A Construction of Degenerate CM-types

Hiromichi YANAI

退化 CM 型の構成

柳井裕道

We show a method to construct degenerate CM-types.

These CM-types give examples of abelian varieties whose Hodge cycles are not generated by the divisor classes.

Rank of CM-type

Let p=2d+1 be an odd prime number. We denote by G the cyclic group of nonzero residue classes mod p. A subset S of G is called *CM-type* if $S \cup -S = G$ and $S \cap -S = \phi$, where $-S = \{-a \mid a \in S\}$. If $\sigma S = S \iff \sigma = 1$, then S is called *simple*. For example, $\{1, 2, \ldots, \frac{p-1}{2}\}$ is a simple CM-type.

For a CM-type S, let $\Phi_s : Z[G] \rightarrow Z[G]$ be a homomorphism defined by

$$\Phi_{\rm S}(x) = \sum_{\sigma \in S} \sigma x$$

We call the rank of the image of Φ_s , the rank of a CM-type S. It is easily seen that rank $S \leq d+1$. When rank S = d+1, the CM-type S is said to be nondegenerate (cf. Kubota¹⁾). Non-simple CM-type must be degenerate.

Hodge cycle

A subset $T \subseteq G$ is called a *Hodge cycle* when $\#(\sigma T \cap S)$ does not depend on $\sigma \in G$. Then # T must be even. For any non empty $T' \subseteq G$, $T = T' \cup -T'$ is a Hodge cycle. Such Hodge cycles are characterized by T = -T. There are possibly Hodge cycles which do not satisfy this condition. They are called *exceptional*. If there is an exceptional Hodge cycle, then the CM-type must be degenerate.

EXAMPLE (Serre). p = 19, $S = \{1, 3, 4, 5, 6, 7, 8, 10, 17\}$, $T = \{1, 2, 3, 7, 11, 14\}$. Then T is an exceptional Hodge cycle for S.

REMARK. It is known that simple degenerate CM-type has always an exceptional Hodge cycle (Lenstra). But, for more general CM-types (which are not considered in this note), this is an open problem.

Construction

We now show a method to construct degenerate CM-types.

ASSUMPTION. Let p = 2mn+1 with odd integers m, n > 1.

Let *H* be the subgroup of *G* with order *m*, and σ_0 be a generator (a primitive root) of *G*. Then the coset $\sigma_0 H$ is a generator of the cyclic group *G*/*H*. For a decomposition m = r + s ($r, s \ge 1$), pick up *r* elements of *H*, and *s* elements of $\sigma_0 H$, *r* elements of $\sigma_0^2 H$, ..., *r* elements of $\sigma_0^{n-1} H$. We denote the set of these elements by *S*₁. Then $S = -((H \cup \sigma_0 H \cup \ldots \cup \sigma_0^{n-1} H) \setminus S_1) \cup S_1$ is a CM-type, and $T = H \cup \sigma_0 H$ is an exceptional Hodge cycle for *S*.

EXAMPLE. $p=31, m=3, n=5, \sigma_0=3, r=2, s=1, H=\{1, 5, 25\}, \sigma_0 H=\{3, 13, 15\}$. If we pick up two elements of H, and one element of $\sigma_0 H$, . . . as above, then we get a degenerate CM-type. For example, $S=\{1, 5, 13, 9, 14, 24, 19, 2, 6, 28, 16, 23, 4, 20, 21\}$ is degenerate (and simple), and $T=\{1, 5, 25, 3, 13, 15\}$ is an exceptional Hodge cycle for S.

Background

The notion of CM-type has arisen from the theory of complex multiplication of abelian varieties. In our case, the field of complex multiplication is the field of p-th root of unity (cf. Shimura-Taniyama²⁾).

Exceptional Hodge cycles correspond to Hodge cycles that are not generated by the intersections of divisors on the variety (cf. Ribet³⁾). Our method can be applicable to more general CM-types.

Addendum. B. Dodson (Trans. AMS. 283, n°1, 1984) has given similar and more general results. Our method is elementary and explicit.

References

- Kubota T.: On the field extension by complex multiplication, Trans. Amer. Math. Soc., 118, n°6, 113 -122, 1965.
- 2) Shimura G. and Taniyama Y.: Complex multiplication of Abelian Varieties and its Application to Number Theory, Publ. Math. Soc. Japan, n°6, 1961.
- 3) Ribet K. A.: Hodge classes on certain types of abelian varieties, Amer. J. Math., 105, 523-538, 1983.

DEPARTMENT OF GENERAL EDUCATION AICHI INSTITUTE OF TECHNOLOGY

(Received January 25. 1989)