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ガラス状炭素球の空気賦活
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Abstract Pore deve10pment in glass-like carbon spheres with oxidation in dry air was s旬di巴dthrough the 
measurements of oxidation yie1d， various pore parameters and pheno1 adsorption. The dev巴10pmentof pores 
was understood by the master curves at 400 oC for oxidation yie1d，巴achpore parameters and pheno1 adsorptivity. 
The resu1ts showed that the conversion between oxidation temp巴ratureand time was possib1e for por巴
deve10pment by air oxidation， i.e.， at a temp巴raturebetween 355 and 430 oC in a flow of dry air. Por巴
deve10pm巴ntwas supposed to proce巴dprincipally the opening of closed pores existed originally in glass-like 
carbon to form ul位amicropores，followed by the collapse and en1arg巴mentof u1仕anncroporeto macropore 
through supermicropore and mesopore. 

1. Introduction 

Activated carbon has p1ayed important ro1巴ssince 
pre-historica1巴:raand now b巴comeeven mor巴 important
mat巴ria1s in various fie1ds of techno1ogy. Indus仕ia1
app1ications of activat巴dcarbons to modem techno1ogy， for 
巴xamp1巴s，applications to car canister， the storage of natura1 
gas， th巴巴l巴C仕odemateria1 of e1ectric doub1e 1ay巴rcapacltor， 
巴tc.，d巴mands仕ictcontro1 of their pore s仕ucturel-3). Th巴
most irnportant process for the production of th巴seactivated 
carboIfs is activation， which has b巴enstudied by a number of 
researchers and engineers企omdiffer巴ntpoints of view and 
a1so different activation proc巴sseshave been d巴V巴10ped，for 
examp1e， using either steam， ZnClz or KOH in order to 
deve10p micropores and to have high surface ar巴ピーの‘ This 
activation process is th巴 oxidationand gasification of 
precursor carbons， most of th巴m being hard carbons and 
containing a 1arge amount of macropores 

One of the authors has been studied the process of gas 
activation by se1ecting carbon spheres， which w巴reprepared 
企omph巴no1resin and had glass-1ike carbon nanotexture， as 
the origina1 carbon samp1e7-27) In our previous paperI4)， the 
activation proc巴ssof hard carbon spheres in an a加 osphere
of wet air at different temperatures and residence times was 
understood by a master curve for the yie1d a日teractivation， 
which suggested the conv巴rsion between oxidation 
temperature and time. On th巴 sam巴 carbonspheres， the 
activation process by dry air was investigated through the 
measurem巴nts of various pore s仕uc同reparamet巴rs，in 
addition to activation yie1dl6， 17) and a1so adsorption behavior 
for various organics in th巴ir aqueous solutions were 
understood by the master curves for each adsorbates as 
functions of oxidation tempera札lre and tirne23) A1so 
adsorption behavior of methan巴 gasinto air-oxidized carbon 
spheres was s知died20).

In the present paper， pore dev巴10pmentin carbon 
spheres in an atmosphere of dry air was discussed through 
master curves for each pore parametersl6， 17). 
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2. Materials and Characierization Techniques 

2.1 Materials 
Carbon spheres prepared 合oma reso1-守pepheno1 resin 

spheres by carbonization at 1000 oC wer巴 se1ected，which 
had the particle size of ca. 10μm. Carbon spheres of 10.0 g 
were p1aced in an a1umina boat (50 x 90 mm and 10 mm 
d巴叩)and heated at different t巴mperaturesbetween 355 and 
430 oC for different p巴riods丘om1 to 100 h in a flow of dry 
a1r m a札lbu1arfumac巴 (60mm in inner diameter). The air 
was dried by passing through a silica g巴1co1umn and then 
passing on the surface of P20S with a flowing rate of 50 
mL/min. 

