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Functional Approximations of Various Characteristic Curves

of Electronic Elements and Generalization

of Equivalent Linearization and Describing Function Method

Yoshihiko NIIMI

Summary

Until today, equivalent linearization and describing function method have been known

as a very powerfull tool for analyzing the nonlinear systems. However the application was
restricted to only 2nd or 3rd ordersystem. In this paper, it was shown that Krylov-Bogoliubov
method could be easily generalized to the nth order system using the polar-coordinates of n

dimensional Euclidean R” space, and equivalent linearization method was equivalent to take

mean value in one functional space, For this analysis, the concepts of functional analysis,
especially, the concept of L. Schwartz’s distributions, Dirac’s Dilta function §(¢), and the

normed vector (functional) space etc., play

important roles. Moreover, it will be shown

that the knot theory on topology has some relation to the limit cycle of periodic solutions.
This method and the concepts will be used for the nonlinear analysis in the near future.

1. Preparation

1. 1. Functional Space: D, D’, E, E’, C ete.

A functional space F is one of vector spaces,
but being different from finite-dimensional vector
space, its suffix is infinite, i.e. real number. It can
be defined as follows :

1° if f(x)eF, and A€K, then

Mrf(x)eF where K is a field, which is
practically real or complex numbers.

2° if fi(x), fo(x)eF and A, peK, then

Afi+pfi.€K, also.
the following property can be readily verified
from the the above definition:

3° if (fp)rer€F, then ElxkfkeF for any

(Ap)rer. CK.

Generally, the functional space and its subspace,
and the dual space are the convenient concepts
for approximating the characteristic curves of
electronic elements and for the equivalent lin-
earization as will be described later. Next, we
specify some particular such spaces :

1. C : a space consisting of every continuous

functions.

2. C™ : space, which contains all functions,

having the continuous derivatives to ‘“the

mth order”.

3. D and its dual space D’: a space consists
of all functions on R?, which are infinite
differentiable, and have bounded supports.
Its dual space D’ is continuous linear form
on D;ie <T, >, TeD, 9eD’. The true
useful spaces are the subspaces of Dand D’,
such as D,, D(T'), etc-- Concerning these
spaces, L. Schwartz has already explaines
in his book (1] in detail.

4. E and its dual space E’: a space consists
of all functions, which are only infinite
differentialable, but not necessariy bounded
supports.

5. L2*(a, b): all functions, which are measurable

and the square functions are integrable:
13
WD [T1r@rda<tes,

The reasons, why these functional spaces are
very usefull are, that, the spaces are vector
spaces, in general, the linear or nonlinear opera-
tor transforms the one functional space to the
another functional space. Therefore, where
both such functional spaces have been known,
using a family of some points in “one” space

(i.e. for example, a, cos wt, ¥V a, in Hilbert space),
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One can approximate “the operator” : i.e. which
transform the points in one space to the co-
respondig family of points in another space.
This is the concept of equivalent linearization
method. Furthermore, it is desired that these
spaces have distance or norm. Next, we explain
about “the norm”

1. 2. Norm

“Norm” is defined as follows :
@25 1) llxllp=(Z]x;|2)*P

iel
or,

£ lle=(J1 £ ()| Pdn)* P, 1=P=eo

The norm, whose p is one, is integrable or local
integrable function space. And the norm, whose p
is infinite equalsts the norm: sup|f(x)|. These
two norms are not differentiable Ifcc;lfms. The other
norms : 1<p<co norms, are differentiable, espec-
jally, in the case of p=2, normed space is equi-
valent to Hilbert space: complex, completness,
and inner product space. In Hilbert space, ort-
hogonallity condition is satis fied : i.e., (1.2; 2)
Hilbert space has the orthonormal basis :
{ei}iez, and,
<fi, fi>=0, if i=j.
=1, if i=j.
and, in the space, any vector can be expressed
with the basis : i.e., if f(x)eL? then f(x) can
be expressed as the following form :
.25 3) f<x>=i§—|17\ifi(x),
and this expansion is unique and exists in any
case Therefore, until today, only this space has
been used in approximation theory.But we suppose
that other spaces, such as Banach space, will be
useful in the nonlinear analysis in the future. And
further, the norm, which contains the derivative
until the mth order will be used as follow:

@2:3) 7@ Lp,mg(lgzlgm [1psrez)e

where DS=dS|dtS or=2051+82+* + +8n f(x)[0x,51-

<+9x,57, and [S|=X7,S;.

