Identity Elements in Rings

- Takao SUMIYAMA
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As is well-known, (one-sided or two-sided) identity elements in rings play an important
role in the thory of rings and modules. The purpose of this paper is to consider several conditions

for a ring to have identity elements.

§ 1

Definitions. Throughout R will represent an
associative ring. An element ¢ e R is called a right
(left) identity if xe = x (ex = x) holds for any x € R. If
¢ is both a right identity and left identity, e is called
an identity and denoted by 1. When R is a ring with 1,
a right R-module M is called unitary if m1 = m holds
for any m ¢ M.

When S is a subset of R, A, (S) denotes the left
annihilator {xeR | xS = 0} . Similarly A, (S) is the
right annihilator.

Let A be a ring with 1 and N be a unitary right A
-module. The Abelian group A@ N with the
multiplication

(@, m) @, 1) = (@1, 71a,)
is a ring, which is denoted by [A; N,] . Naturally N
is regarded as an ideal of [A; N,] by the mono-
morphism znl——— (0, #). Also A is regarded as a
right ideal of [A; N,] by at—— (a, 0).

Lemma 1.1 (1) (1, =) is a right identity of [A; N,] for
any neN.

(2) N=A([AN,])

(3) A is isomorphic to the left [A; N,]
-endomorphism ring of [A; N,] .

Proof. As (1) and (2) are easy, we shall show only
(3). Let f be a left [A; N4] -endomorphism of [A;
N,] , then one will easily see that /((1, 0)) = (a, 0) for
some aeA. Let ¢ be the mapping fFH——a. As is
easily verified, ¢ is a ring homomorphism.

Conversely, for any aeA, let f be the
endomorphism of [A; N,] defined by f((x, n)) =
(xa, na). Denote the mapping ¢ +———f by ¢, then ¢.
¥ = ¥-¢ = id. This completes the proof.

Theorem 1.2 If R has a right identity, then there exist
a ring A with identity and a unitary right A-module

N such that R = [A; N,.] . A and N, are uniquely
determined up to isomorphism.

Proof. Let ¢ be a right identity of R. Then

R = eR @ A.(e) as right R-modules. If we put A =
eR, A is a ring with e an identity and A ,(¢) = A/(R) =
N is naturally regarded as a right A-module. Any
7eR is uniquely written as » = a + n (aeA, neN).
The mapping @:7 +—(a, »n) gives an isomorphism
from R to [A; N,] . The uniqueness of A and N, is
clear from Lemma 1.1.

Corollary 1.3 If R has a right identity and A,
(R) = 0, then R has an identity.

Corollary 1.4 If R has a unique right identity, then it
is an identity.
For, both of these conditions imply N = 0.

Since A((R) is contained in the Jacobson radical
of R, if a semisimple ring has a right identity, then it
is an identity.

Theorem 1.5 (cf. [1] §6)If [A;N,] isleft Artinian,
then A is left Artinian and N consists of only finitely
many elements.

Proof. For any left ideal L of A, [L;N] = {(a,
n)e [A;N,] | ael} isaleftideal of [A;N,] .From
this we can see that A is left Artinan.

For any Abelian subgroup N’ of N, [0; N] =

{(0, n)e [A;N,] | neN’} isaleftideal of [A;N,] .
It follows that Abelian subgroups of N satisfy the
descending chain condition.

Let x be an arbitrary element of N. If we suppose
that the additive order of x is infinite, we get a
strictly descending chain of Abelian subgroups of N

Zx22Zx22°Zx2 - -----
This is a contradiction, so any element of N has a
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finite order. It follows that
N:Nm@sz@ ~~~~~ @ No,,
where each Nj, is a primary Abelian subgroup
belonging to a prime p; and py, Ds,- - - -, Dt are distinct
primes. Without any loss of generality, we can
suppose N = N,; , that is, there exists a prime p = p;
such that the order of any element of N is a power of
D
Let us put N® = {xeN |p'x =0} for each
positive integer j, then
Noc Nog .. ... c
is an ascending chain of Abelian subgroups of N and
N = JN®. Suppose there exists a strictly increasing
sequé?llce of positive integers e; < e, < ....<e, <
....such that N®&EN® &g . . .gNe &.....
Regarding that each N is a right A-submodule of N,
we get a strictly descending infinite chain of left
ideals of A

PPARD2AR ....2p"AR.....
This contradicts that A is left Artinian. It follows
that there exists a positsve integer k such that N® =
N.
0 =NPSNPESN?»c..cN®w=N

is a chainof 'Abelian subgroups of N, where each N/
N6 (1 £ j £ k) is a finite direct sum of cyclic groups
of order p by the descending chain condition. Hence N
is a finite set.