After air oxidation， oxidation yie1d was caIcu1ated from 
the mass 10ss during oxidation process 

2.2 Pore structure characterization 
On carbon spheres thus oxidized， adsorptionld巴sorptlOn

isotherm of N2 was measured at 77 K. From the isotherm 
measured， diffe・rentpore param巴tersw巴redetermined using 
different ana1ytica1 methods‘ BET surface 紅白 was
ca1cu1ated using adsorption data up to the re1ative pr巴ssure

P/PO 1ess than 0.3. Through the ana1ysis by so-called αs 
p1ot， tota1 surface ar巴丸田tema1surface area and micropore 
vo1ume were ca1cu1ated， and microporous surfac巴 ar巴awas 
derived as a ba1ance between tota1 and extema1 surface areas 
Based on DFT ana1ysis， pore size distribution in the size 
range corresponding to micropores (up to 2 nm) was 
determined. From the cumu1ation， the vo1ume of 
micropores (く 2.0nm) and a1so that ofuItramicropores (く0.8
nm)w巴reobtain巴d. The vo1ume of mesopores (2 ~ 50 nm) 
was deteIDlined by using BJH method. SEM observation 
on the surface of carbon spheres was performed und巴rthe 
e1ectron b巴創nacc巴l巴ratedby 10 kV. 

Adsorption of pheno1 from its aqueous solution was 
determined on the carbon spheres oxidized. The saturated 
amount of pheno1 adsorbed into carbon sph巴res was 
determined aft巴1・keepingthe samp1e spheres in th巴 pheno1
solution with a concen仕ationof 0.02 mo1/L for 24 h under 
st1rrmg at room temperature. 

In order to understand the m巴chanismof micropore 
formation in the very beginning of oxidation， the 
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a reference temperatur巴 of400 oC for th巴 oxidationin the 
present activation condition (企yair with a flow rate of 50 
mL/min) was possib1e to be obtained by shifting th巴
experimenta1 points at each oxidation temperature a10ng the 
abscissa (logarithm of oxidation time) to b巴 consistentwith 
the points m巴asuredat 400 oC (Fig. 1 b)ー

P10t of shift factors against the inverse of oxidation 
temp巴ra旬r巴 (A立heniusp1ot) gave a linear re1ation， as shown 
in Fig. 1c， and its slope gave an apparent activation energy 
LiE of about 150 kJ/mol. In wet air， LiE of about 200 kJ/mo1 
was obtained， as reported in our previous pap巴r14)

愛知工業大学総合技術研究所報告，第 9号， 2007年

measurement of small ang1e X-ray scattering (SAXS) was 
carried out for carbon sph巴resslight1y oxidized. D巴tailsof 
experimenta1 conditions were reported in our paperI7). The 
fundamenta1s on these t巴chniqueshave to be refe町巴dthe 
respective origina1 papers27-29). 
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3. Air Activation Process 
Masier Curve and Apparel1t Activation Energy 

3.1 Oxidation yield 
Oxidation yie1d is p10tted against oxidation tim巴 for

different oxidation t巳mperaturesin Fig. 1a. Master curv巴 at
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Fig. 1 Oxidation yie1d as白nctionsof oxidation tempera加reand tim巴.

already a high va1u巴 clos巴 to600 m2/g even after 10 h 
oxidation at 400 oC. Intermediate oxidation temperatures 
resu1ted in int巴rmediatechange in BET surfac巴 area，as 
shown by dotted line for 400 oC in the figur巴 Thesame 
procedure as oxidation yie1d was applied to obtain th巴master
curve at 400 oC for BET surface area (Fig. 2b). To 
cons廿uctthis mast巴rcurve， the same va1ues of shi日tfactors 
as thos巴usedfor oxidation yie1d were app1ied. 