2. Functional Approximations

2. 1. Given Functions or Given Data

Usually, givin approximating functions are
specified with the experimental data or from the

physical law. For example, Esaki diode v-i curve

can be physically represented as the following
form:
(2.1;1) ip/Ip=Ave=B’+ DeFv+Go,

where :

Ip is peak current,

Vp is peak voltage, v|V p=v,

A, B, D, F, and G are constants. nrespectively
The term ve™® means the tunneling current of
the diode, and e? is the injection current, which
appear in the high-voltage positive-resistance
branch, and further the term » means that the
current equals to zero in the neighorhood of the
valley current. But, in general, the following two
cases are distinct mathematically,:

Case 1. (experimental data are given): i.e.

Doz{(xl(O)’ 309, (x,(9, y,00),--,

ORI
2.1; 2)¢ Di={(=:®, y:®,-++, P1, ¥P@1)}

a={(@®, 3:),--, GPiyn, yPmn)}
where, x;(/) means the ith coordinates on the
jth data, and y;{) means that the jth derivatives
of y function of the x variable on the i th ¥
coordinates. Fom these data, we must determine.
the form of the function y=y(x).

Case 2. In this case, from the physical mean-
ing, the form of the function y=y(x) is some-

what known. Andthen at first, we may specaify

the form y=y(x,A,B--), and then the constant
A,B,--, etc. must be determined from the other
data.

In both cases, we want to utilize the given
informations as possible as. and there fore, once
selecting one particular data, the (functional)
space or norm are different from the other case.
Hereafter, the (given) specified function is
denoted as follows :

(2.1; 3) G (is specified from the given data)

2. 2. Specification of the Functional Approxi-

mations.

Once given the approximated function G, we
define the distance between G and F(;)(x;a,8,--),
and it is deonted as follows:

(2.2; 1) d(Fu(x; aB,-+), G),

Generally, the distance d equal to the norm of
the difference : F(;)—G :

(2.2;2) d(Fu), LI Fw—Gll,



Then, the problem may be specified as follows.
i.e., the distance :
(2.2; 3) min d(F)y(me,B--), G)
ayB,. .
mininiz by determining the suitable value of
each parameters a,f, .

Find such parameters values. This problem is
quite equivalent to the linear or genmetric
programming one. In that case the following
points must be specified : that is,

(Question 1) what function F(;y must be selec
ted? (Question 2) what distance is selected?

Usually a suitable norm is specified in Banach
(or Hilbert space).

(Question 3)

a,B,--. Or, in other words, how many numbers

The number of the parameters

of parameters must be taken for the fairly
better approximations?

2. 3. Linear Functional Appreximations.

Now it may be defined that linear approxima-
tions may be expressed as follows :
2.3; 1) Fuiy(@sreaB,-)=rF)(x; a8+,

for ¥ Athen,

the particular examples will be mentiond
as follows :

example 1. the space : {ei**; k=0,%1,--}

+co
(2.3; 2) Fm(x)% 3 cpeik?’,

example 2. the space:

{coskwx, sinkwx; £=0,1,--}
(2.3;3) Fy(x)la, +k§}1(akcoskwx+bksinkwx)

the coefficients a;,b, and ¢, are clearly related
mutually as follows :

(2.3; 4) a,=c,, Co=a,

_ ar—ibg
\ap=cCptc_p cr= 2

>0, ¢ )
1bk=1(0k—c—k) c_kz_‘llf*‘z;bk

example 3. the ortho normal series : {P,(x);
n=0, 1, --}

o

(2.3; 5) F(s)ékzo APy (x),
particullary, if P,(x)=x",

=S} + oo
(2.3; 6) F(4>ék207\kxk, or, 2 Apak

example 4. Unit step function’s series :
{Y2=Y;=Y (5—x;); i=0, 1,--},
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In this case, the approximation equals to
piece-wise linear one : i.e.,
@2.3;7) FoAX piYi-(x—x)+,

iEN

or,
(2.3; 73) :Ay'x—By,

where, Ay and B, are definod as follows :
I AyD T pi Yy,

(2.3: 8) e
1 ByAY piYi+ 5,
1EN

the unit step function Y ; is defined as follows:

