — ; z
2 2 0(2)
—05 o2 ~05

Fig.4.

Fig.5.

g
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Az " ! 9(a)=sin*(62) m=2 9(2)=sin®(62)
6 points f(z)=sin(2z) f(2) 6 points  f(2)=sin(22)
1.0 1.0
0.5 0.5
(0]
(z)& 002 (2
) e
0 T T “ 0 x z z
o ?(2) 2
—0.5 —0.5
—1.0 —1.0
Fig.6. Fig.7.
m=0 9(2)= z sin(Bz)— A cos(8z) m=0 9(2)=T14(82)
(2) 6 points f(2)=sin(22) 2) 6 points f(z)=sin(2z)
p=6 _ &
0 A4=1 10 ==
Jo()=10
0.5 002 0.5 i
Z o(z
CD(IZ)/ . (DI(z) y ]
T 0 l V4 v 0 _71;\ T
2 2
—05 —05
—1.0 —-1.0
Fig.8. Fig.9.
9(2)=To(az,p2)
m=10 = Yo(az) Jo(82) —Jo(az) Yo(B2)
6 points f(2)=sin(2z)
T
f(2) =7
-
1.0 A= 3
T, 7w
s (562 t)=0
O(2) / 2(2)
’-K / ~—T"Z
0 K - N
2
—0.5
—1.0

Fig.10.



— AL S I BEA AL TR & T re AL

In Figs. 11 and 12, the unit function f(z)=1 is sampled by means of (4-1) with

2k—1
6

g(z) =sin(6z) and g(z)=sin(3z) - kljl(z_

),

good approximation comparing with the former.

m=0 9(z)=sin(6z)

) 6 points f(r=1

(=

1.0

0.5
o(2)

I\ AN
AN N

O(z)

(2

m=0
6 points

respectively. The latter shows fairely

g9(z)=sin(32)" kf;[l<2— k=1 7r)
fa=1

1.0

05
(2)

(@

Lot

051

z

©o[N

Fig.11.

o
7 .

l\.’)\>l

Fig.12.

For the sake of comparison of (7-2) with (4-1)~(4-3), we shall show numerical
examples of the truncated sampling formula (7-2) in Figs.13~18. f(z)=sin (2z) shows the
function to be sampled, and @ (z) is the calculated function by truncated formula (7-2)
with approximate sampling function A(z—z,). Sampling points are marked with small
circles “O”. The values of parameters « and S taken here are also shown in each figure.

F(2)=SIN(2z)

Mz—zn; ) =exp[— (Z;%)z]

#=0.360 5 POINTS

Lo+

f(2)=SIN(2z)

t@ MNz—zma) =exp[—

a=0.270

(z2—2n)*

2a?

] 10 POINTS

o’

o]

Fig.14.

z
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f(2)=SIN(2z) .
(z—2zn
(@ AMz—zna)=exXp| ——% 5
ez —es| - 7 POINTS
1oy @=0.290
0.5
- Z
7
Fig.15.
f(2)=SIN(2z)
B 1
‘o Az=zmaB)= tan?(B(z—zn)) + 1
5 POINTS
1.0 a=147
B=2.00
0.5
n 4 Z
2
-1.0
Fig.17.

B 5 4,

Vol28~A, Mar.1993

f(2)=SIN(2z)

While. in Figs. 19 and 20, the unit function f(z)=1 is sampled by truncated sampling
formula (7-2), where A (z-z,) in (7-2)corresponds to g(z)/[(z-z.) g'(z,)] in (4-1).

A2)=1
A(z—zn;a/)=exp[—(zg;2")2J
(@ @
a=0.210 7 POINTS
1.0 1
05t
®(2)
0 x " z
N
Fig.19.

)4
r Xz—zma)=exp [—(220—22")]
10 POINTS
1.0 a=0.0540
0.5+
()
w n Z
2
-1.04
Fig.16.
f(2)=SIN(2z)
A(z—zn;a, = 1
(@ nia.6) @ tan?(B(z—z,))+ 1
a=1.07 19 POINTS
L7 £=6.00
0.5
0 = - z
*(2) R
s
ol
Fig.18.
fz)=1
A z—zy:a)=€ __(Z_Zn)4 ]
(@ (2=2ni0) xp[ 2a?
0,050 12 POINTS
101
03
-0
) + + z
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In these Figs. 13~20, we see that the sampling function A(z-z,) can be applicable to
approximate the original sampled function f(z). The degree of precision in the approxi-
mation depends not only on the choice of the individual form of the function A(z-z,) but
also on the choice of sampling positions and values of parameters « and $.

§9. Concluding Remarks

In this paper, the authors presented the generalized sampling theorem (Theorem I),
where an entire function f(z) can be expressed by means of sampled values f; and sampled
higher order derivatives f;™.

Many formulae hitherto obtained can be derived from the generalized sampling
theorem presented here.

Some examples of the sampling functions are also proposed, which may be useful to
construct an approximate interpolation formula.

In concluding this paper, the authors would like to emphasized that the generalized
sampling theorem presented here may find good application in many fields of physics and

engineering.
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