3目2BET sUlface area 
BET surface ar巴awas p10tted as functions of oxidation 

temperature and time in Fig. 2a. BET surface area obtained 
at 355 oC incr回目巴dslight1y企omabout 400 m2/g with 
increasing oxidation time. At the highest t巴mperatureof 
430 ocヲ BETsurfac巴 areaquick1y increas巴dafter 30 h 
oxidation but then decreased with increasing oxidation time. 
Howev巴r，it has to b巴pointedout that BET surfac巴 areawas 
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Fig. 2 BET surfac巴areaas functions of oxidation temperatt江eand tim巴

yi巴1d巴drapid decrease in BET surfac巴area
By the pr巴sentsimp1e oxidation in dry air， BET surfac巴

area abov巴 1000m2/g cou1d be obtained by se1ecting 
appropriat巴 conditions，about 30 h at 430 oc or about 65 h at 

4000C‘ 

3.3αsplot anαlysis 

Even though there are some scattering of experimenta1 
points， the master curve was ab1e to be obtain巴dusing the 
sam巴 shi白血gprocedure as oxidation yie1d， in other words， 
conversion betw巴巴noxidation temperature and time was 
possib1e for BET surface area. BET surface area increased 
gradually in th巴 beginning of oxidation， followed by 
re1ative1y rapid increase. However， fi汀th巴roxidation 
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Four pore param巴ters，micropore volume， microporous 
surfac巴 area，巴xtemalsurface area and total surface ar巴a，

which were determined by αs plot analysis， were shown as 
master curves at 400 oC in Figs. 3a to 3dヲ respectlV巴ly. To 
construct these master curves， the same shift factors at each 
oxidation temperature as those for oxidation yield were used. 

Micropore volume and microporous surface ar巴a
show巴da maximum， but extemal surface ar巴astarted to 
increase around 10 h oxidation and continued to increase by 
further oxidation， the former was much larger， by about one 
order of magnitude， than the la社巴rin the present samples. 

Total surface area showed a maximum，αs BET surface ar巴a

volume 
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did， because this is the sum of microporous and external 
surface areas 

The master curves on micropor巴s，l.e.ラ mlcropore
volume (Fig. 3a) and microporous surface area (Fig. 3b)， 
r巴vealthe formation of a large amount of micropores by the 
oxidation at 400 oC only 1.5 h， giving about 0.2 m]jg of 
micropore volume and about 400 m2jg of microporous 
surface area. This experimental fact is du巴 tothe opening 
of th巴 closedpores which exist in the original glass-like 
carbon， as will be shown in th巴followingsection 4. 
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Fig. 3 Master curves for different pore parameters obtain巴dbyαs plot analysis. 

3.4 DFT and BJH analyses 
On the same samples pore size distributions in 

micropores ranging from 0.4 to 2 nm and mesopores from 2 
to 50 nm was d巴terminedby using DFT and B丘"{methods， 
respectively目 From the cumulative pore volumes of 
resp巴ctivemethod， micropore and mesopor巴 volumeswere 
calculated for each samples and plott巴das functions of 
oxidation t巴mperatureandむm巴ー As w巴 did for oxidation 
yield， BET surface area and four pore parameters， the master 
curves at 400 oC for micropore and mesopores volumes wer巴
obtained， as shown in Fig. 4. Micropore volume was 
separated into two subclass巴s， ultramicropore and 
sup巴rmicropore，as shown only mast巴rcurves for each 
paramet巴rin Fig. 4a. On th巴 pore size distribution 
determined by B耳"{method， the pores with the size of above 

5 nm size were negligibly small amount 
In the beginning of oxidation， micropore volum巴

increased gradually with incr巴asingoxidation time， which 
were supposed to be due to th巴 increasein ultramicropore 
volume. Beyond 10 h oxidation， micropore volume 
increas巴drapidly， where ultramicropores d巴cr巴asedgradually 
and supermicropores incr巴as巴d， no development of 
mesopores above 2 nm yet. Beyond 30 h oxidation， 
mesopores seemed to be develop巴d，though the development 
of supermicropores was still continu巴d. After 50 h 
oxidation， how巴ver，micropore volume decreased rapidly 
with incr巴asingoxidation time (F沼田 4a)，as microporous 
surface area did (Fig. 3b)， but mesopore volume continued to 
increase (Fig. 4b)， as巴xt巴rnalsurface紅巳adid (Fig. 3c) 
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Fig. 4 Mast巴rcurves for micropores and mesopores 