(2.3; 9) YIEY(x—x,-)ZO, for x<x,~,
=1, for x>zx;,

In the above linear functional space approxi-
mations, if the each norm is differentiable, the
parameters a,B3,-- are determined as follows :

(2.3; 10) min|| f(x)+ 2 Apfp |l =min N/e>,
A keI Ar
where, IC N, or, by differentiating the error norm
N/e>:
2.3;11) -2 N/e>=0, keI,
N

Until today, the almost approximating functions
are linear, but in the near future, nonlinear
approximating functions will be used frequently.
Therefore next, nonlinear approximation will be
mentioned.

2. 4. Nonlinear Approximating Functions.

Nonlinear functions, concerning the parameters,
are definid as follows.

(2.4; 1) F(x;AaAB,-)AF(x;a,8,-+), Va
One example of the nonlinear functions is :
example 1. {P;(x)e*:*; jeZ(integer), and P;(x)

is polynomial of any degree}.

(2.4;2) F<e>=§‘3AiPi(x)e““‘,

Froms the point of view of the “Laplace trans

form”, the following formula :

, 1 1
@49 YOI 5, YOFEsIpe
fo-s 1
Tla) ~ (P—n)®"

are provided, then the difference between (2.4;2)

Y(t)ert

and (2.3; 6) (polynomial) are sligtly, but from
the view point of approximation, these two
methods are quite different, since the one is
linear and the other is nonlinear.

2. 5. Integral Approximation.

This approximation method may be seen the
generalization of the above one, which contains

some discrete parameters. The form of method
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can be expressed as follows :

13
@51 y=["eGna,

a

The parameter A, in this case, is completness

and has finite measurable. One example of this
method, i.e. “Laplace transform”, is the extension
of exponential functional approximation to the

integral form :
2.5; 2) y=j;°F<x)e—de,
As another example, Fourier transform may

be aeso:

+oo

2.5;3) v =fF(x>e2inx,

or

£

¥
@.5; 9 F(K):jy(x) L 2iTAT g

These approximation methods are very in-
tereating mathematically, but practically they
will become important in the future.

2. 6. example

2. 6. 1. example 1. curve-fitting or point-ap-
proximation problem.

As one example, let us consider the following

curve-fitting problem of Fig. 1.

Y
? Po: (0, 0), P,: (1, 2),
3 P (2, 2), Ps: (3, 2),
V4
P, P, 7
27 NS /
/ \\\\ P 7/
/ % e
/ \\\\ Pz‘//
i/ v
/
/
/
T T T
P, 1 2 3 —=X

Fig. 1 The example of curve fitting problem.

In this case, D, in the (2.1; 2) is that: (x,
©, 3,¢)=1(0,0), (x5, 3, =(1,2), (O,
9N =21), (5., y.)=(,2).

2.6.1.1. Polynomial Approximation

If this curve is approximated by three degree
equation :

(2.6.1; 1) y=so+s18+s,x%+55x°
And using the data of »;(9=y(x;(®), the co-

efficients (sp)re{0,1,2,3y may be calculated asfoll-
owS :
(2.6.15 2) (50,51,52,55)=1(0,5.17, —14, 0.83)

Next, considering the information of D,, i.e.
(dy|dx)at(1,2)=0, the coefficients s; become as
follows :

(2.6.1; 3) (50,51,52,55)=10(0,4.5, +3,05)

And further, assuming the following infor-
mation of D,, ie., (d?y/dx*)ai(1.5,1.5)=0, the co-
efficients s, are as follows :

(2.6.1; 4) (5¢,51,52,55)=(0,5.5, —4.5,1),

The geometric diagram of the curve of equation
(2.6.1; 1), using these values of coefficients, are
plotted in Fig. 2(a) and (b).

4 (1)
(1)

(1) (11)

(a)
Fig. 2(a) The Approximation Curve,

(D, (I D

(1)
(11)

(1)

(11) (1)
(1)

The expanded plotting of the part (A)

Fig. 2(b). The Approximation Curve of
(D), (I, .



