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Functional Approximations of Various Characteristic Curves 

of Electronic Elements and Generalization 

of Equivalent Linearization and Describing Function Method 

Yoshihiko NIIMI 

Summary 

Unti1 today， equivalent linearization and describing function method have been known 

as a very powerfull tool for analyzing the nonlinear systems. However the application was 

restricted to only 2nd or 3rd ordersystem. In this paper， it was shown that Krylov-Bogoliubov 

method could be easi1y generalized to the nth order system using the polar-coordinates of n 

dimensional Euc1idean Rn space， and equivalent linearization method was equivalent to t心I:e

mean value in one functional space， For this analysis， the concepts of functional analysis， 

especially， the concept of L. Schwartz's distributions， Dirac's D1ta function o(t)， and the 

normed vector (functional) space etc.， play important roles. Moreover， it will be shown 

that the knot theory on topology has some relation to the limit cyc1e of periodic solutions. 

This method and the concepts will be used for the nonlinear analysis in the near future. 

1. Preparation 

1. 1. Functional Space: D， D'， E， E'， C etc. 

A functional space F is one of vector spaces， 

but being di任erentfrom finite-dimensional vector 

space， its su伍xis infinite， i.e. real number. It can 

be defined as follows : 

10 if f(x)eF， and入eK，then 

入f(x)eFwhere K is a field， which is 

practically real or complex numbers. 

20 if fパx)，f2(x)eF and λ， J.LeK， then 

λf1十μf2eK， also. 

the following property can be readi1y verified 

from the the above definition: 

30 if (h)k6ZeF， then L:入kfkeF for any 
keI 

(入k)kEI，・ cK.

Generally， the functional space and its subspace， 

and the dual space are the convenient concepts 

for approximating the characteristic curves of 

electronic elements and for the equivalent lin-

earization as wil1 be described later. Next， we 

specify some particular such spaces : 

1. C: a space consisting of every continuous 

functions. 

2. C師:space， which contains all functions， 

having the continuous derivatives to“the 

mth order". 

3. D and its dual space D': a space consists 

of all functions on Rn， which are infinite 

differentiable， and have bounded supports. 

Its dual space D' is continuous linear form 

on D; i.e. <T， '1>>， TeD，伊eD'.The true 

useful spaces are the subspaces of Dand D'， 

such as D+， D(r)， etc・・ Concerning these 

spaces， L. Schwartz has already explaines 

in his book (1) in detail. 

4. E and its dual space E': a space consists 

of all functions， which are only infinite 

di旺erentialable，but not necessariy bounded 

supports. 

5. L2Ca， b) : all functions， which are measurable 

and the square functions are integrable: 

(1.1; 1) s: 1 f(x) 12dx< +∞， 

The reasons， why these functional spaces are 

very usefull are， that， the spaces are vector 

spaces， in general， the linear or nonlinear opera-

tor transforms the one functional space to the 

another functional space. Therefore， where 

both such functional spaces have been known， 

using a fami1y of some points in“one" space 

(i.e. for example， ao cos rut， Vao in Hi1bert space)， 
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One can approximate “the operator" : i.e. which 

transform the points in one space to the co-

respondig family of points in another space. 

This is the concept of equival巴ntlinearization 

method園 Furthermore，it is desired that these 

spaces have distance or norm. Next， we explain 

about “the norm" 

1.2. NOJrm 

“Norm" is defined as follows ; 

(1.2; 1) Ilxllp=(L:lxiIP)l/P 
ieI 

or， 

IlfωIILPニ (Slf(ゆ|附川区P手∞

The norm， whose T is one， is integrable or local 

integrable function space. And the norm， whose p 

is infinite equalsts the norm: suρ1 f(x) 1. These 
xEI 

two norms are not differentiable norms. The other 

norms: l<tく∞ norms，ar巴 di在erentiable，espec司

ially， in the case of t=2， normed space is equi-

valent to Hilbert space: complex， completness， 

and inner product space. In Hilbert space， ort-

hogonallity condition is satis fied : i.eη(1. 2; 2) 

Hilbert space has th巴 orthonormal basis: 

{ei}iEI， and， 

<f;， fj>=u， if iキj.

二 1，if i=j. 

and， in the space， any vector can be expressed 

with the basis ; i.e.， if f(x)eV， then f(x) can 

be expressed as the following form ; 

(1.2;3) f(x)=1:.，λdi(X)， 
ieI 

and this expansion is unique and exists in any 

case Therefore， until today， only this space has 

been used in approximation theory. But we suppose 

that other spaces， such as Banach space， will be 

useful in the nonlinear analysis in the future. And 

further， the norm， which contains the derivative 

until the mth order wil1 be used as follow: 

(1. 2; 3) 11 f(x) 11 LP，閉会(L: ¥ IDSf(x)1什l/P
¥[S[三二mJ V dxl 

where DSニ d5 / dtS or= dS1+S2+・・ +Snf(x) / dX1S1・

. . dXnSn， and 1 s 1 =戸i=lSi. 