4. Formati.on Mechanism of Micropores 

In Fig. 5a， adsorptionldesorption isotherm of N2 gas at 
77 K is shown for the carbon sph紅白 oxidizedfor 2.5， 20 and 
75 h at 400 oC， each of which corresponds to the beginning 
of pore development， that of increasing micropore volume 
and that at the maximum in micropore volume， resp巴ctively，
as shown togeth巴rwith th巴 isothermfor the original carbon 
spheres in Fig. 4a. Adsorption ofN2 gas became mark巴dby
the oxidation at 400 oC for 2.5 h， with a pronounc巴d

a) Adsorptionldesorption isotherm 
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differenc巴企omthe original spheres. This increase in 
adsorption was resulted from the increases in BET surface 
area合omfew to about 400 m2/g and in micropor巴 volume

measured by αs plot from almost zero to about 0.17 ml/g， as 
shown in Fig. 2a and 3a， resp巴ctively. With increasing 
oxidation time at 400 oC， the adsorbed amount of N2 gas 
increased and the isotherms observed change 合omType 1 to 
Typ巴 II，suggesting th巴 mcrease m macropores 企om
micropore dominant solid 

b) POre size distribution by DFT analysis 
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Fig. 5 Adsorption/desorption isotherms and por巴 sizedistributions for carbon spheres oxidized. 

Pore size distributions measur巴dby DFT analysis on the 
oxidized carbon spheres are shown in Fig. 5b. On the 
carbon spheres oxidized at 400 oC for 2.5 h， pores less than 
0.4 nm seemed to be predominant，町田 thoughthese por巴S
could not be measured， in other words， most of th巴 pores
exist巴doriginally in the carbon sph巴resw巴r巴notyet op巴ned
and only the en仕anceshaving th巴 SlZ巴lessthan 0.4 nm were 
form巴d. After 20 h oxidation at 400 oC， th巴 populationof 
the por巴s(openings of por巴s)with the size of around 0.6 and 
1.2 nm increased and the total micropore volume incr巴ased
企omabout 0.17 ml/g to about 0.28 ml/g (Fig. 4a). The pore 
size distribution curv巴 obs巴rvedon th巴 sampleoxidized at 
400 oC for 20 h suggested a high population of th巴 pores

smaller than 0.4 nm， higher than th巴samplesoxidized for 2.5 
h， suggesting that all por巴soriginally巴xistedin carbon 
sphere were not yet opened. By the oxidation for 75 h， the 
population of the pores smaller than 0.4 nm became almost 
zero， in other words， all closed pores wer巴 opened，and that 
ofth巴poreswith the size of around 0.6 nm decr巴ased，but 
that of th巴 poreswith 1.2 nm size increased markedly. On 
this sampl巴， the presence of the pores with the size of about 
0.9 nm was clearly observed. In the case of the sampl巴

oxidized for 20 h， there was also small population of the 
pores with almost the sam巴 slze

At 400 oC， the仕endto increas巴 thevolum巴 ofpores 
with the sizes of around 0.6 and 1.2 nm was clearly observed， 
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and the pores less than 0目4nm seems to decrease. At 430 
oc， the same trend could b巴 r巴cognized. After 75 h 
oxidation at 430 oC (150 h at 400 oC)， however， por巴volume

corresponding to the pores with 0.6 and 1.2 nm sizes 
decreased， probably because pores were wid巴n巴dto more 

than 2 nm by oxidation. 
Th巴 resultsshown in Fig. 5b suggest巴dth巴 gradual

change in pore size (the sizes of openings)企omless than 0.4 
nm to 0.6 nm and then to 1.2 nm. The sam巴 analysisby 
DFT method on the samples oxidized at intermediate 
conditions， i.e.， oxidation tim巴企om2.5 to 75 h at 400 oc， 

was supported this supposition based on Fig. 5b. On the 
sampl巴soxidized for more than 75 h at 400 oC， a rapid 
d巴cr回目巴 inmicropore volume and a corresponding rapid 
increase in mesopore volume was observed in Fig. 4. 