And if this curve may be expressed piecewise
linear approximation, using unit step function
of (2.3; 7), the coefficients (pi)ien, ui and Y;
become as follows :

(2.6.1;5) y(x)=2Y(x)-2x—3Y (*—-1)-(x—1)+
+2Y (x—2)-(x—2),

or,

(2.6.1; 5a) y(x)=QY,—3Y.+2Y,)=x
—(—3Y,+4Y,),
these expressions will be used in the equivalent-

linearization method soon later.
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2.6.2. Example 2. Plate current - Grid voltage
Characteristics of a triod.

In this case, also, the three forms of expressions
may be possible, that is, polynomial (or Taylor
series), Fourier - series representation, and piece-
wise linear method. [see reference (4). However,
only two representation will be considered here.
First, consider the Fourier-series representation
which is pictured in Fig. 3a.

If y represents the current and x the voltage,

then owing to the fact that the characteristic

b WO~ == - -
T
DN
3
1

Fig. 3.

curve in Fig. 3b is even, it follows that

N
; — 2mn |
2.6.2; 1) y=-%+ [ ancos( ( i RN

Using this expresion, following the reference
(4}, if the grid voltage is written as follows:
(2.6.2; 2) x=FE,+ E;sinw,t

It then follows that

N
(2.6.2; 3) y= ‘g’ —I—Z)lancos(un—l—vnsinwlt)
Pyl
where
(2.6.2; 4 un=_2E’E;LE0+@n

2nn
Ef £

equation (2.6.2; 3) may be expanded into the

V=

form,
a N
(2.6.2; 5) y=—7°a—|— Zlan[cosuncos(vnsinmlt)~
i=
—sinu,sin (v,sinw,t)],
the mth harmonic of the plat current is written

by the expression,

)

The above characteristic of triod may be

N
(2.6.2; 6) |xm|=2 Zldn]m(vn)cos(un-l-
Z

expressed by the piece wise linear method, as
the same as the case of (2.6.1).

In the above all cases, the suffix set I or IV
may be all integer z, or all rational nunaber @,
or all real number R or other set. [Remark]
In linear approximation, if the curve is the v-i
characteristics of 2-terminal elements, then it
may be represented as follows:

(A D iD=aofo(v>+a1f1(v>+--'=k§vakfk(v>,

this expression has a important meaning on
the circiut topology, that is, the each term a;f,
provides the shunt circuit as shown in Fig. 4.
From this view point, the relation between the
nonlinear mathematics and the circuit topolgy

will be clarify as gradually as oc
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ip=1(v)
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Fig. 4. (b) is the equivalent cijcuit of (a).

3. Generalization of Equivalent
Linearization and Describing Function Method

3. 1. Nonlinear Operator

The Nonlinear operator is defined as follows:
B.1; 1) H&AH®%,F)(%),D ) ()

where, assuming as follows :

D;Ad|dt;
(3.1; 2) F(;y(x)A polynomial or analytic
function of x;

and, H is a polynomial, or analytic function of
%, F(;), and D;. Let us denote:s=¢&,, F(;H)=¢&,,
and D;=¢,;, then H may be considered as the
function of three variable, &, &,, &5. And further
let us write as follows:

(8.1;3) & Prg,Peg Ps=¢P P, P, P, areinteger.
3
[p|=% pi,
i=1

then, if the degree of polynomial H is smaller
than m, the function H can be written as follows:

B.1;4) H(Ey, &, E:)= 2 apt?,
|Pl<m

But in this case as different from the general
polynomials, it must be noted that, algebra
is noncommutative. This is very important point.
Generally, in nonlinear mathematics, the algebra,
to which the mathematics belongs, is the nonco-
mmutative one. From this viewpoint, it may be
thought that “nonlinearity” was very closely
related to knot theory. Particullary, a limit cycle
or a periodical oscillation will be studied from
these directions in the future.