§ 2

Definitions. When R is a ring, J(R) denotes the
Jacobson radical of R, which means the intersection
of all modular, maximal left ideals of R (cf. [6]
Chapter III). R* will represent the multiplicative
semigroup of R. Also,
B(R) = {aeR | aeRa} , B(R) = {aeR | aeaR} ,
S(R) = {aeR|R=Ra}, and T(R) = {aeR|A,
(@) =0} .
A left ideal L of R is called to be small if L + M is a
proper left ideal whenever M is a proper left ideal of
R.

Lemma 2.1 (1) B(R) is a (semigroup-theoretic) right
ideal of R*.

(2) S(R) and T(R) are subsemigroups of R*.

(3) S(R) € B(R).

Theorem 2.2 R has a right identity if and only if B(R)
N TR) + ¢.

Proof. Let B(R) N T(R) + ¢ and a ¢ B(R) N
T(R). Then there exists eeR such that a = ea. Let x be
an arbitrary element of R, then

(x — xe)a = x(a — ea) = 0.
It follows that x = xe, hence e is a right identity.

Since every element of J(R) is quasi-regular, we
can easily see that J(R) is a small left ideal if R has a
right identity. The converse is not true in general, but
the following fact is known.

Thenrem 2.3 ( [2] , Satz 2) R has a right identity if
and only if the following three conditions are satis-
fied.

(1) R/J(R) has an identity.

(2) J(R) is a small left ideal.

(3) BR)=R.

In case R is left or right Noetherian, the follow-
ing is known.

Theorem 2.4 ([8]) When R is left or right Noetherian,
R has a right identity if and only if B(R) = R.

We can give an another proof in case R is left
Noetherian. Assume that R is left Noetherian and B’
(R) = R. Let M be the set of all left ideals I of R which
satisfies the following condition:

(s )There exists some e (depending on I)eR such
that xe = x for any xel.

Since M is not empty, M has a maximal element I*.
There exists ¢*eR which satisfies x¢* = x for any

. xel*. Let us assume that I* + R, then there exists aeR

with ael*. K=1* + Ra + Za is a left ideal of R
which contains I* properly. We can choose ¢eR such
that (ae* — a)e = ae* — a. lf weput e’ = e* + ¢ — ¢*
e, then for any element y = x + ra + za (xel*, 7eR,
zeZ) of K, it holds that
ye' = x(e* + ¢ — e*e) + ra(e* + ¢ — e*e) +
za(e* + e — e*e)
= xe* + xe — xe*e + r(ae* + ae — ae*e) +
z(ae* + ae — ae*e) -
=y.
It follows that K eM. This contradicts the maximali-
ty of I*. Consequently I* = R, hence R has a right
identity.

Definition. An element & of R will be called a
right multiplicator if there exists a fixed integer #
such that xa = nx holds for any xeR. M(R) will
represent the set of all right multiplicators of R,
which forms a subring of R.

Theorem 2.5 ( [5] , Satz 3.1) R has a right identity
if and only if the following two conditions are
satisfied.

(1) For any homomorphic image R’ of R, it holds
that A, (R) = 0.

(2) M(R) N T(R) # ¢.

We consider two conditions concerning an ele-
ment aeR.

@) Ra =R (ie. aeS(R))

® A,a) =0 (ie. aeT(R)
These two conditions are independent in general.
Example 1. Let R be a commutative integral domain
(for instance, Z). If a is different from 0, then (B)
holds, though (A) may not. -
Example 2. Let V be a vector space over a field # of
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countably infinite dimension with a basis {e,e,,... .,
en,....} . Let R be the endomorphism ring of V. We
define aeR by e——e; (1=i<o0). Also 5eR is
defined by e;}——0 and e———¢,_; (2<i<o0). Then
clearly we obtain ba = 1 (identity map), hence Ra =
R. If we define ceR by e¢;——¢, and ¢}—0 2=
i<o0), then ca = 0, so A(a) + 0.

But we shall show that (A) and (B)are equivalent
if R is both left Noetherian and left Artinian.