In Fig. 6a， pore width d巴terminedfrom SAXS analysis 
was plott巴das functions of oxidation temperatur巴 andtim巴.

a) At different oxidation tempera旬r巴
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The pore width calculated was obtained by sub仕actingthe 
contribution from the spaces among spheres and also closed 
pores existed in the original spheres， and so it was reasonably 
supposed to the average size of pores form巴dby oxidation. 
Th巴 porewidth measured increases rapidly with increasing 
oxidation time at each oxidation temperature. The high巴r
oxidation temper的 lregives th巴 mcreas巴 inpore width with 
the shorter oxidation time， although the mesurements were 
r巳S仕ictedto the beginning of oxidation in order to discuss on 
the formation of miropor巴s. The experimental points 
measured at different temperatures could be shi食巴dalong th巴
abscissa， oxidation time in the logarit加nicscal巴， to deduc巴

the master curv巴 at400 oC (Fig 6b). The shi自 factorsfor 

each oxidation t巴mperaturewer巴巴xactlythe sam巴 asthos巴
used for oxidation yield in Fig. lc. The mast巴rcurve for 
micropore width determin巴dthrough SAXS analysis was 
also obtain巴d，as for different pore parameters 

b) Master curve at 400 oc 

5 

A斗
』

ロロ-[

/ 
--rー~A.

q
J

勺
ム

¥
戸
山
村
自
己
注

O
H
O
仏

。
10 

Oxidatiol1 time I h 

Fig. 6 Micropor巴widthdetermined through SAXS analysis as functions of oxidation t巴mp巴ratureand time. 

The micropores formed in the carbon spheres had the 
average size of 0.7~0.8 nm by the air oxidation at 400 oC for 

2.5 h， grew slightly to about 1.0 nm after 10 h oxidation and 
then increased rapidly with increasing oxidation time. The 
pore size thus determined by SAXS analysis shows a good 
correspondence to that observed by gas adsorption with DFT 
analysis (Fig. 5b). Ther巴fore，the pores detected by SAXS 
ar巴 supposedto the holes (openings) formed on the wall of 
pores originally exist巴din carbon sphere. This supposition 
seems to b巴consistentwith th巴resultthat pore size increases 

very rapidly (Fig. 6b). 
The present results obtained by N2 gas adsorption and 

SAXS may suggest that the principal process for the 
formation of micropores was the opening of the closed pores， 
which existed originally in the carbon sph巴res.

伝 Adsorptionof phenol 

Adsorption of phenol企omits aqueous solution was 
saturated after 10 h， as an isotherm for th巴 carbonspher巴s
oxidized at 400 oc for 100 h was shown in Fig. 7a. For 
carbon spheres oxidized， ther巴fore，th巴 saturatedamount of 
ph巴nol adsorbed was calculated企omthe concen仕ation
chang巴 afterbeing kept for 24 h and plotted as functions of 
oxidation temperature and time in Fig. 7b. By the same 

procedure with the sam巴 shiftfactors as those for oxidation 
yield， the master curv巴 forphenol adsorption for the carbon 
spheres oxidized at 400 oC was obtained， as shown in Fig 
7c 

In order to understand the corr巴spondenceb巴tw巴巴n
adsorptivity for phenol (saturated amount of phenol 
adsorbed) and pore structure of th巴 oxidizedcarbon spheres， 

adsorptivity measured was plotted against micropore volume 

obtained fromαs plot. As shown in Fig. 8a， no 
correspondence between these two parameters was observed. 
How巴V巴r，a good linear relation was obtained between 

adsorptivity and the volume for utlramicropores， as shown in 
Fig.8b. 

