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A Definition of swirl function and identification of swirling flow
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abstract

A method of identification of swirling flow (vortex) with definition of swirl function is presented.

In fluid motion, eigenvalue of velocity gradient tensor classifies flow characteristic, and a complex (conjugate) eigen-

value indicates that flow is swirling motion (vortex) around the point as its axis. The imaginary part represents its

angular velocity of swirling, and is Galilean invariant. This quantity is defined as swirl function as a physical property.

The swirl function is a function of flow field where velocity field is defined, and the local maximum point of swirling

function can be considered as its axis in finite swirling (vortical) region. Then an identification method with distribution

of swirl function is developped, as SWANA2 code. This analysis is appropriate to estimate both location and intensity

of swirling, and can identify vortex which the second invariant of velocity gradient tensor can not identify.

SWANAZ2 is verified with Burgers vortex with uniform flow, and an application in CFD (Computational Fluid

Dynamics) and experiment shows that this code can identify swirling motion with concrete vortical structure of

velocity even in the case that swirling motion is hidden in uniform velocity or that flow visualization (streamline)

indicates swirling location different from the correct swirling region.

1 Introduction

Swirling motion or vortical flow (vortex) corresponds
to many fluid problems and many engineering/design
field, such as drag force behind aerofoil in aeronautical
engineering, turbine blade and fluid machinery in me-
chanical engineering, or flow force behind structure. This
vortical flow has important effect to flow characteristic
and flow stability in the region to be considered. In these
case, analysis for identification (checking existence) of
vortical flow and for estimation of its intensity is impor-
tant. In large scaled vortical flow, it is informative if the
correct axis in finite or large scaled vortical region can
be identified.

In spite that analyzing swirling motion is important in
several engineering fields and design, the unique phys-
ical and mathematical definition of vortical flow is not
established in fluid mechanics. In engineering and de-
sign field, clear definition is required to identify location
and estimate intensity of the swirling motion.

In study of vortical flow, some definitions are investi-
gated and proposed, such as eigenvalue of velocity gra-
dient tensor,!!! the second invariant of velocity gradi-
ent tensor,!®! delta definition applying velocity gradient

tensor, helicity® %, Hessian of pressurel®,[® and vor-
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ticity.l®] Although several definitions are proposed, the
unique definition has not been developed, then each def-
inition can be applied in some engineering field in which
the characteristic this definition is considered to be suit-
able.[”]

In the definition with vorticity,® which represents ro-
tational component of minute element of fluid, concen-
trated area of vorticity is not always swirling region, such
as shear flow. the second invariant of velocity gradient
tensorl®! covers this pending matter with estimating the
difference between the norms of vorticity tensor and of
velocity gradient tensor, but this invariant does not in-
dicate the intensity of swirling directly. Helicity!®/[19 is
effective in eduction of swirling motion in flow, and the
angle between vortical flow and main flow. Nevertheless
it is the same in a point that this does not indicate the in-
tensity of swirling directly. The definition by Hessian of
pressurel® ¢ is generally difficult to apply in experiment
or analysis of field data. For the application to engi-
neering and design, the definition of vortical flow with
velocity may have advantage.

Chong et. al.lll
dimension with eigenvalues of velocity gradient tensor

classified of flow pattern in three

using phase space of ordinary differential equation, and
vortical flow is classified by complex value of eigenvalues.

In the phase space, The combinations of eigenvalues and
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eigenvectors of autonomous equation indicates the char-
acteristics of solution trajectories, and it applies to the
classification of flow pattern around the point to be con-
sidered. In the case that eigenvalues include complex
number, the solution (flow) trajectory swirls around the
point.

The several identification methods using eigenvalues
of velocity gradient tensor or phase space of autonomous
equation are proposed by Sujudi et. al.,2 Berdahl,
and Sawada.[*]

Sujudi et. al.?! investigated the analysis of searching
swirling motion with the eigenvalue of velocity gradient
tensor, and defined the point where the velocity compo-
nent is zero in swirling plane normal to swirl axis as axis
point. On the other hand, generally uniform velocity
may exist in swirling area and the velocity components
in the axis are not zero. Then this method is difficult to
extract the axis in such case.

The identification method with the ratio between com-
plex number and uniform velocity!” can indicate the
swirling area, but it is difficult to indicate the absolute
intensity of swirling, or indicate the axis of swirling mo-
tion.

