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Groups of Order 2p Which Are Isomorphic

to Unit Groups of Finite Rings
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Let p be an odd prime. We will classify groups of order 2p which are isomorphic to unit

groups of finite rings.

Throughout the present paper, R will represent an
associative ring with 1, and R* the unit group of R.
We denote by C, the cyclic group of order n. When
p=2"—1 (n is a positive integer) is a prime, p is called
a Mersenne prime. When p and 2p +1 are both
primes, p is called a Sophie Germain prime. The
present objective is to prove the following theorem.

Theorem. If G is a finite group of order 2p (p is an
odd prime) and isomorphic to the unit group of a
finite ring R, then there holds one of the following :
(i) G =S; (the symmetric group on 3 symbols).

(ii) G = C,xC,, where p is a Mersenne prime.
(iii) G = C,xC,, where p is a Sophie Germain prime.
(iv) G = C,xC,, where 2p+1 is a power of 3.

Conversely, if a finite group G satisfies one of (i)
~(iv), then there exists a finite ring R such that G =
R*.

Proof. First we consider the case p=3. Every
group of order 2:3=6 is isomorphic to S; or C; X Cs.
Obviously, S, is isomorphic to the unit group of 2x2
matrix ring over GF (2), and C,xC;= (GF (3) ® GF
(2%))*. Note that p=3 is a Mersenne prime and a
Sophie Germain prime, as well.

Now, let us assume p=5. By (1, Theorem 6.1], G
is Abelian. Hence G = C,XxC,, so we have only to
show that p satisfies one of (ii)~(iv). Let J be the
Jacobson radical of R. As 1+] is a subgroup of R*,
there are four cases :

(A [J1=1,(B) [JI=2,(C) |J|=p, (D) |J|=2p.

Case (A). In this case, J=0, i.e. R is semisinple. As
R* is Abelian, by Wedderburn-Artin theorem, R is a
direct sum of finite fields.

R=GF(p,")® GF(p")®------@® GF (pa™).
Then 2p=|R*| =(p,"—1)(po""— 1)+ (pa"—1).
Without loss of generality, we may assume that either
pi"—1=p, p,"—1=2, and p;"—1=1(3<i<n), or p,"—
1=2p and p;"—1=1(2<i<n).

If pin"—1=p, then p,"=p+1 is an even number, and
so p+1=2r, that is, p is a Mersenne prime.

If pn—1=2p and r,=2, then 2p=(p,—1)(p,"~'+
------ +p:1+1). As p,—1 is a multiple of 2 and p,"~1+
------ +p,+1=4, it follows that p,—1=2. Hence 2p+1
is a power of 3.

If py—1=2p, then p is a Sophie Germain prime.
In general,
(1) R=RI®R,®D---- @D Ra,
where each |R;|=pi"(1=i=n) and p,, Pz,~***, Pn aT€
distinct primes. Then
(2) ]:Jl@.]2® """ @Jn,
where each J; is the Jacobson radical of R,. So
(3) R/J=R/J:® Ro/J@D----+ ® Ra/Ja.
Note that each ]| is a power of p;.

Case (B). By (2), we may assume that |J,| =2 and

Ji=0 (2<i<n). Then

p=|R/D*|=|R/J)*|«|RF |- |R%].
Therefore we may assume further that either |(R,/
J)*[=1,|R3|=p, IRT|=1@3<i=n), or |(R,/].)*|=p,
|R¥|=1 (2<i<n). But in the same way as before, we
can see that p is a Mersenne prime in either case.

Next, we will show that the cases (C) and (D) are
impossible for p=5.

Let us suppose |J| =p. By (2), we may assume that
[J:l=p, Ji=0(2<i<n). Then by (3), we get

2=|R/D*|=(R/J)*|«|RE |- [RA|.
If |(R,/J)*| =1, then R,/],=GFQ2)®:----- @ GF(2).
Then |R,| is a power of 2, which contradicts |J,| =p.
So [(Ri/J)*|=2. Then R,/J,=GF(3), which contra-
dicts p=5.

On the other hand , if | J| =2p, then we may suppose
that |J,|=p, |J.| =2, Ji=0 (3<i=n). As |(R/])*| =1,
R/J=GFQ2)®:------ @ GF(2). So |R| is a power of 2,
which contradicts |J,|=p.

Q.E.D.

As an application of the theorem in group rings, we
readily obtain
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Corollary. Let R be a finite ring, and G a finite
group of order 2p (p is an odd prime). If G satisfies

none of (i) ~ (iv), then G is a proper subgroup of
R(G)*.

In conclusion, we write down some primes of type
(i1)~(iv).
primes of type (ii) : 3, 7, 31, 127, 2047, 8191, ------
primes of type (iii) : 3, 5, 11, 23, 29, 41, 53, ------
primes of type (iv) : 13, 1093, 797161, ------

Whether there are infinitely many Mersenne
primes, whether there are infinitely mamy Sophie
Germain primes, and whether there are infinitely
many primes of type (iv), are unsolved problems for
the present.
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