2. Fund:ional Approximations 

2. 1. Given Functions or Given Data 

Usually， givin approximating functions are 

specified with the experim巴ntaldata or from the 

physicallaw. For example， Esaki diode v-i curve 

can be physically represented as the following 

form: 

(2.1; 1) iD/lp=Ave-Ev+DeFv十Gv，

where: 

Ip is peak current， 

V P is peak voltage， v / v p二三V，

A， B， D， F， and G are constants圃 nrespectively

The term ve-v means the tunneling current of 

the diode， and eV is the injection current， which 

appear in the high-voltage positive-resistance 

branch， and further the term v mea丘sthat the 

current邑qualsto zero in the neighorhood of the 

valley current. But， in g己neral，the following two 

cases are distinct mathematically，: 

Case 1. (experimental data are given): i.e. 

( Doニ {(x1(01， Yl(O))， (X2(0)， Y2(0))，・~
I (xお y民)

(2.1; 2)~ D1={(Xl(11， Yl(ll，..・，(XT(lh， YT(l)ェ)}

¥ Dn={(Xl(ぺ Yl (n))，・ー，(xT(，山 ，yT (n)n)} 

where， x;<j) means the ith coordinates on the 

jth data， and Y i (j) means that the jth derivatives 

of Y function of the x variable on the i th Y 

coordinates. Fom these data， we must det己rmine.

the form of th己 functionYニ y(x).

Case 2. In this case， from the physical m邑an司

ing， the form of the function Yニ y(x) is some-

what known. Andthen at first， we may specaify 

the form y=y(x，A，B..)， and then the constant 

A，B，ー， etc. must be determined from the other 

data. 

In both cases， we want to utilize the given 

informations as possible as. and there fore， once 

selecting one particular data， the (functional) 

space or norm are different from the other case. 

Hereafter， the (given) specified function is 

denoted as follows : 

(2.1; 3) G (is specified from the given data) 

2園 2. Speci畳catiol1of the Functional Approxi-

mations. 

Once given the approximated function G， we 

define the distance between G and F(i)(x;a，s，'う，

and it is d巴ontedas follows; 

(2.2; 1) d(F(i)(x; a，β，・・)， G)， 

Generally， th色 distanced equal to the norm of 

the difference : F(i)-G ; 

(2.2;2) d(F(i)， G)会 IIFω-GII，



Then， the problem may be specified as follows圃

i.e.， the distance 

(2.2; 3) min d(F(i)(x;a，βヘ・)， G) 

a，β.. 

mininiz by determining the suitable value of 

each parameters a，β，…. 

Find such parameters values. This problem is 

quite equivalent to the linear or genmetric 

programming one. 1n that case the following 

points must be specified : th且tis， 

(Question 1) what function Fωmust be sel巴c

ted? (Question 2) what distance is selected? 

U sually a suitable norm is specified in Banach 

(or Hilbert space). 

(Question 3) The number of the parameters 

日，s，'ヘ Or，in other words， how many numbers 

of parameters must be taken for the fairly 

better approxim抗 ions?

2. 3. LineaJr Fundional Applwximations. 

Now it may be defined that linear approェima-

tions may be expressed as follows 

(2.3; 1) F(i)(x;入院λβ，・・)=入F(i)(x;日，β，'")， 

for V入then，

the p丘rticular examples will be mentiond 

as follows : 

example 1. the space : {eikx; k二 0，士1，・・}

+∞ 
(2.3; 2) Fω(司会:Eckeikwx~ 

k~ ∞ 

example 2. the space: 

{coskωx， sinkwx; k=O，l，"} 

(2.3;3) F(2)(X)会ao十戸(akcoskwx十九sinkwx)
k~l 

th巴 coef五cientsak，bk and Ck are clearly related 

mutually as follows : 

(2.3; 4) ao二 COJ Coニ ao

: ak=ck十C-k
k>O， i 

I bk=i(Ck-Ck) 

-
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example 3. the ortho normal series : {Pn(x); 

n二 0，1， ..} 

(2.3; 5) Fω会 Z 入kPk(X)，
k~O 

particullary， if Pn(x)=xn， 

∞+ ∞  
(2圃 3;6) F(4)ムエ λkXk，or L.:入kXk

k~O k~ ∞ 

巴xample4. Unit step function's series : 