Sawadal'!l formulate an autonomous equation with re-
spect to flow trajectory in a cell used for CFD (Compu-
tational Fluid Dynamics). In this formulation, the cell is
supposed to be a tetrahedron and velocity components
are interpolated linearly in the cell. This method applies
in aeronautical engineering and turbinel!?. In the case
that vortical flow is finite and covers several cells (more
than one cell), it is difficult to identify the axis.

In this paper, imaginary part of complex eigenvalues
of velocity gradient tensor is defined as ”swirl function”.
This swirl function indicates the intensity of swirling (an-
gular velocity) and this is invariant in Galilei transfor-
mation (coordinate transformation). Then swirl function
can be considered as a physical property. This function
has a characteristic that it has a local maximum value
on the axis in Burgers vortex. Here the swirl axis is de-
fined from the distribution of the swirl function, local
maximum point in swirling region.

The identification method using this proposal enables
to identify the vortical flow and its axis in spite of the
size of vortical region, or existence of uniform velocity,
in CFD or experiment!!?.13]  This definition is effec-
tive in engineering problem with complex flow, not only
in CFD analysis but also in experiment, as it requires
only velocity components, not pressure. Then numerical
analysis code ?SWANA2” is developped in two or three

dimension, which estimate velocity gradient tensor and

evaluate swirl function.
Hereafter definitions of swirling motion and swirling
function are described, and some application in are pre-

sented.

2 Definition of swirling motion

The definition of swirling motion is described as fol-
lows. We formulate with velocity gradient tensor,t) and
define swirl function.

When we discuss a motion that is significant physi-
cally, it must be an invariant motion in spite of coor-
dinate transformation in inertia system (Galilei trans-
formation). We need to define swirl motion in mathe-
matical expression that satisfy this condition. Then it is
understood that the definition of vortex with streamline
does not satisfy as an integral of velocity does not have
invariance.

In velocity field in three dimension given by v;(z)
(z = (z1,%2,73)), we set a point as Z;, and consider
the coordinate #; which origin is Z;, and which moves
with velocity v;(Z) (2 = (%1, Z2,%3)). This coordinate
Z; and spatial fixed coordinate z; (Cartesian coordinate)

has relation

Ty = T; — 571‘
=T; — ’U,L'(i)t (1)
And the velocity in two coordinates has a relation
0:(2) = vi(z) — 0 (2)
0; = (%) (3)
where ©¥; is velocity tensor (vector) in & coordinate.

Taylor expansion of ¥; derives

. . oD; 1 0%
A(3) = 6:(0 Lo 1 . A
0;(2) = 0;(0) + —5':2]'% 28:Ej8:ﬁk$]xk+
OD;
= O ety 4
_U(O)+8ijwj (4)

neglecting higher order terms. we note
0;(0) =0 (5)
Substituting into eq.(4) derives

00;

T
-, J
01

0;(2) = (6)

From eq.(1) and eq.(2), velocity gradient tensor between

to coordinates is equivalent, i.e.

8’0, Bvi

= 7
Baﬁj 8$]’ ( )
The left hand term in eq.(6) can be expressed as :
o a d .
0i(8) = — & (8)

dt
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Then, eq.(6) can be expressed as

dﬂ:”z o 61)2» N
& a5 ©)
or
%:& = A (10)
= [ayg] (11)
8vi

with vector notation. This is a formula of velocity ¥;
around & .

Eq.(10) is an autonomous equation with respect to .
In autonomous equation, the solution can be expressed
with respect to the corresponding eigenvalue and eigen-
vector, by solving the eigenequation. Then the solution
can be analyzed by solution trajectory and phase space.
This expresses the flow state around the point £; . We
note that this flow state given by eq.(10) is invariance in
Galilei transformation and then this flow characteristic
has physical meaning.

The eigenequation of eq.(10) can be described as

8v,~
oz 7

det ‘ — )\57;]' =0 (13)

where ) is eigenvalue and §;; is Kronecker delta. In case
of no compressible fluid, the continuous equation

81)1»
63:1

=0 (14)

is added as a condition.

This eigenequation (13) is an equation of third order,
and it has three eigenvalue. The solution trajectory of
€q.(10) can be expressed with respect to eigenvalue \;
(j = 1,2,3) and eigenvector &) = 51@ (i =1,2,3) of
eq.(10), i.e.