Now, let us return to the equation (3.1; 1),
and consider the particular example of nonlinear

operator H.

example 1. Van der Pol operator:

3.1;5) yAH#)AD3x+p(x2—=1)Dx+x,
example 2. Duffing operator:

(8.1;6) yAH®)ADx+x+ px®,
example 3. One retarded action operation:

B.1; 7 yAD3x+2(6+0:2*)Dix+vis+v2as,

where §, §,, v2, and »? are constants, and x.

is defined as the form:

2 Ax(t—T1), T is retarded time,

These operators have been well known, but
rather classical. For this reason, they are very
typical examples, in the case of studying the
generalized equivalent linearization procedure.

3. 2. Systems of Nonlinear Differential Equa-

tions.

The systems of nonlinear differential equations

are given as the following forms:

3.2; 1) Mx=f(x),

where, M is the n row-z column matrix, x is
the vector x=(x;,%,,-+,24) %, and x is denoted the
derivative with respect to time £ f is, also, a
vector, of which component f; consists of the
functions of variable %;,--, %, :=1,--,n, respec-
tively. Here, we shall consider two cases respec-
tively, that is:

Case 1. det M=0. In this cases, equation
(3.2; 1) may be rewritten as the following form:
3.2;2) Q-x=f(x) or, I-x=f(x),
where Q=diag(a,, -+, a,), and I is unit matrix:
I=diag (1, --, 1], assuming that every number

a; is not equals to zero. In the equation (3.2; 2),



the independent variable ¢ is not contained
explicitly. But, in the case of containing the
varioble ¢ explicitly, and if we denote tQ%xyi1,
and dxp1/dt=10 fne1 (%1, =+, %uy1) TESPeEctively,
the equation of the case equals to the systems
of n+1 differential equations of n+1 variables,
formally.

Case 2. det M =0, In this case, equation (3.2;1)
is degenerated, that is, the diagonal matirx Q is
expressed as the form,

Q=diag (a4, -, a,, 0, -+, 07,

Then (3.2; 1) may be divided into two groups:
7 differential equations and the (#—#) algebraric
equations. The system, at that case, generats
pulse, and the such oscillator is called the
relaxation oscillator. The differential equations
have mathematically become the singular
perturbation problem. and therefore analytical
solution can be hardly obtained by the ordinary
method. Then, we have omitted this case.

Equation of case (3.1) can be always
tranformed to the the system (3.2). For example,
Van der Pol operator (3.1; 5) may be reduced to
the systems as follows:

Let us put, x=x, and D ;x=x,,
then, equation (3.1; 5) is:

Dix,=2x,
Dyxg=—x+p(1—%,2)%,,

in this case, the functions f,, f, becom into

(3.2; 3) {

the forms :
(3.2; 32) { Fulouma) B,
Fo(xi2) D—x1+p(A—22)x,,

However, Van der Pol operator as defined
(8.1;5) ismuch convenient for practial applicati-
ons very often And for that reason, we have
divided into the two cases, i.e. the one is
operator (3.1), the other is systems (8.2).

3. 3. The Generalization of Equivalent Line-

arization.

Equivalent Linarization are provided from the
many different point of view, such as, tangent
linearization, optimal linearization, and so on.
But, all-of the above formulation, we may conclude
that as follows : “The equivalent linearization,
is, the one of taking the mean value, or the
balancing <{in some sense>". That is, in the case
(38.1), if the operator H* is defined as follows:
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3.3: * <H(x)>
B3;1) H é-———<x>

<H®), p1(5)>
o AT S

then, H* may be considered as the operator,
which operates to x, in place of operator H : that
is,

(3.3;2) y=H(@) => y=H*-5,

In other words, operator H is deduced to H*
the operator H* has, now, be-come linear. the
latter in (3.3; 1) is the weighted mean value,
and this form, is just equals to the Schwartz’s
distributions, assuming that H(x)eD’, xe€D’, and
@€ED.

However, at the present case, some questions
must be answered for justifying the above
formula (3.3; 1):

Question 1.

The method for producing the linear operator
associated with a given nonlinear operator
requires knowledge of the function x==x,(t), the
point of the functional space, at which the
linearization is performed.

Question 2.

What method of taking the meanvalue or
balancing could be recomended in each case ?
This problem may be, justly reduced to the
norm or the distance of the given functional
space.

Question 3.

Once the functional space, and its norm or the

distance has been sepecified, what functions
may be selected as @(x)?