{Yx'==Yi==Y(X-Xi); i=O， 1，..}， 
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1n this case， the approximation equals to 

piece-wise linear one : i.e.， 

(2.3; 7) F(5)会記 μiYi' (X-Xi)十Yo，
zεH 

or， 

(2.3; 7a) ニ Ay.x-By，

where， Ay and B y are defin~d as follows : 

r Ay会 2μiYi，
(23;8)!Z日

I By会 ZμiYi+Y"
ieN 

the unit step function Y i is defined as follows: 

(2.3; 9) Yi三 Y(X-Xi)二 0，for X<Xi， 

=1， for X>Xi， 

1n the above linear functional space approxi-

mations， if the each norm is differentiable， the 

parameters a，β.. are determined as follows : 

(2.3; 10) min 11 f(x)十戸入kh11 =min N/E>， 
入k kEI 入h

where， IcN， or， by differentiating the error norm 

N/E>・

(2.3; 11) 一三-N/E>ニ 0，kEI， 
日入h

Until today， the almost approximating functions 

are linear， but in the near future， nonlinear 

approximating functions will be used frequently. 

Therefore n巴xt，nonlinear approエimationwill be 

mentioned. 

2. 4. Nonlinear App:roximating FI!.nctions. 

Nonlinear functions， concerning the parameters， 

are de五nidas follows. 

(2. 4; 1) F (x ;入院入β，・・)キλF(x;日，β，・・)， V}.， 

One example of the nonlinear functions is 

example 1. {Pi(ゆが日 ;iEZ(i叫 eger)，and Pj (x) 

is polynomial of any degree}. 

(2.4; 2) F(6)=L.:AiPi(x)e"'X， 

Froms the point of view of the “Laplace trans 

form"， the following formula : 
1 .I-(j.-l I 

(2.4; 3) Y(t)コ-L，Y(t〉- Lーコ寸z
(a) - pc 

-I-r:t.-2 1 

Y(t)eλt二一一コ ーと一一r(出)~ (P 入)α ，

are provided， then the difference between (2.4; 2) 

and (2.3; 6) (polynomial) are sligtly， but from 

the view point of approximation， these two 

methods are quite di百erent，since the one is 

linear and the oth邑ris nonlinear. 

2. 5. Integral Approximation. 

This approximation method may be seen the 

generalization of the above one， which contains 

some discrete parameters. The form of method 
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can be expressed as folloWS : 

(2.5; 1) y= s:φω〉九

The parameter 71.， in this case， is cQmpletness 

and has finite measurable. One example of this 

method， i.e.“Laplace transform"， is the e玄tension

of exponential functional approximation to the 

integral form : 

(2. 5; 2) y = s~ F (ゆ吋入，

As another example， Fourier transform may 

be aeso: 
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(2.5; 4) Fω= Sy(x).e-2i吋

These approximation methods are very in-

tereating mathematically， but practically they 

will become important in the future. 

2. 6. example 

2. 6. 1. example 1. curve-fitting or point-ap-

proximation problem. 

As one example， let us consider the following 

curve-fitting problem of Fig. 1. 

Y 

3 

Po: (0， 0)， Pj : (1， 2) ， 
P2: (2， 2)， P3 : (3， 2) ， 
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Fig. 1 The example of curve fitting problem. 

In this case， D 0 in the (2.1; 2) is that: (X， 
(0)， Y1(0)) = (0，0)， (X2(0)， Y2(0)) = (1，2)， (x.(O)， 

y.(0))=(2，1)， (れ(0)，y.(0))=(3，2). 

2. 6. 1. 1. Polynomial Approximation 

If this curve is approximated by three degree 

equation: 

(2.6.1; 1) y=50十5，X十52X2+5.X.

And using the data of y;(O)=y(x;(O))， the co・

Y. Niimi 

efficients (5k)ke{O，1，2，3} may be calculated asfoll・

ows: 

(2.6.1; 2) (50，5，，52，5.)=(0，5.17， -14，0.83) 

Next， considering the information of D" i.e. 

(dy/dx)at(1，2)=0， the coe缶cients5k become as 

follows : 

(2.6.1; 3) (50，51，52，5，)=(0，4.5， +3，0.5) 

And further， assuming the following infor-

mation of D2' i.e.， (d2y/dx2)at(1・5".5)=0，the CO-

e伍cients5k are as follows : 

(2.6.1; 4) (50，51，52，5，) = (0， 5.5， -4.5，1)， 

The geometric diagram of the curve of equation 

(2.6.1; 1)， using these values of coefficients， are 

plotted in Fig. 2(a) and (b). 