3
=) cehteV (15)
j=1

¢;€R:Const. (j=1,---3)
For the third order equation, the solution has two case;

(i) three real numbers

(ii) one real number and two complex numbers

In the latter case, the complex number is conjugate.
we set conjugate complex number as Aj, A2 , and real

number as As

A, Ao = Ag £ id (16)
A3 = Aagis 17
- (¢:imaginary number)
(¢>0)
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Fig.1 trajectory of swirling motion

and conjugate complex eigenvector as
£ (1)7 £ @) = gplane =+ inplane (18)

then solution trajectory of eq.(15) is given

z= e)\Rt (€plane =+ inplane) (COS th +isin ¢t)
+ e)\Rt (gplane - inplane) (COS ¢t —sin ¢t)
+ ekaIiStgazis (19)

Then

z= 26>\Rt (Eplane cos ¢t - nplane sin ¢t)
+ 6)\a$i6t£azis (20)

Here we set ¢; =1(j =1,---3)

Eq.(20) indicates that the solution (flow) swirls in the
plane defined vectors &,,,,,. and 7,,,,. , and proceeds
to the direction of vector £,,,,. as swirl axis. In case
Ar < 0, the flow is a swirl motion with suction (vortex)
as shown in Fig. 1. This flow state given from velocity
gradient tensor does not depend on existence of uniform

flow.

3 Definition of swirl function

As described before, if an arbitrary point has conjugate
complex number in eigenvalue of velocity gradient tensor,
the flow can be considered to swirl around the point.
The imaginary part of the conjugate complex eigenvalue
indicates the angular velocity of swirling.

Thus we can define the imaginary part in eq.(16) as

swirl function such that

1) (case (i)
¢(z) = , (21)

0 (case (1))
we note that swirl function is zero where the eigen-
value of velocity gradient tensor has no imaginary part

(conjugate complex number), i.e. where there has no



88

B THERPR A BT

swirling. The swirl function indicates that the flow is
swirling around the point where the function has non
zero value. There is no swirling motion in the area that
swirling function has.zero. Thus the function is a crite-
rion of classifying swirling/non swirling flow. In addition,
this represents the intensity of swirling, i.e. angular ve-
locity of swirling. Vorticity can express the intensity of
swirling, but is not appropriate for classifying the flow

as it has non zero value even if flow does not swirl.

phai |

Fig.2 swirl function ¢(r) in Burgers vortex

The analysis of swirling function in Burgers vortex
shows that the swirling function has maximum in the
centre (axis) of vortex as shown in Fig.2 (see next chap-
ter). We define the local maximum point in an region
where swirling function has non zero value as the axis of

swirling motion.

4 Application

Swirl analysis is performed by calculating velocity gra-
dient tensor and estimate eigenvalues and corresponding
eigenvectors. Velocity gradient tensor is given by finite
difference of velocity components in neighboring node.
Then numerical analysis code "SWANA2” is developped
in two or three dimension.

Application of SWANA2 in Burgers vortex and in ex-

periment data are presented hereafter.

4.1 Burgers vortex
The velocity distribution of Burgers vortex is described

as follows in cylindrical coordinates (r, 0, z) :

Uy = —%r (22)
r ar?

Vg = 2—7_‘_—;(1 —e 4 ) (23)

v, = az (24)

o @ positive constant
v : viscosity
T" : circulation

Fig.3 and 4 shows the velocity distribution of Burgers

vortex. In the figures hereafter, velocity (or swirl func-
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Fig.3 Burgers vortex (velocity distribution)

tion) is high in red, and low in bule. Fig. 4 shows the
velocity distribution on swirling plane. In figure, velocity
is high in red, and low in bule.

We compose 30 x 30 x 30 nodes and give the veloc-
ity component in Cartesian coordinates at each node in
Fig.3. Fig.5 shows the contour (distribution) of swirl
function on swirling plane as result of swirl analysis. It
is shown that swirl function has maximum at the centre

(axis).

Fig.4 velocity distribution on swirling plane

Fig.5 swirl function of Burgers vortex

If uniform velocity normal to the axis exists, the ve-

locity distribution is given as follows:
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Fig.6 swirling plane with uniform velocity

Fig.7 Burgers vortex with uniform velocity

T T

v == — Zvg + Uy (25)
r T
T z

Vg = 24 —lvg + us (26)
r T

U3 = QT3 (27)

(u1,ug : uniform velocity)

If uniform velocity normal to axis exists around vortex,
the velocity distribution changes and streamline shows as
if the vortex should exist in different area, as shown in
Fig.6 on swirling plane. In Fig.6 the vortex seems to
locate in different point, but swirl function distribution
is the same as shown in Fig.5.

