A Note on *p*-Basis of a Regular Local Ring of Characteristic *p*

Atsushi Araki

標数 p の正則局所環の p 基底についての一注意

荒木 淳

Let (R, m) be a noetherian regular local ring with a quasi-coefficient field k of characteristic p and S be a subring of R containing R^p such that R is finite over S. The purpose of this paper is to prove that if $D_k(R) = D_S(R)$, than R have a p-basis over S.

1. Preliminaries.

In this paper, all rings are assumed to be commutative noetherian and to contain an identity element. Let p be always a prime number. Let R be a ring of characteristic p and R^p denote the subring $\{x^p \mid x \in R\}$. Let S be a subring of R. A subset B of R is said to be p-independent over S if the monomials $b_1^{e_1} \cdots b_n^{e_n}$, where b_1, \cdots, b_n are distinct elements of B and $0 \le e_i \le p-1$, are linearly independent over $R^p[S]$. B is called a p-basis of R over S if it is p-independent over S and $R^p[S,B] = R$. Let R be a ring and let m be an ideal of R. A ring R is called an m-adic ring if R is topologized by taking $m^n(n=1, 2, \cdots)$ as a fundamental system of neighborhoods of zero.

Let *R* be an m-adic ring. An *R*-module *E* is an m-adic *R*-module if *E* is endowed with the topology in which $m^n E(n=1, 2, \cdots)$ form a fundamental system of neighborhoods. An *R*-module *E* is said to be separated if $\bigcap_{n=1}^{\infty} m^n E = 0$.

2. Lemmas.

We shall begin with a definition and then list the needed lemmas about m.-adic differential module. The proofs of those lemmas are done by the standard arguments and we shall omit them.

Let *R* be a *P*-algebra and let *m* be an ideal of *R*. We shall assume that *R* is an *m*-adic ring. We define the *m*-adic *P*-differential module of *R*, denoted by $\hat{D}_P(R)$, as the *R*-module satisfying the following conditions.

- (1) There exists a *P*-derivation $\hat{d}_{R/P}$ from *R* into $\hat{D}_P(R)$.
- (2) $\hat{D}_P(R)$ is generated over R by $\hat{d}_{R/P}x$, $x \in R$.
- (3) $\hat{D}_P(R)$ is a separated m-adic *R*-module.
- (4) For any *P*-derivation *D* of *R* into a separated m-adic *R*-module *E*,

there exists an *R*-linear map *h* from $\hat{D}_P(R)$ into *E* such that $Dx = h(\hat{d}_{R/P}x)$ for all $x \in R$.

Lemma 1 ([1]Proposition 1). Let R be a P-algebra and let m be an ideal of R and assume that R is an m-adic ring. Let $D_P(R)$ be P-differential module of R. Then the m-adic P-differential module $\hat{D}_P(R)$ exists and is determined uniquely up to R-isomorphism. Moreover $\hat{D}_P(R)$ is given by

$$\widehat{D}_P(R) = D_P(R) / \bigcap_{n=1}^{\infty} \mathfrak{m}^n D_P(R).$$

Lemma 2 ([1]Corollary 2). If $D_P(R)$ is a separated m-adic R-module, we have $\hat{D}_P(R) = D_P(R)$ Let *R* be an m-adic ring and let *T* be an n-adic *R*-algebra with a ring homomorphism $f: R \rightarrow T$, such that f(1)=1. We shall assume that *f* satisfies the condition

 $f(\mathfrak{m})\subset\mathfrak{n}.$

Lemma 3 ([1] Theorem 3). Let R be an m-adic ring and let R^* be the m-adic completion of R. Let T be an R-algebra satisfying the condition (1).

Assume that (T, \mathfrak{n}) is a Zariski ring and $\hat{D}_R(T)$ is a finite T-module and let T^* be the \mathfrak{n} -adic completion of T. Then we have

$$\hat{D}_{R^*}(T^*) = \hat{D}_R(T^*) = T^* \otimes_T \hat{D}_R(T).$$

Lemma 4 ([3]§38 Proposition). Let R be a local ring of characterisitic p and S be a subring of R containing R^p such that R is finite over S. If $D_s(R)$ is a free R-module with dx_1, \dots, dx_r ($x_i \in R$) as a basis, then x_1, \dots, x_r form a p-basis of R over S.

Lemma 5 ([1]Proposition 10). Let R be a formal power series ring in n-variables X_1 , ..., X_n over a ring S and let \mathfrak{m} be the ideal of R generated by (X_1, \dots, X_n) . Then the \mathfrak{m} -adic S-differential module $\hat{D}_S(R)$ is free module of rank n.

3. Results.

(1)

Proposition 6. Let (R, \mathfrak{m}) be a regular local ring with a quasi-coefficient field k and S be a subring of R. Assume that we have $D_k(R) = D_S(R)$. If $D_S(R)$ is a finite R-module, then $D_S(R)$ is a free R-module.

Proof. Let R^* denote the m-adic completion of R. Since R is a regular local ring, R^* is regular. Let us put dimR = r. Since k also is a quasi-coefficient field of R^* and $(R^*)^* = R^*$, R^* contains a coefficient field K containing k. Therefore, R^* is expressed as a formal power series ring $K[[X_1, \dots, X_r]]$, where $K = R^*/m^* = R/m$. Since $D_S(R)$ is finite, $D_S(R)$ is separated and we have $\hat{D}_S(R) = D_S(R)$ by Lemma 2. Then, by Lemma 3, we have (2) $\hat{D}_S(R^*) \cong R^* \otimes_R \hat{D}_S(R) \cong R^* \otimes_R \hat{D}_S(R)$

From our assumption $D_k(R) = D_S(R)$ and (2), we have $\hat{D}_S(R^*) \cong \hat{D}_k(R^*)$. Since K is formally etale over k, we have $D_k(K) = 0$. Therefore, we see that $D_k(R^*)$ and $D_K(R^*)$ are isomorphic by Theorem 57 of [3] and we have $\hat{D}_k(R^*) \cong \hat{D}_K(R^*)$. So, by Lemma 5, $\hat{D}_S(R^*) \cong \hat{D}_K(R^*) = \hat{D}_K(K[X_1, \dots, X_r])$ is a free module of rank r and since R is faithfully flat, $D_S(R) = D_k(R)$ is free. Thus the proof is complete,

Theorem 7. Let (R, m) be a local ring with coefficient field k of characteristic p and S be a subring of R containing R^p such that R is finite over S. Assume that we have D_k $(R)=D_s(R)$. If R is regular, then R has a p-basis over S.

Proof. Since *R* is finite over *S*, $D_S(R)$ is a finite *R*-module. Therefore, our theorem is proved by Proposition 6 and Lemma 4.

References

- Y. Nakai and S. Suzuki, On m-adic differentials, J. Sci. Hiroshima Univ. Ser. A24-3 (1960), 459-476.
- T. kimura and H. Niitsuma, Differential basis and p-basis of a regular local ring, Proc. Amer. Math. Soc. 92 (1984), 355-338.
- 3. H. Matsumura, Commutative algebra, 2nd ed., Benjamin, New York, 1980.

(Recieved March 20. 1991)