Once these
above questions have been answered,

H* could be determined. Next we shall considered
some practical examples.

Example 1. If we select the Hilbert space as
functional space, and L, norm as the distance
in the space, then, in the equation (3.3; 1),
3.3: 3) { o1 (5)=H (x),

Py (%)=x,
and,  <f@), p>="f@pd
can be put, and, let us put x,=a, cos wt, the point

in the space.
Then, the next equation may be hold:

b
) f (H (aycoswb)) *dt
HH=e

j a,%cos’wt dt,
a

(3.3; 4
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In the case of Van der Pol operator the above

formula is:

3.3;5) H*=D+u(%—1)D, +1,

As conclusion, the above equation (3.3; 1)
holds in general, that is, the equation is the
complete generalization of equivalent linearization
in the case of nonlinear operator.

3. 3. 1. The extension to the Systems of Differ-
ential Equations.

Let us consider, now, that the systems of
differential equation are given: x=f(x). In this
case one question occurs; that is, what point in

the functional space must be selected ?

(3.3; 6) xo=%10) %20, **%no)l,

In general, this question is very difficult, but,
if the solution has the oscillatory property, the
following assumption may be seen as justifying:
(3.3; 6a) { %1 0=a;co8(w. t+@;1),

xio=a;cos(wit+®;),
G=1--, n)

And further all of the above case, assuming
the following fact:

(3.3; 6b) w;=w, VieN={1, .-, n}

This assumption may be justified as follows:
if w; =2w,, and =2, then the limit cycle diagram

in %, —x, plane, will be come as the Fig. ba.

W,

W,

Fig. 5(a) The limit cycle of oscillation in the case: w,=2w,.

However, in Fig. b, singular point, the origin
P,, is satisfied by the differential equation. This
means that at the point (0, 0), /,(0,0) and f,(0,0)
have not the specified value.

Such case may be occur very suddenly. There-
fore, usally, it is natual that the assumption:
wi=wj, (i%j) Vi, j, may be hold in almost
cases. Here after, we shall think so. Then, as-

suming the following equation:

xi=d;cos(wlt+@;)+----,
tangent linearization method is that:

(3.3;7) i;= Z PN

1

@G=1, --n)
All other cases may be reduced from the

formula (3,3; 1). If x=x,(¢) is Fourier series;

+oo
xoj(t)zkﬂck(he"kwt, then, ¢(x) will become

. T .
e~ ik¥t and the< ,> equals f H-e'lk’“—‘;,t—.
0

Moreover, H* will be changed to a vector; that
is,
. sy [(SH(ZCHPeiknt), emivt>
3.3; 8 HJ(U)‘( < CheikVt gmiwis s
SHECD:), e20t> )
<CRD e, i >
From the above example, we can understand

that, “the equivalent linearization is equalent to
<taking-mean value method> in some sense, or
in a meaning”.

3. 4. The generalization of Van der Pol and

Krylov-Bogoliubov Method.

KJ.B. method is equal to transform the given
(%, ¥) coordincte on R? to the polar coordinate
(7, 8) on the same R? plane, taking the mean
value with respect to the angle 6.

This method may be extended to the R” space,



X

/Iimt cycle -

T

Fig. 6. The 11m1t cycles of Van der Pol
oscillator : xl—xz, xzz—xl—l—p(l x?)
x, and. its eqiuvalent, optimal lin-
earized oscillator.

adapting the generalized polar coordinate on R”,
that is:

n—i

3.4; 1 x,~=rsin0n+1_,~]‘l=Tlcosej with Gn:%
(=1, +-,m)
or, in other form,
(3.4; 1a) x,-:rsine,,“_,-:‘l'j:sinoj', with 0,=0
(=1, --,u)

The different point between (38.4; 1) and
(8.4; 1a) is the direction of the R” space’), and
this will be not important for the application of
the trans formation of coordinate.

Consider, that the system x=f(x) are given.
and change the variable x to the polar coordinate,
which is given in (3.4; 1). Then, the form of
the system will be trans formed to the following

form: ie.
. n—1
7sinf, T cosf ;—elrsmo + .