Also Fig.7 and Fig.8 show the velocity distribution
of Burgers vortex with uniform velocity normal to the
axis in three dimension. The uniform velocity in Fig.8
is larger than that in Fig.7. The velocity distribution
or the stream line do not give information of existence
of vortex, in spite that the vortex is still at the same
location shown in Fig.3.

Fig.3, 7 and Fig.8 shows the trajectory of flow derived
from eigenvectors and eigenvalues given by eq.(20), with
yellow line. This trajectory is drawn near the axis that
local maximum of swirl function indicates. It is shown
that swirl function indicates the correct location and that
the trajectory converges to the axis. The local maximum
swirl function is equal to intensity of angular velocity at
the axis.

The result of swirl analysis of Burgers vortex shows

Fig.8 Burgers vortex with large uniform velocity

the possibility of misunderstanding on checking existence
of swirling motion with streamline or velocity distribu-
tion, and shows that present analysis extracts (identifies)

swirling motion in correct location and intensity.

4.2 Separation vortex

Fig.9 shows an example of separation flow and vortex
in two dimension, composed of app. 3000 cells. In Fig.9,
Flow pass through an substance in the lower part with
10 [m/s] and another flow is exhausted from the backside
of the substance with 1 [m/s]. Then separation vortex
can occur downstream. Fig.10 shows the pressure dis-
tribution. Velocity and pressure distribution does not
show clearly that vortex exists, but swirl function shows

a vortex downstream clearly, as shown in Fig.11.

e R e T o s,

Fig.9 velocity distribution of separation vortex

Fig.10 pressurte distribution of separation vortex

We note that pressure distribution does not always in-

dicate in some ranges of contour. If its contour has wide
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Fig.11 swirl function distribution of separation vortex

ranges, local minimum area due to vortex may be hidden.

4.3 analysis of experimental data

In the instrumentation of velocity field, PIV (Particle
Image Velocimetry) is applied in two dimension. Fig.12
shows a velocity distribution which computer receives
from PIV.

Fig.13 swirl function distribution

The numerical analysis result by SWANA2 is shown
in Fig.13. In these figures, velocity (or swirl function) is
high in red, and low in bule. It is observed that the swirl
axis in velocity distribution in Fig.12 and the axis indi-
cated by local maximum of swirl function differs. Then
uniform velocity defined as velocity in the local maxi-
mum point is deleted in velocity distribution, and the

modified velocity distribution is obtained as shown in

Fig.14 modified velocity distribution

Vr, Ve

Fig.15 velocity structure indicated by swirl
function (corresponding to Fig.14)
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Fig.16 velocity structure indicated by velocity
distribution(corresponding to Fig.12)

Fig.14. Fig. 14 shows that the local maximum point is
clearly the swirl axis.

In comparison with the swirling motion observed in
velocity distribution and in swirl condition, each veloc-
ity field in Fig.12 and Fig.14 is transformed into polar
Fig.16
The veloc-

coordinate with origin given at the swirl axis.
and Fig.15 shows the results respectively.
ity structure (distribution) in Fig.15 which swirl func-
tion indicate as swirling motion (axis) show the vortical
structure. The negative velocity in the radial compo-
nent shows suction swirling and the circumferential com-
ponents indicate that the gradient of this component is

maximum at the axis, such as Burgers vortex.



TEEIBIE D TE 3 & FERIEAENT

On the other hand, The velocity structure (distribu-
tion), which can be visually regarded as swirling motion
in Fig.12 (PIV observation), does not have characteristic
of swirling motion, neither in the radial component nor

circumferential component, as shown in Fig.16.

5 Discussion

Analysis of Burgers vortex and example shows that
streamline or visual observation is not accurate in exam-
ination of swirling motion. But the present analysis with
swirl function can identify swirling motion correctly. It
is noted that swirl function is not given only in centre
of swirling motion, but given in a area of swirling. We
note that a point which has conjugate complex eigen-
value (non zero swirl function) is not always a centre of
swirling motion. Swirl function is a function defined in
velocity field, such as vorticity. Swirl function indicates
an area of swirling, but and centre of swirling can be
identified with the distribution of swirling function. The
local maximum point in a swirling plane indicates the
centre. This can be proved in case of Burgers vortex
analytically, and examples of CFD results and analysis
of experimental data shows this characteristic. Analysis
with swirl function not only identifies swirling motion
but also estimates intensity of swirling.