Theorem 3.1 If S(R) + ¢, the following conditions
are equivalent.

(1) SR) = T(R).

(2) A left R-endomorphism f:R ——R is injec-
tive when and only when it is surjective.

(3) (i) R is the only left ideal of R which is
isomorphic to R as left R-modules,and (ii) A = 0 is
the only left ideal which satisfies R/A = R asleft R
-modules.

Proof. (1) ——(2) Choose aeS(R), and let f:R
——R be an injective left R-endomorphism. If we
put f(a) = b, then A,(b) = 0, hence we get Rb = R.

Let » be an arbitrary element of R, then there exists.

seR such that » = sb. So » = sf(a) = f(sa), which
implies that f is surjective.

Next suppose that /:R ——R is a surjective left

R-endomorphism. Since R = f(R) = f(Ra) = Rb, A,
(b) = 0. Let x be an element of Ker(f). There exists
yeR such that x = ya,s0 0 = f(x) = f(ya) = yf(a) =
yb. It follows that y = 0, hence f is injective.
(2) —(3) Let A be a left ideal of R and ¢:R ——A
be a left R-isomorphism. If we denote the natural
injection from A to R by j, then j.@ :R ——R is
injective, hence surjective. That is, A = R.

Next suppose that A is a left ideal of R and there
exists a left R-isomorphism ¢¥:R/A ——R. Let z:R
——R/A be the natural projection, then ¢-z:R
— R is surjective. Hence it is injective and A =
Ker(¢rem) = 0.

(3) ——(1) is clear from Ra =~ R/A.(a)

Lemma 3.2(1) If a left R-module M satisfies the
descending chain condition, then any injective left R
-endomorphism of M is surjective.

(2) If a left R-module M satisfies the ascending
chain condition, then any surjective left R-endomor-
phism of M is injective.

Proof. (1) Let @¢:M——M be an injective
endomorphism. Since

M=o M2 oM) 2 *M)2....,
by the descending chain condition there exists 7#>0
such that ¢"(M)=¢"**(M) : suppose # is the least such
integer. Let us assume #n=1. If mep™ (M), there
exists m’eM such that m = @"(m’). Also there
exists m”eM such that @(m) = @"(m) = @"*(m”).
Then @(m — @™(m”)) = 0, which follows that m =

@"(m”), since @ is injective. So @ '(M) = @™(M),
which contradicts the definition of n. Therefore, M =
o(M).

(2) Let ¥ : M———M be a surjective endomorphism.
Since

0 = Ker(y°) < Ker(y) c Ker(¥) < ...,

there exists #=0 such that Ker(y") = Ker(¥™):
suppose 7 is the least such integer.Let us assume 7=
1. If aeKer(y"), there exists beM such that a = ().
Since ¥"(a) = ¥"*(b) = 0, b e Ker(y"*) = Ker(y).
Then0 = ¢™(b) = ¥ (¢(b)) = ¥"“(a), which means
aeKer(¥"™). So Ker(¢" ) = Ker(¢"), a contradic-
tion. Therefore Ker(y) = 0.

From this, we can get the following:

Theorem 3.3 If R is both left Noetherian and left
Artinian, then S(R) = T(R).

Proof. For each aeR, we only have to apply the
preceding lemma to the right multiplication map @:
XH——>xa.

§ 4

Definitions. When S is a semigroup and ab = a holds
for any a,beS, S is called a left zero semigroup. The
following fact is well-known (for instance, [7] pp.
77-80). A semigroup which satisfies such equivalent
conditions is called a left group.

Lemma 4.1 When S is a semigroup, the following
three conditions are equivalent.

(1)(i) S has a right identity, and (ii) for any aeS
and any right identity eeS, there exists xeS such that
xa = e.

(2) For any a,beS, there exists a unique xeS such
that xa = b.

(3) S is isomorphic to the direct product of a
group and a left zero semigroup.

Now we can state the following:

Theorem 4.2 (1) If S(R) = T(R) + ¢, then S(R) is a
left group. Hence, if R is both left Noetherian and left
Artinian, S(R) coincides with T(R) and is a left group
unless it is empty.

(2) When R is both left Noetherian and left
Artinian, R has a right identity if and only if S(R) #
é.