=f1(75in9n"'):
n—2
rsmen 1 Trsing; — 1r ot
= f,(rsinfy, ),

(3.4; 2)

rsing+ <@,7+ = f,(rsindy,),

1) it may be concluded from knot they; for
examples, see the book: “introduction to
knot theory” by R. Hcroowell and Ralph H.
Fox.
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The left sides of these equatlons are the linear
equation of #n variables, r, 91, 62 - 9,, 1, and
therefore, (3.4; 2) can be transformed to the
equation of 1;, él,-~- Then, these equations will

be reduced to the following system:
r=F, (7, 01,, 0,4_1),

(3.4; 3) 9.1:F91(7’; 01,05 0p_1),

Ou-1=Fons(7, 01, 651,
and, if we may take the mean value the equations
on right sides on the R” sphere 7”71S, (where
S, is the area of the radious 1 onR™), the right
hand side might be reduced to the functions of

only one variable 7, that is:

j‘Fr(ry 01,7, 0,)7" 1 d S, =F ,(7),

7" sn
o D) L[ Fai(r 00, 0078, =Fos (),
=1, -, n—1)
and,
r=F,(r),
3.4; 30) | O=Fo: 0,

6ns=Fon(r),

The equations on (3.4; 3a) have important
properties for practical applications, since, at
first within these equation being considered,
angle coordinates, 6,,--- are all the function of
variable 7 only, and from the first equation on
(8.4; 3a), the oscillation concerning the nonlinear
equations may be concluded whether the oscil-
lation stable or unstable one. Coneer.-ning with
to respect the point, a usual equivalent lin-
iearization method will provid nothing. Now, on
the fol lowing, it willde mention ed some par-
ticular examples.

Example 1. the case n=2.

Consider the following system of differential

equations:

(3.4; 4) { :.c1=f1(x1, %2),
x2=f2(%1, %2),
and, transform the (%, x,) to the (7, 6,):

(3.4; 5) {

(this can be reduced from (3.4; 1) ).
Then, substituting in the (3.4; 4) ;

x4 =7co0sf,

x5, =7sinéd,
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(3.4; 6) 7:00501+élr(—sin01):fl(rcosel, 7sinf;)
;sinel+élrc0501:f2(rcosel, 7sinf,).

from the above equations, with respect to the
variable 7, 6,, the following equation may be

obtained:

I;f:flcosol-l—fzsinel,

70, =f,c080,; — f,sinf,,

@3.4;7)

these equations correspond to (3.4; 3).
The calculationg corresponding to (3.4;4) with
respect to 6,, have been performed, the next

formula will result:

(3.4; 8 [r=F,0,
| 6, = For (),
where,
1 "
F,(r)éwf{fl -cosS+ f,-sinS}dS,
(3.4; 8a) ’

29t
Fou(r) g [ (facosS— £, -sinS}ds,
o

As the particular example, consider Van der
Pol operator: f;Q%,, foA—x+p(l—x,%)%,, (see,
the equation (3.2; 3)). Let us calculate F,(7),
and Fg,(r):

27T
F,(r) :%ﬂj {rsinScosS+ (—rcosS+p
0
(1—72%cos?S)rsinS)sinS}-dS

T

2
2%&— cosSsinS + psin?S —
0

—pr2cos?Ssin2S}dS
A B RN
= {2~ Ly 2
_ k7 2
=5 (4—7?),

and,
1 27T
Fo.(r) ZWf{ —7cosS+p(1—7r%cos?S)rsinS)
0

cosS —7sinSsinS}-dS
27T

=~§17r— r{—1—pr3cos®*SsinS}dS
0

27C
ZE—;f(l + pur2cos®SsinS)dS
0

=—7,
Then, from (3.4; 8),
r =E (4—r2),
(3.4; 8) 8
o=—1,

if the initial condition will be r=7,, 0,=0 at t=0,
the solutions of (3.4; 8a) are:

722=7) _ 4wt -
P =Ae ™"t 0,=—t

Then, the steady state amplitude is 7;=2, and

)

the fundamental angular velocity is equals to
1. And moreover, it may be known that the
transient time until the steady state motion is
propontional to the value p.

As a concluding remark, if generalized B.- K.
method will be developed to the system of the
differential equations more completely, particu-
larly in relation to knot theory (i.e.topological
geometry), this method will be come the most
powerfull tool for analizing the nonlinear
differential -diflerence systems.

