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Exact Solution of
the Two-Dimensional Toda Lattice
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The authors present an exact solution of the two-dimensional Toda lattice equation.
The solution obtained here is a cnoidal wave, which is periodic function with regard to
the angular variable and lattice site number .

§ 1. Preliminaries

The Toda lattice? found in 1967 seems to us as one of gems brilliantly radiating in the field of soliton
dynamics. Many investigations have been also accumulated to solve nonlinear problems, such as
Hirota’s Direct method**, the inverse scattering scheme®”, the Lax formalism®®, the Bicklund
transformation'?, etc.

A generalization of the Toda lattice to the multi-(space)-dimensional systems has been also tried. For
examples, the two-dimensional Toda lattice (2DTL) was proposed by Mikhailov'? in 1979 and solved in
the axially symmetric case by Nakamura'? in 1983. This system is reconsidered in a series of our papers
by the generalized recurrence formulae!*~!®, or essentially by the Bicklund transformation!®!"29 and its
solutions were given by means of cylindrical functions!*'*!®. The N -soliton solution of the 2DTL equation
in rectangular coordinates was given by Hirota'®'® in a form of the Casorati determinant, and it was also
shown?® that the IN-soliton solution of the 2DTL equation can be derived from the (/V-1)-soliton solution
by means of the generalized recurrence formulae.

As for the three-dimensional generalization of the Toda lattice system, travelling wave solutions?"
have been already given by the method of dimensional reduction®®. Recently, Nakamura?®® found a new
type of exact solutions of the three-dimensional Toda lattice (3DTL) in terms of associated Legendre
functions. He also showed that the Bessel-type solution of the 2DTL equation can be obtained as a
limitting case of the Legendre-type solution of the 3DTL equation. Hirota and Nakamura®* treated the
Toda molecule (the Toda lattice with finite length) in the two-dimensional case, and Hirota®® considered
a discrete version of the Toda molecule, obtaining exact solutions in a form of determinant.

This paper aims to obtain an exact solution of the 2DTL equation as a periodic function of the
peripheral angle.

§ 2. The Two-Dimensional Toda Lattice
The one-(time)-dimensional Toda lattice equation reads :

L 108 Vi) = Vaus (0= 2Va(0 + Vit 0, W
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with replacement :

Va® = exp[—{uns O —u(D}] (2)
where u,(t) is displacement of particle at lattice site No. », and ¢ stands for time variable. Equation (1)
is generalized to the Toda lattice equation in the two-dimensional Euclidean space (x,, X»):

A log Va(Xy, X2) = Va (X1, X2) =2V (X4, X2) + Vo (x4, X2, (3)
with Laplacean operator :
2 2
_ o .
A= kgl axkz (4)

In the two-dimensional polar coordinates (p, ¢) :
X, =p-°cos¢, and X,=p-sing, (5)
for 0=p<+o0 and 0= ¢ <27z, equation (3) can be written as:
- Alog Valp, ¢) = Vo (p, $)—2Valp, ¢)+Vai(p, ¢) (6)
with the two-dimensional Laplacean operator :

2 2 2 2
_ 9 _o*, 19,1 9,
A= kgl ox*  9p* p op p* OB’

If we want to take a solution of the form:

Valp, ¢) = p72-Ua(4), (7)
then the angular part U,(¢) of solution of eguation (6) satisfies :
2
15 108 Us(8) = Unts ($)=2Un()+ Uy 1 (), ®
which is nothing but the one-dimensional Toda lattice (1IDTL) equation for the peripheral angle variable

b.
§ 3. Cnoidal Wave Solution
A solution of equation (8) under periodic boundary condition:

Un(¢) = Un(p+22), (9)
can be written? as
U = 145 Zz [k (E+R) ] =1+ (5)" (am {2k (E+3) | %), (0

with

K _ 1 _ E —1/2’

= = Gy 1K)
A an arbitrary constant, and K and E complete elliptic integrals of the first and the second kinds,
respectively :

K:K(k>:fft/2 de

0V 1—Kk%in?’
Here % is the modulus (0<%.<1), Z(u) = Z(u,k) Zeta function, and dn(u) = dn(u,k) Jacobi’s dn-function.
Thus the final form of solution of equation (6) reads:
Valp, ¢) = p~*-Ua(g), 1
with expression (10).

and E = E(o) = [ v T-K%sin?0 do.

For the limitting case : # — 400, equation (8) reads:
92 log Un(¢)/8¢? = 0, and we have a trivial solution :
U.(¢) = explagd+ ), (12)
with constants « and £. The solution V., with (12) is seen to be
Velp, ¢) = p~2 + explag+4].
The periodic boundary condition (9) demands « =iy/27, with any integer y and the imaginary unit i=

=/=1.
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§ 4. Remarks
It is known at present that the 2DTL equation has two kinds of solutions. Namely, one is expressed

by Bessel-type function'®-'” and the other is given in a form of the Casorati determinant!®'®, The former
is an axially symmetric solution depending on p and =, while the latter depends on x, x,, and #, being not
always axially symmetric. Both of them are obtained essentially by solving the 2DTL bilinear equation.

Here, in this paper, the authors presented a quite different kind of solution from the two kinds cited
above. The present solution is expressed by an elliptic function dn, which is periodic with regard to ¢
(peripheral angle variable) and #. This shows a sharp contrast to the solution of the 1IDTL equation, which
depends on x; (linear coordinate) and 7.

Finally, one of the authors, E. I. Takizawa, wishes to express his sincere thanks to the Research
Institute of Mathematical Analysis of Kydto University for the financial support generously given in
Autumn of the academic year 1987.
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