3 4 

(a) 

Fig. 2(a) The Approximation Curve， 
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The expαnded plotting oJ the pαrt (A) 

Fig. 2(b). The Approximation Curve of 

(1)， (][)， (][). 



And if this curve may be expressed piecewise 

linear approximation， using unit step function 

of (2. 3; 7)， the coefficients (μi)ieR， ui and Yj 

be氾omeas follows : 

(2.6.1; 5) y(x)=2Y(x).x-3Y(x-1)・(x-1)+

十2Y(x-2)・(x-2)，

or， 

(2.6.1; 5a) y(x)=(2Yo-3Y，+2Y2).x 

一(-3Y，+4Y2)，

these expressions wi11 be used in the equivalent 

linearization method soon later. 

y 

1 2 2 

(a) 
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2. 6. 2. Example 2. Plate current -Grid voltage 

Characteristics of a triod. 

In this case， also， the three forms of expressions 

may be possible， that is， polynomial (or Taylor 

series)， Fourier -series representation， and piece-

wise linear method. [see reference (4J. However， 

only two representation will be considered here. 

First， consider the Fourier-series representation 

which is pictured in Fig. 3a. 

If y represents the current and x the voltage， 

then owing to the fact that the characteristic 

y 

3 X 

Efニ 27T

a 

Fig.3. 

curve in Fig. 3b is even， it follows that 

_ N I l) ~AA ¥ 

(2. 6. 2; 1) y = "noー十日 ancos(いど乙)x+叫，
2 ';"';1-" - '¥ E t I 

Using this expresion， following the reference 

(4J， if the grid voltage is written as follows: 

(2. 6. 2; 2) x= E 0十EェsinωJ

It then follows that 

ー N

(2. 6. 2; 3) y =二完一+2: ancos(uけ vnsinωlt)
白匁=1

where 

(2.6.2; 4) ヌ4咽
n-一二一一Eo+E>n 

Et 

VM= 21tn 
n Et 

equation (2.6.2; 3) may be expanded into the 

form， 
N 

(2. 6. 2; 5) y =す +Efn〔coshcos(内 sinw，t)ー

sinunsin (世nsinωェt)J，

the mth harmonic of the plat current is written 

by the expression， 

(262;6〕 lM=2ijMm(ωcos(un+竿)，
n=l ¥ LI I 

The above characteristic of triod may be 

expressed by the piece wise linear method， as 

the same as the case of (2.6.1). 

In the above all cases， the suffix set 1 or N 

may be all integer z， or all rational nunaber Q， 

or all real number R or other set. [RemarkJ 

In linear approximation， if the curve is the世-i

characteristics of 2-terminal elements， then it 

may be represented as follows: 

(A.1) iD=ao!o(v)+ad，(v)十・・・=2:akh(v)，
IIeN 

this expression has a important meaning on 

the circiut topology， that is， the each term ak! k 

provides the shunt circuit as shown in Fig. 4. 

From this view point， the relation between the 

nonlinear mathematics and the circuit topolgy 

wi11 be clarify as gradually as oc 
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ID=f(v) 
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(a) 

(b) is the equivalent cijcuit of (a). Fig.4. 

Van der Pol operator: example 1. GeneraHzation of Equiv乱lent3. 

y会H(x)会Dix十μ(x'-l)Dtx+x，

Duffing operator: 

y会H(x)会Dix十z十μx'， 

example 2. 

(3園 1;6) 

(3.1; 5) Linearization and Describing Function Method 

One retarded action operation: examPle 3. 

y会Dix+2(o+o2x')Dt X十 v~x十 V2X't，(3.1; 7) 

where δ，δ2， vi， and V2 are constants， and x'" 

is defined as the form: 

Zτ会x(t-r)， r is retarded time， 

These operators have been well known， but 

rather c1assica1. For this reason， they are very 

typical examples， in the case of studying the 

generalized equivalent linearization procedure. 

3.2. Sy目temsof Nonlinear Di:fferential Eqna-

tions. 

