Examples of Some Homeomorphisms on Real 2-Sphere

Yûji HASHIMOTO and Hitoshi NAGAYA

実2次元球面上のある同相写像の例 橋 本 有 司・永 谷 彬

We consider some class of measure-preserving homeomorphisms on real 2-sphere. A classification of these homeomorphisms has been given already. In this paper, along this line, we give examples of such homeomorphisms of order ∞ by the method of construction available for some general cases.

§ 1. Introduction.

Let S^2 be a real 2-sphere. We consider the homeomorphisms on S^2 satisfying the following Conditions (C).

(1) The homeomorphism f on S^2 has the fixed points N (the north pole) and S (the south pole), or substitutes these two points each other. Further, f is of class C^1 in S^2 except for N and S.

(2) f is measure-preserving, that is, f preserves the uniform probability measure on S^2 .

Among these hemomorphisms satisfying Conditions (C), we denote these preserving each latitude by L, and others by NL. Concerning L, a classification of the discrete topological dynamical systems generated by $f \in L$ is given in Nagaya [2], by considering the cyclic groups obtained by the systems. And concerning NL, a similar classification is given also in [2], and the existece of $f \in NL$ of order ∞ is confirmed in Hashimoto (1) by constructing an example. The purpose of this paper is to give further examples of $f \in NL$ of order ∞ by using the ideas in [1].

§ 2. Construction of examples.

Now, we shall give the following

THEOREM. There exist some homeomorphisms in NL of order ∞ .

PROOF. Let S^2 be as in § 1. We may assume S^2 the unit sphere in the Euclidean *xyz*-space with its center at the origin O. We shall introduce into S^2 the polar coordinate systems. That is, for P ϵ S^2 , denoting by θ the angle between the *z*-axis and OP and by ϕ the angle between *x*-axis and OP', where P' is a projection of P onto *xy*-plane, we represent P ϵ S^2 by (θ, ϕ) . Then, denoting the coordinate systems in the image sphere by (Θ, Φ) , we can represent a homeomorphism on S^2 by the mapping $(\theta, \phi) \to (\Theta, \Phi)$ with appropriate conditions.

Now, the area element of S^2 is given by $\sin\theta \ d\theta \wedge d\phi$ and that of the image sphere is given by $\sin\Theta \ d\Theta \wedge d\Phi$. So that, if the mapping $(\theta, \phi) \to (\Theta, \Phi)$ with appropriate conditions satisfies

$$\left(\frac{\partial\Theta}{\partial\theta}\;\frac{\partial\Phi}{\partial\phi}-\frac{\partial\Theta}{\partial\phi}\;\frac{\partial\Phi}{\partial\theta}\right)\sin\Theta=\;\pm\sin\theta,$$

it is measure-preserving. Here, setting $\cos\theta = \lambda$ and $\cos\Theta = \Lambda$, the condition above reduces to

$$\frac{\partial \Lambda}{\partial \lambda} \frac{\partial \Phi}{\partial \phi} - \frac{\partial \Lambda}{\partial \phi} \frac{\partial \Phi}{\partial \lambda} = \pm 1.$$

Therefore, we may only construct the mapping $(\lambda, \phi) \to (\Lambda, \Phi)$ satisfying the following Conditions (C').

(1') $(\Lambda(\lambda,\phi), \Phi(\lambda,\phi))$ is a continuous mapping of $\{(\lambda,\phi)|-1 \le \lambda \le 1, 0 \le \phi \le 2\pi\}$ into $\{(\Lambda,\Phi)|-1 \le \Lambda \le 1\}$ and a one-to-one mapping of $\{(\lambda,\phi)|-1 < \lambda < 1, 0 \le \phi \le 2\pi\}$ into $\{(\Lambda,\Phi)|-1 < \Lambda < 1\}$, which satisfies the boundary conditions $\Lambda(1,\phi) = 1, \Lambda(-1,\phi) = -1$. $\Lambda(\lambda,2\pi) = \Lambda(\lambda,0)$ and $\Phi(\lambda,2\pi) = \Phi(\lambda,0) + 2\pi$. Further, it is of class C^1 in $\{(\lambda,\phi)|-1 < \lambda < 1, 0 \le \phi \le 2\pi\}$.

$$(2') \ \frac{\partial \Lambda}{\partial \lambda} \ \frac{\partial \Phi}{\partial \phi} - \frac{\partial \Lambda}{\partial \phi} \ \frac{\partial \Phi}{\partial \lambda} = 1.$$

Here, we remark that this is the case where the homeomorphism has the fixed points N and S and is orientation preserving.

