愛知工業大学研究報告 第45号 平成22年

On Wedderburn's Theorem

ウェダーバーンの定理について

Takao Sumiyama

隅山孝夫

Abstract. The fact that a finite division ring is commutative is well-known as Wedderburn's theorem. The purpose of this paper is to show a theorem which is a generalization of Wedderburn's theorem.

§0. Introduction

In what follows, a ring is an associative ring with 1. When R is a ring, J(R) denotes the Jacobson radical of R. A ring R is called completely primary if R/J(R) is a division ring.

A finite ring is a ring consisting of only finitely many elements. When R is a finite ring, the number of elements of R is called the order of R. It is easy to see that a finite ring is a direct sum of finite rings of prime-power order. So, if R is a finite, completely primary ring, the order of R is a prime-power.

Note that, though a finite division ring is commutative, a finite, completely primary ring is not necessarily commutative.

Let R be a commutative ring, and A be an algebra over R which is finitely generated as Rmodule. Let A^o be the opposite algebra of A. The algebra $A^e = A \otimes_R A^o$ over R is called the enveloping algebra of A. By the operation

$$(a\otimes b)x=axb,$$

A is a left A^e -module. The algebra A is called separable over R if A is projective as left A^e -module. Let $\phi : A^e \longrightarrow A$ be the natural surjection given by $\phi(a \otimes b) = ab$. It is well-known that the following (i)-(iii) are equivalent (see, for instance, [2, §68, §69]).

(i) A is separable over R.

(ii) The exact sequence

$$0 \longrightarrow Ker(\phi) \longrightarrow A^e \xrightarrow{\phi} A \longrightarrow 0$$

splits, that is, there exists a left A^e -homomorphism $\alpha: A \longrightarrow A^e$ such that $\phi \circ \alpha = id_A$.

(iii) There exists an idempotent $e = \sum_{i} a_i \otimes b_i$ in A^e such that $(Ker \ \phi)e = 0$ and $\phi(e) = 1$.

If this is the case, the element e of A^e satisfying (iii) is called a separability idempotent for A.

§1.

Let R be a ring. When we say that S is a subring of R, S must contain 1 of R. The prime ring of R is the subring of R generated by 1. By what is stated above, if R is a finite, completely primary ring, the prime ring of R must be $Z_{p^k} = Z/(p^k)$, where p is a prime.

Proposition. Let R be a finite, completely primary ring whose prime ring is \mathbb{Z}_p . If R is separable over \mathbb{Z}_p , then J(R) = 0, that is, R is a finite field.

Proof. We shall show that J(R) is projective as left *R*-module. Let

$$(E) \qquad P \qquad \xrightarrow{\eta} \qquad J(R) \qquad \longrightarrow \qquad 0$$

be an exact sequence of left *R*-modules. As J(R) is free over \mathbb{Z}_p , as \mathbb{Z}_p -modules, the sequence (E) splits. That is, there exists a left \mathbb{Z}_p -homomorphism $\alpha : J(R) \longrightarrow P$ such that $\eta \circ \alpha = id_{J(R)}$.

Let $e = \sum_i a_i \otimes b_i$ be a separability idempotent for R. Let us define $\alpha^* : J(R) \longrightarrow P$ by

$$lpha^*(x) = \sum_i a_i lpha(b_i x) \ \ (x \in J(R))$$

We shall show that α^* is a left *R*-homomorphism satisfying $\eta \circ \alpha^* = id_{J(R)}$. For $x \in J(R)$,

$$egin{aligned} \eta \circ lpha^*(x) &= \eta(\sum_i a_i lpha(b_i x)) \ &= \sum_i a_i \eta(lpha(b_i x)) \ &= \sum_i a_i b_i x. \end{aligned}$$

As $\sum_i a_i b_i = 1$, we see $\eta \circ \alpha^*(x) = x$.

Let d be a fixed element of J(R). Then $\tau : R \times R \longrightarrow P$ given by $\tau(x,y) = x\alpha(yd)$ is a \mathbb{Z}_p bilinear mapping from $R \times R$ to P. By the property of tensor product, there exists a \mathbb{Z}_p -bilinear mapping $\sigma : R \otimes_{\mathbb{Z}_p} R \longrightarrow R$ such that $\sigma(x \otimes y) = \tau(x,y)$ $(x, y \in R)$.

From $(Ker\phi)e = 0$, for $r \in R$, it holds that

$$\sum_{i} (ra_i) \otimes b_i = \sum_{i} a_i \otimes (b_i r).$$

Hence,

$$r\alpha^{*}(d) = r \sum_{i} a_{i}\alpha(b_{i}d)$$
$$= \sum_{i} ra_{i}\alpha(b_{i}d)$$
$$= \sigma(\sum_{i} (ra_{i}) \otimes b_{i})$$
$$= \sigma(\sum_{i} a_{i} \otimes (b_{i}r))$$
$$= \sum_{i} a_{i}\alpha(b_{i}rd)$$
$$= \alpha^{*}(rd).$$

So we see that α^* is an *R*-homomorphism, and J(R) is projective as left *R*-module.

As every projective module over a completely primary ring is free ([1, p. 300, Corollary 26.7]), J(R) is free as *R*-module. As J(R) is a proper subset of *R*, we see J(R) = 0.

§2.

The fact that a finite division ring is commutative is well-known as Wedderburn's theorem ([2, p. 458, Theorem 68.9]). The following is a generalization of this theorem.

Theorem. Let R be a finite, completely primary ring whose prime ring is \mathbb{Z}_{p^k} . If R is separable over \mathbb{Z}_{p^k} , then R is commutative.