3. 1. NonHnear Operator 

The Nonlinear operator is defined as follows: 

(3.1; 1) H(司会H(x，Fω(x)，Dt)(x)

where， assuming as follows: 

Dt会djdt;

FCi)(司会 polynomialor analytic 

function of x; 

and， H is a polynomial， or analytic function of 

x， Fω， and D t. Let us denote: x三C1' FCi)三七，

and Dt三 c" then H may be considered as the 

function of three variable， C1， C2， c，・ Andfurther 

let us write as follows: 

(3.1; 2) 

C1P1C2P2C，P'''=cP， P1， P2， P8 are integer圃

3 

[T[=L:Ti， 
i=l 

(3.1; 3) 

The systems of nonlinear differential equations 

are given as the following forms: 

then， if the degree of polynomial H is smaller 

than m， the function H can be written as follows: 

(3.2; 1) Mx=f(x)， 

where， M is the目 row-日 columnmatrix， x is 

the vector x=(x1，x2，" '，xn)九and主isdenoted the 

derivative with respect to time t. f is， also， a 

vector， of which component f i consists of the 

functions of variable X1，・・，Xn， iニ1，・ー，n，respec-

ti、Tely.Here， we shall consider two cases respec-

tively， that is: 

Case 1. det MキO. In this cases， equation 

(3.2; 1) may be rewritten as the following form : 

(3.2; 2) f!..x=f(x) or， I.x=f(x)， 

wh巴ref!.=diag(a1"" 出nJ，and 1 is unit matrix: 

I=diag (1， ・・， 1J， assuming that every number 

a i is not equals to zero. In the equation (3.2; 2)， 

H(C1' C2， C8)= L:向cP，
IPI手間

But in this case as different from the general 

polynomials， it must be noted that， algebra 

is noncommutative. This is very important point. 

Generally， in nonlinear mathematics， the algebra， 

to which the mathematics belongs， is th巴 nonco-

mmutative one. From this viewpoint， it may be 

thought that “nonlinearity" was very c10sely 

related to knot theory. Particullary， a limit cyc1e 

or a periodical osci11ation wi11 be studied from 

these directions in the future. 

(3.1; 4) 

Now， let us return to the equation (3.1; 1)， 

and consider the particular example of nonlinear 

operator H. 



the independent variable t is not contained 

explicitly. But， in the case of containing the 

varioble t explicitly， and if we denote t会Xn+1'

and dXn+l/dt=l会fn+' (x" …，Xn+l) respectively， 

the equation of the case equals to the systems 

of n+ 1 differential equations of n + 1 variables， 

formally. 

Case 2. det M = 0， In this case， equation (3.2; 1) 

is degenerated， that is， the diagonal matirx 0 is 

expressed as the form， 

O=diag (a1， "， a" 0， ・・， OJ， 

Then (3. 2; 1) may be divided into two groups : 

r di妊erentialequations and the (n-r) algebraric 

equations. The system， at that case， generats 

pulse， and the such oscillator is called the 

relaxation oscillator. The di任erentialequations 

have mathematically become the singular 

perturbation problem. and therefore analytical 

solution can be hardly obtained by the ordinary 

method. Then， we have omitted this case. 

Equation of case (3.1) can be always 

tranformed to the the system (3.2). For example， 

Van der Pol operator (3. 1; 5) may be reduced to 

the systems as follows: 

Let us put， x三 x，and Dtx，三 X2，

then， equation (3. 1; 5) is : 

r D，x唱 =x。
(3.2; 3) ~ _晶幽

l DtX2=-X，+μ(1-x12)x2' 

in this case， the functions f" f 2 becom into 

the forms : 

r f，(X"X2)会x2，
(3.2; 3a) { 

l f2(X1X2)会 x，+μ(1-xDx2' 

However， Van der Pol operator as defined 

(3.1; 5) is much convenient for practial applicati-

ons very often And for that reason， we have 

divided into the two cases， i.e.， the one is 

operator (3.1)， the other is systems (3.2). 

3. 3. The Generalization of Equivalent Line圃

arization. 

Equivalent Linarization are provided from the 

many different point of view， such as， tangent 

linearization， optirnal linearization， and so on. 

But， all-of the above formulation， we may conclude 

that as follows :“The equivalent linearization， 

is， the one of taking the mean value， or the 

balancing <in some sense>". That is， in the case 

(3.1)， if the operator H* is defined as follows: 
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(3.3; 1) H*会五互i主主主ー
<x> 

or ム <H(x)，仇 (x);?_.
~ <x，伊，(x)> ' 

then， H* may be considered as the operator， 

which operates to x， in place of operator H: that 

IS， 

(3.3; 2) y=H(x) => y=H*.x， 

In other words， operator H is deduced to Hキ

the operator H* has， now， be-come linear. the 

latter in (3. 3; 1) is the weighted mean value， 

and this form， is just equals to the Schwartz's 

distributions， assuming that H(x)eD'， xeD'， and 

<peD. 

However， at the present case， some questions 

must be answered for justifying the above 

formula (3.3; 1): 

Question 1. 

The method for producing the linear operator 

associated with a given nonlinear operator 

requires knowledge of the function x=xo (t)， the 

point of the functional space， at which the 

linearization is performed. 

Question 2. 

What method of taking the meanvalue or 

balancing could be recomended in each case ? 