If the attention was paid to two special points indicated 
byキ1and *2 in Fig. 8a， which were obtained on the carbon 
spheres oxidized at 430 oc for 10 and 75 h， respectively， 
micropore volume for these two spheres was not so much 
different， but their adsorptivity for ph巴nolwas quite different. 
The former contained a large amount of ul仕amicroporesbut 
in the latter only a small amount of ultramicropores was 
remained after long time oxidation， as shown in Fig. 8b， 
which resulted in a big difference in adso中tivityfor phenol. 
Adsorptivity values for these two pointsヰ1and *2 are on th巴
straight line plotted against ultramicropore volum巴(Fig.8b). 
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Fig. 8 R巴1ationof pheno1 adsorptivity on micropore vo1ume. 

because these methods were based on the diffi巴r巴nt
assumptions. However， re1ative changes in various por巴
parameters with time at a reference t巴mperatureare possib1巴

to b巴 comparedusing th巴 mastercurves with each other 
The master curve of BET surface area (Fig. 2b) is very 
simi1ar with that of microporous surfac巴 ar目白terminedby 

αs p10t (Fig. 3b)， which is reasonab1e because BET surface 
area is govemed by th巴pr巴senceof micropores. Th巴former
gav巴themaximum at about 65 h oxidation at 400 oC， but the 
1atler at about 30 h oxidation， shifting to shorter oxidation 
time， which is reasonab1e by taking into a consid巴rationthat 
m巴soporesar巴 a1socontribute to BET surfac巴 area. The 
deve10pment of mesopores started from about 30 h oxidation 

(Fig. 4b). Extema1 surface area measured by αs p10t (Fig. 
3c) has veηsimi1ar change with oxidation tim巴 tothat of 
mesopore vo1ume (Fig. 4b). The master curves of 

micropor巴 vo1umedetermined by αs p10t and DFT m巴thod
(Fig. 3a and 4a， respective1y) are a1so simi1ar with each oth巴r
to show a maximum as those for microporous surfac巴 ar回
(Fig. 3b) and BET surface area (Fig. 2b). Maxima observed 
on BET， tota1 and microporous surface area (Fig. 2b， Fig. 3d 
and Fig. 3b， resp巴ctive1y)ヲ arereasonab1y und巴rstoodas a 
resu1t of the comp巴titionbetw巴巴nen1argem巴ntand collapse 
of pores and subs巴quentpore surface area 10ss. 

6. Discussion 

The shift factors used in order to construct mater curves 
for not only oxidation yie1d but a1so various pore parameters 
and adsorptivity for pheno1 gave th巴 apparentactivation 
energy of about 150 kJ/mol. If we take into account of the 
fact that the formation巴n巴rgiesof CO2 and CO gases are 
about 394 and 111 kJ/mo1， r巴spective1y，th巴obtainedva1u巴of
apparent activation energy is in between these two formation 
energies. In wet air， the apparent activation energy of about 
200 kJ/mo1 was obtained14lー The activation 四巴rgy
determined h巴reis on1y apparent va1u巴 inother words， 

a1temative expression of the conversion factors between 
tempera旬reand time for oxidation. In th巴 presentwork， 
therefore， the discussion to compare the prese凶 activation
energy va1ues with those r巴portedon the basis on the kinetic 
studies of oxidation and gasification of various carbon 
mat巴ria1swas not carried out. The va1ue of activation 
energy obtain巴d by the present shifting proc巴dure is 
supposed to depend on the particle size and morpho1ogy， as 
well as oxidation conditions， such as oxidizing agent and its 
conc巴ntrationand flow rate，巴tc

It has to be pointed out her巴thatth巴 comparisonamong 
the abso1ute va1ues of pore paramet巴rs，which were 
determined by different m巴thodsof ana1ysis， was difficu1t 
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Fig. 9 Dev巴10pmentof pores in carbon spheres through air oxidation. 