To construct the mapping, we first confine the image region to $\{(\Lambda, \Phi) | -1 \leq \Lambda \leq 1, 0 \leq \Phi \leq 2\pi\}$. Let κ (ϕ) be a real-valued function in $-\infty < \phi < \infty$ of class C^1 with period 2π satisfying κ (0) = κ (2π) = 0, $|\kappa'(\phi)| \leq 1$ and $\kappa'(0) \neq 0$.

And we set the mapping as

 $(\Lambda, \Phi) = (\Lambda(\lambda, \phi), - \varkappa(\phi)\Lambda(\lambda, \phi) + \phi),$

that is, we set the mapping so that the line segments in the $\lambda\phi$ -plane connecting $(-1,\phi)$ and $(1,\phi)$ are set-wise mapped onto the line segments in the $\Lambda\Phi$ -plane connecting $(-1,\phi + \kappa(\phi))$ and $(1,\phi - \kappa(\phi))$. Here, according to the conditions $\kappa(0) = \kappa(2\pi) = 0$ and $|\kappa'(\phi)| \leq 1, \phi + \kappa(\phi)$ and $\phi - \kappa(\phi)$ are increasing functions of $[0, 2\pi]$ onto $[0, 2\pi]$. Now, to determine $\Lambda(\lambda, \phi)$, we use the above condition (2'), which implies

$$\{-\kappa'(\phi) \Lambda + 1\}\frac{\partial \Lambda}{\partial \lambda} = 1.$$

For solving this differential equation, we assume $\kappa'(\phi) \neq 0$ and set $-\kappa'(\phi) \Lambda + 1 = \tilde{\Lambda}$. Then, we have

$$\tilde{\Lambda} \frac{\partial \tilde{\Lambda}}{\partial \lambda} = -\kappa'(\phi).$$

Integrating this equation for λ , we have

$$\frac{\tilde{\Lambda}^2}{2} = -\kappa'(\phi)\lambda + \frac{\gamma(\phi)}{2},$$

where $\gamma(\phi)$ is a function of ϕ determined later. Now, as $|\kappa'(\phi)| \leq 1$ and $-1 \leq \Lambda \leq 1$, we have $\tilde{\Lambda} \geq 0$, so that,

$$\tilde{\Lambda} = \sqrt{-2\kappa'(\phi)\lambda + \gamma(\phi)}.$$

Here, using the boundary condition $\Lambda(1,\phi) = 1$, $\Lambda(-1,\phi) = -1$ in (1'), we have

$$\gamma(\boldsymbol{\phi}) = 1 + \{ \boldsymbol{\kappa}'(\boldsymbol{\phi}) \}^2,$$

and

$$\Lambda = \frac{\sqrt{1-2\kappa'(\phi)\lambda + \{\kappa'(\phi)\}^2} - 1}{-\kappa'(\phi)}.$$

Therefore, we have

$$\Lambda = \frac{2\lambda - \kappa'(\phi)}{1 + \sqrt{1 - 2\kappa'(\phi)\lambda + \{\kappa'(\phi)\}^2}},$$

which is also valid in the case $\kappa'(\phi) = 0$, and

$$\Phi = \frac{-2\kappa(\phi)\lambda + \kappa(\phi)\kappa'(\phi)}{1 + \sqrt{1 - 2\kappa'(\phi)\lambda + \{\kappa'(\phi)\}^2}} + \phi.$$

We can easily see that this mapping (Λ, Φ) satisfies other conditions in (1').

The rest of the proof is to show that the above (Λ, Φ) is in *NL* and of order ∞ . Considering the image of $(\lambda, \phi) = (0, \phi) \ (0 \le \phi \le 2\pi)$,

$$(\Lambda,\Phi) = \left(\frac{-\varkappa'(\phi)}{1+\sqrt{1+\{\kappa'(\phi)\}^2}}, -\varkappa(\phi)\Lambda + \phi\right),$$

we can see that the homeomorphism represented by this mapping does not preserve the latitude.

Further, considering the image of $(\lambda, \phi) = (\lambda, 0) (-1 \le \lambda \le 1)$,

$$(\Lambda,\Phi) = \left(\frac{\sqrt{1-2\kappa'(0)\lambda + \{\kappa' 0\}^2} - 1}{-\kappa'(0)}, 0\right),$$

we can see that it is of order ∞ .

Q.E.D.

We can give examples of $\kappa(\phi)$ such as $\sin\phi$, whose case is treated in [1] , $a\sin\phi$ ($0 < a \le 1$),

$$\frac{1}{n}\sin(n\phi), \frac{1}{2} \{\sin\phi + \frac{1}{2}\sin(2\phi)\} \text{ and so on.}$$

REFERENCES

- 1) Hashimoto Y. : An example of some homeomorphism on real 2-sphere. Bull. Aichi Inst. Tech. 17 A, 1-2. 1982.
- 2) Nagaya H.: A classification of some discrete topological dynamical systems on real 2-sphere. in preparation.

(Received January 25. 1987)