This problem may be， justly reduced to the 

norm or the distance of the given functional 

space. 

Question 3. 

Once the functional space， and its norm or the 

distance has been sepecified， what functions 

may be selected as <p(x)? 

Once these 

above questions have been answered， 

H* could be determined. Next we shall considered 

some practical examples. 

Example 1. If we select the Hilbert space as 

functional space， and L2 norm as the distance 

in the space， then， in the equation (3.3; 1)， 

!φ， (x)::H(x)， 
(3.3; 3) { 

l <P2 (x)三 x，

and， <f(x)，伊(x)>三 fbf(x)φ(x)d(x) 
J a 

can be put， and， let us put必。=aocosωt， the point 

in the space. 

Then， the next equation may be hold: 

(3.3; 4) H* 
'
d
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1n the cas号 ofVan der Pol operator the above 

formul旦 is;

1，，"， 2 

(3.3; 5) H*=Dt2+μlサ l)Dt+1， 

As conc1usion， the above equation (3.3; 1) 

holds in g色n己ral，that is， the equation is the 

complete g己neraliz旦tionof叫 uivalentlinearization 

in the case of nonlinear op邑rator.

3. 3. 1. The extension to the Systems of Differ-

enti且1Equations. 

Let us consider， now， that the systems of 

di百erenti旦1equation are given; x=f(x). In this 

case one question occurs; that is， what point in 

the functional space must be s巴lected?

¥ 

(3.3; 6) XO=(X10' X20'.園 Xno)t， 

In general， this question is very di自cult，but， 

if th邑 solutionhas the oscil1atory property， the 

fol1owing assumption may be s邑enas justifying; 

r x10=a1cos(ωェt十'P1)，
(3.3; 6a) ~ 

L xio=aicos(ωit十伊i)， 

(i=l・・，n) 

And further al1 of the above case， assuming 

the following fact; 

(3.3; 6b)ω，-ω， vieN={1， ・1目}

This assumption may be justified as follows; 

ifω1=2ω2' and n=2， then the limit cyc1e diagram 

in %1 -X2 plane， will be come as the Fig. 5a. 

Vl2 

W1 

Fig. 5(a) The limit cyc1e of oscillation in the case; w 1 =2w 2・

However， in Fig. 5， singular point， the origin 

Po， is satisfied by the di妊erentialequation. This 

means that at the point (0，0)， fェ(0，0)and f 2 (0，0) 

have not the specified value. 

Such case may be occur very suddenly. There-

fore， usally， it is natual that the assumption; 

州三叫，(iチj) Vi， j， may be hold in almost 

cases. Here after， w邑 shallthink so. Then， as-

suming the following equation; 

xi=dicos(ωt+φi)十・...

tangent linearization method is that; 

(3.3; 7) 町三fu ， 

(iニ 1，・・ 9刊)

All other cases may be reduced from the 

formula (3，3; 1). If Xニ Xo(t) is Fourier series; 

十∞

Xoj(t)= L; Ck(j)eikωt， then，伊(X) wi1l become 
!l=-∞ 

(T ωt dt eーはωt，and theく，>equalsl o H-e zh -7園

Moreover， H* wil1 be changed to a vector; that 

1S， 

(3.3; 8) H*(j) = (~H(L; Ck(j)eikwt) ， 仁竺三二
¥ <L;Ckeikwt， e-iwt> 
<H(戸Ck(j)・・)， e-i2Wt> ¥ 
<L;Ck(j).勺 e-i2ω1>' I 

From the above example， we can understand 

th且丸“theequivalent linearization is equalent to 

<ztaking】meanvalue method，? in some sense， or 

in a meaningぺ

3. 4. The generaHzatiol1 I[)f Van der Pol am!. 

Krylov-Bogoliubov Method. 

KJ.B. method is equal to transform the given 

(X， y) coordincte on R 2 to the polar coordinate 

(ァ，e) on the same R 2 plane， taking th巴 m邑an

value with respect to the angle e. 
This method may be extended to the R n space， 



X， 

X， 

Fig. 6. The limit cycles of Van der Pol 

oscillator: x， =x2， x2 = -x， +μ(1-x2) 

x2 and. its eqiuva1ent， optimal lin-

earized oscillator. 

adapting the generalized po1ar coordinate on R"， 

that is: 
n-， 

(3.4; 1) 町三間inD，山 iτCOSDjwith Dnニ」L-
J~l L， 

(i=l， "， n) 

or， in other form， 
匁-，

(3.4;la) XjニアsinDn+エ_;1下sinDj， with Dnニ O

(i=l，・・，u) 

The different point between (3. 4; 1) and 

(3.4; la) is the direction of the Rn space')， and 

this wi1l be not important for the application of 

the trans formation of coordinate. 