Proof. Let $\mathbb{Z}_{p^k}[X]$ denote the ring of all polynomials of variable X with coefficients in \mathbb{Z}_{p^k} .

In what follows, when S is a finite set, |S| denotes the number of elements of S. Since K = R/J(R) is a finite field, there exists $\bar{a} \in K$ such that $K = \mathbb{Z}_p[\bar{a}]$ $(\mathbb{Z}_p[\bar{a}]$ denotes the subfield of K generated by \bar{a}). Let $|K| = p^r$, and $f(X) \in \mathbb{Z}_p[X]$ be the monic, minimal polynomial of \bar{a} . Let $a \in R$ be a pre-image of \bar{a} . Then the subring R_0 of R generated by a is a finite, commutative completely primary ring (since R_0 has no nontrivial idempotents) such that $R_0/J(R_0) = K$. By making use of Hensel's lemma, we can see that R_0 contains a subring S such that $|S| = p^{kr}$ and S/J(S) = K (see [3, Theorem 8 (i)]).

Next, we shall show that R/pR is separable over \mathbb{Z}_p . To do this, we see that $\operatorname{Hom}_{(R/pR)^{\circ}}(R/pR,)$ is cokernel preserving.

Let T be a left $(R/pR)^e$ -module. By the operation

$$(a\otimes b)x=(a+pR)\otimes (b+pR)x \ \ (a,b\in R,\ x\in T),$$

T is a left R^e -module. We shall show that, as additive groups, $\operatorname{Hom}_{(R/pR)^e}(R/pR,T)$ is naturally isomorphic to $\operatorname{Hom}_{R^e}(R,T)$.

Let $f: R \longrightarrow T$ be an R^e -homomorphism. As f(1) is in T, we can define

$$\varphi: \operatorname{Hom}_{R^e}(R,T) \longrightarrow \operatorname{Hom}_{(R/pR)^e}(R/pR,T)$$

by

$$\varphi(f)(a+pR) = (a+pR) \otimes (1+pR)f(1) \quad (a+pR \in R/pR).$$

It is easy to see that $\varphi(f)$ is in $\operatorname{Hom}_{(R/pR)^e}(R/pR,T)$. Conversely, let $g: R/pR \longrightarrow T$ be an $(R/pR)^e$ -homomorphism. We can define

$$\psi: \operatorname{Hom}_{(R/pR)^{e}}(R/pR,T) \longrightarrow \operatorname{Hom}_{R^{e}}(R,T)$$

by

$$\psi(g)(r) = g(r+pR) \ (r\in R).$$

It is easy to see that $\psi(g)$ is in $\operatorname{Hom}_{R^e}(R,T)$, $\psi(\varphi(f)) = f$, and $\varphi(\phi(g)) = g$. So we see that R/pR is separable over \mathbb{Z}_{p^k} .

As $(R/pR)\otimes_{\mathbb{Z}_{p^k}} = (R/pR)\otimes_{\mathbb{Z}_p}$, R/pR is separable over \mathbb{Z}_p . By Proposition, J(R/pR) = 0, which implies J(R) = pR.

Now, there exists the following natural sequence of surjective ring homomorphisms σ_i :

$$R = R/p^k R \xrightarrow{\sigma_k} R/p^{k-1} R \xrightarrow{\sigma_{k-1}} \cdots \xrightarrow{\sigma_2} R/p R = K ,$$

where $Ker(\sigma_i) = p^{i-1}R/p^iR$.

We see

$$|R| = |K| \cdot \prod_{i=2}^{k} |Ker(\sigma_i)|$$
$$= |K| \cdot \prod_{i=2}^{k} |p^{i-1}R/p^iR|.$$

As $pR \otimes_{\mathbb{Z}_{p^k}} (p^i \mathbb{Z}_{p^k})$ is embedded in $R \otimes_{\mathbb{Z}_{p^k}} (p^i \mathbb{Z}_{p^k})$,

$$\begin{split} p^{i-1}R/p^{i}R &\cong (R \otimes_{\mathbf{Z}_{p^{k}}} (p^{i-1}\mathbf{Z}_{p^{k}}))/(R \otimes_{\mathbf{Z}_{p^{k}}} (p^{i}\mathbf{Z}_{p^{k}})) \\ &\cong (R \otimes_{\mathbf{Z}_{p^{k}}} (p^{i-1}\mathbf{Z}_{p^{k}}))/(pR \otimes_{\mathbf{Z}_{p^{k}}} (p^{i}\mathbf{Z}_{p^{k}}) + R \otimes_{\mathbf{Z}_{p^{k}}} (p^{i}\mathbf{Z}_{p^{k}})) \\ &\stackrel{\cong}{\cong} (R/pR) \otimes_{\mathbf{Z}_{p^{k}}} (p^{i-1}\mathbf{Z}_{p^{k}}/p^{i}\mathbf{Z}_{p^{k}}) \\ &\cong K \otimes_{\mathbf{Z}_{p^{k}}} (p^{i-1}\mathbf{Z}_{p^{k}}/p^{i}\mathbf{Z}_{p^{k}}). \end{split}$$

So,

$$|p^{i-1}R/p^{i}R| = |p^{i-1}\mathbb{Z}_{p^{k}}/p^{i}\mathbb{Z}_{p^{k}}|^{r} = p^{r},$$

and

$$|R| = |K| \cdot \prod_{i=2}^{k} |p^{i-1}R/p^{i}R|$$
$$= p^{r} \cdot (p^{r})^{k-1}$$
$$= p^{kr}.$$

As S is a subring of R and |S| = |R|, we see S = R. So R is commutative.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin (1974).

[2] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, John Wiley, New York-London-Sydney (1962).

[3] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.