In Fig. 9， master curves for micropore vo1um巴

determined by αs p10t， u1tramicropor巴 andsupermicropore 
vo1umes by DFT method and mesopore vo1ume by BJH 
method are reproduced in order to malce the comparison 
easier， together with some SEM註nages to show the 
appearance of sphere. In the beginning of oxidation， i.e.， up 
to 10 h oxidation at 400 oC， th巴mainprocess is the formation 
of u1仕amlcropor巴， main1y due to opening of closed pores 
existed originally in glass制 likecarbon nanotexture. Above 
10 h up to about 60 h， re1ative amount of u1位amicropores
form巴d decreas巴d but supermicropores increase with 
increasing oxidation time. Above 65 h， micropores ( a sum 
of u1tra- and super-micropores) decreased rapid1y but 
mesopore vo1ume incr巴asedslight1y， which resu1ted in the 
decrease in surface areas measured by different methods. 
This change in pore vo1umes may suggest the op巴ningof 
c10sed pores to form ultramicropores， followed by the 
gradua1 en1argement and collapse of pores from 
u1tramicropore to macropore through supermicropore and 
mesopore. 

SEM obs巴rvationof sphere surface seems to agree 
with this pore deve10pment sequence， as shown in Fig. 9， and 
it gives some information on macropores， which cou1d not be 
measured through the gas adsorption ana1yses. After few 
hours oxidation， no change on the surface of sphere was 
detected because micropores cou1d not be seen under SEM. 
After around 20 h oxidation on1y fi巴wpit同 likeho1es w巴r巴
observ巴d，wher巳 supermicropores and mesopores wer巴

supposed to be deve10ped. Around and after passing 
through the maximum of micropore vo1ume， the surfac巴 of
spheres b巴camerough du巴tothe formation of macropores on 
the surface 

To understand the oxidation reactions企omthe vi巴W

point of gasification， it was proposed to normalize the 
企actiona1 burn-off in different atrnospher巴s ( different 
oxidizing agents， such as O2， steam and COz， and th巴lr
different pressures) as a function of tltO.5， where tO.5 is the 
time giving企actiona1bum-off of 0.5 28). The exp巴rimenta1

data of bum-off obtained at a constant tempera札lrefor each 
oxidizing agent were successfully unified to one curve. 
This ana1ysis procedure was used for the ana1ysis of 
gasification r巴actionof chars29，30)， and a1so successfully 
appli巴dto the data measured at different temperatures31) to 
get so-called “unification curv巴s"，

Unification curves obtain巴dare expressed as a function 
of dimensionl巴sstime t/t0.5， but master curves derived in the 
pres巴ntwork are巴xpressedby rea1 time at a reference 
t巴mpera旬r巴 Theformer seems to be usefu1 to compare the 
gasification of various carbonac巴ousmat巴ria1sand to discuss 
its mechanism， but the 1att巴rmay usefu1 to discuss the 
activation conditions to pr叩紅白 activatedcarbons. 

7. Conclll.sion 

Pores were d巴ve10ped in carbon spher巴sby the 
oxidation in drγair. Th巴 deve10pmentof pores was 
und，巴rstoodby the master curves for each pore parameters， in 
other wordsラ th巴 conversionbetween oxidation temperature 
and time was possib1e for pore deve10pment for the oxidation 
at a tempera旬rebetw巴en355 and 430 oC in a f10w of dry air. 
Pored巴ve10pmentwas supposed to be proceeded principally 
the opening of closed pores巴xistedoriginally in glass-like 
carbon nanotexture to form ultramicroporesラ followedby the 
collapse and en1argement of u1tramicropore to macropore 
through supermicropor巴andmesopore. 
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