Consider， that the system x士 f(x) are given. 

and change the variab1e x to the po1ar coordinate， 

which is given in (3.4; 1). Then， the form of 

the system wi1l be trans formed to the following 

form: i.e. 
n-1 

rsinDn 1下COSDj一九四inDn十

=/ェ(rsinDn・・・)，
n-2 

(3.4; 2) ¥ r血 Dn_1lf山 Dj-D，r 十・・

=/2 (rsinDν 

rsinD+・D，r...+… =/n(rsinDn)，

1) it may be conc1uded from knot they; for 

examples， see the book: “introduction to 

knot theory" by R. Hcroowell and Ra1ph H. 

Fox. 
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The 1eft sides of these equations ar邑 thelinear 

equation of n variab1es， r， 8" 82…， 812ー工，and 

therefore， (3. 4; 2) can be transformed to the 

equation of r， 0".... Then， these equations will 

be reduced to the following system: 

(3.4; 3) 

γニ FrCγ，自1，…， 自慢-1)，

D，=Fo1Cγ， 81j…， On-1) 

en~l = F 9n-1 (r1 8u"'， 812-1)， 

and， if we may take the mean va1ue th巴 equations

on right sides on the Rn sphere rn-1Sn (where 

Sn is the area of the radious 1 onRn)， thεright 

hand side might be reduc巴dto the functions of 

on1y one variabl巴ア~ that i8: 

ヨ長ι一1げF凡刊7パ川(
r.. -Sn炉‘dl 

(3.4; 4) 
ヲι¥FOiケ，81，...， 8n)rn-1山戸Fo;(凡
1" -Sn.J 

(i=l，…，日 1)

and， 

(3.4; 3a) 

ァ=Fr(r)， 

0，二 F01(ァ)，

8n_1ニ FOn-1 (ァ)，

The equations 0且 (3.4;3a) have important 

properties for practica1 applications， since， at 

五rst' within these equation being considered， 

ang1e coordinates， 1)"… are all the function of 

variab1e l' on1y， and from the first equation on 

(3.4; 3a)， the oscillation concerning the nonlinear 

equations may be conc1uded whether the oscil-

1ation stable or unstab1e one. Coneer.-ning with 

to respect the point， a usual equiva1ent 1in-

iearization method will provid nothing. Now， on 

the fo1 1owing， it wi11de mention ed some par-

ticu1ar examp1es. 

Example 1. the case nニ 2.

Consider the following system of di妊erentia1

equations: 
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(3.4; 6) rcos81 +81r( -sin81)ニ 11(rcoS81， rsin81) 

rsin81十81rcoSe1= 12 (rco邑Oェ， rsin8ェ).

from the above equations， with respect to the 

variable r， 81， the following equation may be 

obtained: 

|ニf工cose1十12sin81，
(3.4; 7) ( 

l r81 = 1 ，cos81 - 11sin81' 

these equations correspond to (3.4; 3) 

The calculationg corresponding to (3.4; 4) with 

respect to 81， have been performed， the next 

formula will result: 

(3.4; 8) 
f ~=Fr(ァ)，
t rIIェ=F91(ァ)， 

where， 

(3.4; 8a) 

F r(r)会去j{;1∞sS十12由 lS}此

F91地去S{;2COSS-1工 sinS}侃

As the particular example， consider Van der 

Pol operator: 11会X2，12会丸十μ(1-x12)x" (see， 

the equation (3.2; 3)). Let us calculate Fバァ)，

and F91(ァ): 

2'" 

F r(r) =去S{rs凶 coι〔 ア吋

(l-r2cos'S)rsinS)sinS} .dS 

ニ会S{-cosSs凶十μ山

μr2cos2Ssin 2S}dS 

士会(ナ 27t一千27t}

=JF(4内

and， 

F9工作
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Then， from (3. 4; 8)， 

r ~ =_l子(4-r')，
(3園 4;8a) ~。

le=-l， 

Y. Niimi 

if the initial condition will be r=ア0，e。ニoat t=O， 

the solutions of (3.4; 8a) are: 

ヱ主主主L=Ae-rLt.。可ニーt.2十r ---ム，

Then， the steady state amplitud色 isrs=2， and 

the fundamental angular velocity is equals to 

1. And mor巴over，it may be known that the 

transient time until the steady state motion is 

propontional to the value μ 

As旦 concludingremark， if generalized B.-K. 

method will be developed to the system of the 

differential equations more completely， particu-

larly in relation to knot theory (i.e.topological 

geometry)， this method will be com巴 the most 

powerfull tool for analizing th巴 nonlinear

differential -diflerence systems. 