Proof. (1) We shall show that S(R) satisfies (2) of
Lemma 4.1. Let 4,beS(R). Since Ra = Reb, there
exists xeR such that xa = . We have to show that
xeS(R). If xeS(R), there exists a non-zero element yeR
such that yx = 0, for S(R) = T(R). Then yxa = yb = 0,
henceA,(b) #+ 0, which contradicts 4eS(R) = T(R). So
xeS(R). Next assume that x¢ = b and x’a = b. Then
(x — x)a = 0, which follows x = x’, since x — x’eA,
(a) = 0. Thus S(R) is a left group.
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(2) Suppose S(R) = T(R) + ¢, then it is a left
group, hence has a right identity ¢ by Lemma 4.1.
Since Re = R, e is a right identity of R.

Corollary 4.3 If R has no left ideals other than 0 and
R, then R is either a division ring or a zero ring on a
cyclic group of prime order.

Proof. If R? = 0, then the additive group of Ris a
cyclic group of prime order since it is a simple
Abelian group. So we can suppose there exists aeR
such that Ra = R. By Theorem 4.2 R has a right
identity, so R has an identity by Corollary 1.3. It is
immediate that R is a division ring.

Let R be a ring such that S(R) = T(R) + ¢, then
S(R) must be isomorphic to the direct product of a
group and a left zero semigroup. Let ¢ be a right
identity of R and put A = ¢R and N = A.(R), then
there exists an isomorphism ¢:R > [A; Naj . If
we identify R with [A; N,] by ¢, then we can write
any element of R as (a,#n), where aeA and neN.
Suppose Rss = (a,n) satisfies Rs = R, then there
exist beA and n’eN such that (b,7")(a,n) = (ba,n'a) =
(e,0), which follows that ba = e. Conversely, let # be
an arbitrary element of N and aeA satisfy ba = ¢ for
some beA. Then for any element(c,7) of R it holds
that (cb,mb)(a,n) = (c,m), so s = (a,n) satisfies Rs =
R. Hence, if we put A’= {aeA | ba = e for some
beA} |, (a,n)eS(R) is equivalent to aeA’.

Let a be an arbitrary element of A’. As (a,0)eS(R),
by Lemma 4.1 (2), there exist a’e A” and zeN such that
(a’,n)(a,0) = (a’a,na) = (e,0). It follows that a’a = e.
On the other hand,

(a,0)(,0)(a,0) = (ad,0)(a,0)
= (e,0)(a,0).
Hence aa’ = e by the uniqueness of Lemma 4.1 (2). So
A’ is nothing but the unit group A* of A.
Letusput N'= {(I,n) | neN} and define p,:S’ =
{(a,n) | aeA*,neN} >N’ by (a,n) ——(1,n).
pi:S’ »A* is defined by (¢,%) ———a. Thus we get
the following commutative diagram of semigroups:

R~ o (A; N
j i
S(R) s

, 14 I S(R)
\&1 D

P2 (eR)* — e
Jy ¢|(2R)

z ~ > N
9|z

Here (eR)* denotes the unit group of eR, and Z the left
zero semigroup consisting of all right identities of R.
j and j" are natural injections. p'; = (@ | (eny*)™
(@ | sw)P2=(@ | 27 D (@ | swm) D1 and p,
are orthogonal (cf. [7] pp. 76-77). For, let A;:S" = bLEJ
U, be the partition of S’ induced by p,, where U, =
{(b,n) | neN}. Also let A,:S" = U Vo be the partition
mduced by p,, where V, = {(a m) | aeA*} . Then
clearly U, N Vp consists of only one element (b,m).
So A, and A, are orthogonal. Consequently S’ is
isomorphic to the direct product of A* and N".

p: and p, are orthogonal, too, so S(R) is iso-
morphic to the direct product of (eR)* and Z. Note
that A* is isomorphic to the unit group of the left R
-endomorphism ring of R by Lemma 1.1 (3). So we get
the following: -

Theorem 4.4 If S(R) = T(R) + ¢, then S(R) is iso-
morphic to the direct product of the unit group of the
left R-endomorphism ring of R and the left zero
semigroup consisting of all right identities of R.

Note that if R is left Artinian moreover, then Z is
a finite set by Theorem 1.5.

Theorem 4.5 If R is both left Noetherian and left
Artinian, then the following three conditions are
equivalent.

(1) R has a right identity.

(2) There exists aeR such that Ra = R.

(3) For any aeR, there exists beR such that ab =

Proof. Clear from Theorem 2.4 and Theorem 4.2
(2).
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