The present method can identify the swirling axis in
spite of existence of uniform flow. Even uniform flow
shows as if the swirling area is at different area or as if
there is no swirling motion, this method identifies cor-
rectly. This method is effective to focus the area where
we should consider to change flow state. On the other
hand, the method that search zero velocity point in a
swirling plane for the swirling centre is not valid where
uniform velocity exists.

The application of experiment described before indi-
cates that the examination of swirling motion by visual
observation misleads in its existence and its location. It
is understood that streamline does not satisfy Galilei
invariance, and this is the reason of misleading. Even
though flow is visualized, the verification of flow is insuf-
ficient in identification of swirling motion. The estima-
tion of swirling motion should be examined with math-
ematical formulation to identify true physical behavior.
Swirling motion can not be observed at all especially
where large uniform velocity exists.

It is shown that the present method identifies correct
location of swirling axis even if uniform velocity exists.
Other identification method that search the point where
velocity is zero in swirling plane!? can not identify in

such case. Another identification method which estimate

the Hessian of pressure!® is not effective in combination
with experiment, as pressure distribution is difficult to

be measured in experiment.

6 Conclusion

Swirl function is defined from eigenvalues of velocity
gradient tensor. This property has a Galilei invariance,
and indicate the angular velocity if the flow characteristic
can be classified as vortical flow.

And identification method of axis of vortical flow from
local maximum point of swirl function is presented. This
method is applicable to estimate vortical axis in spite of
size, intensity. It is also applicable in case that uniform
velocity exists or vortical flow (axis) moves with non-zero
velocity. It can be appropriate in analysis of experiment,

as it requires only velocity data.

7 References

[1] Chong, M., Perry, A., et. al., A general classification
of three-dimensional flow fields, Phys. Fluids, A2(5)
(1990), pp.765-775

[2] SujudiD., Haimes, R., Identification of swirling flow
in 3-D vector fields, ATAA, (1995), pp.792-799

[3] Hunt, J.C.R., Wray, A.A., & Moin, P., Eddies,
stream, and convergence zones in turbulent flows,
Center for Turbulence Research, CTR-S88(1988),
pp-193

[4] Berdahl, C.H., Thompson, D.S., Eduction of
swirling structure using the velocity gradient ten-
sor, ATAA, 91-1823(1991)

[5] Jeong, J., & Hussain. F., On the identification of a
vortex, J. Fluid Mech., 285(1995), pp.69-94

6] Kida, S., Miura, H., Identification and analysis of
vortical structures, E.J. Mech. B/Fluids, 17(No.4)
(1998), pp.471-488 ‘

[7] Cucitore, R., Quadrio, R., Baron, A., On the effec-
tiveness and limitations of local criteria for the iden-
tification of a vortex, E.J. Mech. B/Fluids, 18(No.2)
(1999), pp.261-282

[8] Strawn, R.C., Kenwright, D.N., Ahmad, J., Com-
puter visualization of vortex wake systems, AIAA
J.37 (No.4) (1999), pp.511-512

[9] Levy, Y., Degani, D., Seginer, A., Graphical visual-
ization of vortical flows by means of helicity, AJAA
J., 28 (No.8) (1990), pp.1347-1352

[10] Jang, C.M., Furukawa, M., Inoue, M., Analysis of
vortical flow field in a propeller fan by LDV mea-
surements and LES - part I: three-dimensional vor-
tical flow structures, Trans. ASMFE J. Fluids Eng.,
123 (No.4) (2001), pp. 748-754

91



92

B TERFRE IR E @S, 55 10 5. 2008 &4

[11] Sawada, K., A convenient visualization method for

12

]

identifying vortex centers, Japan Soc. of Aero. Space
Sci., 38 (No0.120) (1995), pp.102-116

Nakayama, K., Umeda, K., Application of identifi-
cation of swirling motion with swirl function, Proc.
12th Int. Conf. Nuclear Eng., vol.2(2004) pp.771-
778(ICONE12-49184)

Nakayama, K., Umeda, K., et. al., Visualization sys-
tem of swirl motion, Proc. 12th Int. Conf. Nuclear
Eng., vol.3(2004) pp.499-504 (ICONE12-49189)