3. 5. Desc:ribing Function 1¥置e世10<<1

Describing function method， strongly depends 

on the properties of complex numbers. Complex 

numbers hav邑 been the significant tool for 

analizing the electronic com munication circuits 

until tody， particularly lin巴ar circuit. For that 

reason， describing function method has been 

studied in details， and particularlly it was used 

very often. relating nonlinear control theory， 

Now， however， what character of complex 

number wi1l be related to the deseribing function 

method， algebraic or analytic? It wi1l be thought 

for me that，“some ortho gonal properties" are 

activity in this case. If it is true， other ortho 

gonal functions must be used at the same way， 

in place of complex. This is the fundamental 

idea of the pr巴sent paper. And further the 

describing function method are very strongly 

related to the stability of the system. About 

this point， we must note at the same tim邑.

If the system can be represented by one 

nonlinear operator H， the coresponding des 

cribing function can be expressed as the following 

form: 

(3. 5; 1) H会 <H(aoco加札 e:ア>
<ι。COSwt，e-iIJJtノ

or， ''''/凶

[開仇co加仰川t

2'i1VUJ 

5 aocosωtげ tdt



or， 2伺/山

三本J向。co制 )Je一Z凶 tdt，

Then， the describing function is equivalent to 

the equivalent linearization， concerning e-iwt E 

D (r) in Hilbert space. This is very important 

thing However， the above formula， used in 

definition shows that the ordinary describing 

function can be extended to the more various 

directions. For example， if kw could be replaced 

toωin (3.5; 1)， the following formula may 

be defined; 

(3.5; 2) Hk会くH(aocoskωt)，e-ik凶 t>
くaocoskwt，e-i 

1 

! a111 

91 

This is the describing function of the kth 

order harmonics. More general1y， the fol1owing 

formula may be considered; 

(3.5; 3) H*会 <H(xo)，'l>o(t)> 
<xo， 'l>o(t)> 

The above equation defines the gen邑ralized

describing function. 

And further， in the (3園 5;3)， H* is scalar， but 

H* may be extended to vector， or matrix. But， 

this will be future problem， and here these fact 

are not considered. 

[Remark 1J Dual Network， or Dual system: 

一一一 -1 n 

「1Jα山 llV山

一--i!I一一ーイート→ーイ|一一
ト一一一 1 珂 ; 

bk Vkl j i_l_l 

Fig. 7. Nonlinear two terminal network and its dual network 

Nonlinear dual network， may be considered， of 

course. As shown in Fig. 6. and， let us Consider 

analytical expresion as following form: 

(R1; 1) iニL:aek(v)， 
h 

(Rl; 2) Vdニエ九九(id)，
J 

If these two dual networks have the same 

energy， the next equation hold; 

(R1; 3) (i， L: akik(v) ) = (Vd' L: bjv/(id) )， 
k j 

l.e.， 

(R1; 3a) L: ak(i， ik(v) )二戸 bj(Vd，vd(id) ) 
k j 

And if the each (i， ik(υ)) equals to the cor-

respondi暗 (Vd'vj(id))， the following formula 

will be hold: 

(ak=bk， and 

(Rl; 4) { (i， ik(V))=(Vd' vk(id)). 

l for any k， 

This is the generalized orthogonal condition. 

And considering the relation between nonlinear 

network and its mathmatical expression wil1 

be very important 

[Remark 2J Piece-wise Linear Approximations: 

Pi巴ce-wiselinear approximation method con-

tains unit step functions in the equation園 Therefore

his derivatives have impulse (delta) function and 

its derivatives ; that is L. Schwartz's distributions. 

But， trigger voltage in Multivibrator is already 

equals to the o function， mathematical1y. And， 

in this respect to the point， there are no 

difficult problem. Rather their practical uti1ities 

are very important， that is， by using the piece-

wase linear approximation， very sigificant charac-

ter of nonlinier circuit will be appear， (omitting 

in this paper)， and o function as the forcing 

function is very useful function in the Van 

Slooten's theory.l) 

4. ConclusioIl. 

The General theory and the important points 
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of functional approximations of various charac 

teristic curves of electronic elemennts and gene-

ralization of equivalent linearization and desc-

ribing functions were explained and discussed in 

this paper_ 

The theory and the methads given in this paper 

are supposed to be very useful for analyzing the 

nonlinear circuit problems_ The practical ap-

plications of this theory to many interesting 

examples wi1l be reported in the near future. 

The author is grateful to Prof. S. Muto of the 

Nagoya Institute of Technology and others for 

their useful discussions and encouragements. 
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