3. 5. Describing Function Method

Describing function method, strongly depends
on the properties of complex numbers. Complex
numbers have been the significant tool for
analizing the electronic com munication circuits
until tody, particularly linear circuit. For that
reason, describing function method has been
studied in details, and particularlly it was used
very often. relating nonlinear control theory,

Now, however, what character of complex
number will be related to the deseribing function
method, algebraic or analytic? It will be thought
for me that, “some ortho gonal properties” are
activity in this case. If it is true, other ortho
gonal functions must be used at the same way,
in place of complex. This is the fundamental
idea of the present paper. And further the
describing function method are very strongly
related to the stability of the system. About
this point, we must note at the same time.

If the system can be represented by one
nonlinear operator H, the coresponding des
cribing function can be expressed as the following

form:

3.5; 1) HA-SH(gcosot), ei® >
(3.5 1) = <a,coswt, e"i¥t>
27T /W

f[H(aOCOSwt)]e’f‘”‘dt

or,

Il

27,/ W
a,coswte”i“tdt
0



27 /W

or, ) X
=ﬂ—%f[H(aocosm>je—zwtdt,
0

Then, the describing function is equivalent to
the equivalent linearization, concerning e i“! e
D(T) in Hilbert space. This is very important
thing However, the above formula, used in
definition shows that the ordinary describing
function can be extended to the more various
directions. For example, if kw could be replaced
to w, in (3.5; 1), the following formula may
be defined :

(3.5; 2) HyA <t (acoskot), e" k12

<a,coskwt, e ikt >
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This is the describing function of the kth
order harmonics. More generally, the following
formula may be considered:

. g <H(x0), po(t)>
@.5:3) Ha oo, Po(H)>

The above equation defines the generalized

describing function.

And further, in the (3.5; 3), H* is scalar, but
H* may be extended to vector, or matrix. But,
this will be future problem, and here these fact
are not considered.

(Remark 1) Dual Network, or Dual system:

1
('\; —_———
> T (
1a1f1 lazfz i lakfki lanfn
= 17
[ Lo
I (I
oO—— - e ————o————-:—{- ——o———}—:———u
—_ | —= E |
| |
S | J

&

Fig. 7. Nonlinear two terminal network and its dual network

Nonlinear dual network, may be considered, of
course. As shown in Fig. 6. and, let us Consider
analytical expresion as following form:

RL; D =3 arip(v),

(R1; 2) 04=3% b Ga),
7

If these two dual networks have the same
energy, the next equation hold:
R1; 3 G z apip(v) )= (w4, 2, bjvr(ia) ),

ie.,
(R1; 3a) Y ar(i, ip(0) )=JZ bj(wg, vd(ia) )
And if the each (i, i(») ) equals to the cor-
responding (vg, v;(ig) ), the following formula
will be hold:
ap=bp, and
(& 12 () )=(va, vr(ia) ).

for any &,

(R1; 4

This is the generalized orthogonal condition.

And considering the relation between nonlinear

network and its mathmatical expression will
be very important
(Remark 2] Piece-wise Linear Approximations:
Piece-wise linear approximation method con-
tains unit step functions in the equation. Therefore
his derivatives have impulse (delta) function and
its derivatives; that is L. Schwartz’s distributions.
But, trigger voltage in Multivibrator is already
equals to the & function, mathematically. And,
in this respect to the point, there are no
difficult problem. Rather their practical utilities
are very important, that is, by using the piece-
wase linear approximation, very sigificant charac-
ter of nonlinier circuit will be appear, (omitting
in this paper), and & function as the forcing
function is very useful function in the Van

Slooten’s theory.

4. Conclusion.

The General theory and the important points
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of functional approximations of various charac

teristic curves of electronic elemennts and gene-

ralization ‘of equivalent linearization and desc-
ribing functions were explained and discussed in
this paper.

The theory and the methads given in this paper
are supposed to be very useful for analyzing the
nonlinear circuit problems. The practical ap-
plications of this theory to many interesting
examples will be reported in the near future.

The author is grateful to Prof. S. Muto of the
Nagoya Institute of Technology and others for

their useful discussions and encouragements.
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