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On Wedderburn’s Theorem
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Abstract. The fact that a finite division ring is commutative is well-known as Wedderburn’s
theorem. The purpose of this paper is to show a theorem which is a generalization of Wedderburn’s

theorem.

§0. Introduction

In what follows, a ring is an associative ring with 1. When R is a ring, J(R) denotes the
Jacobson radical of B. A ring R is called completely primary if B/J(R) is a division ring.

A finite ring is a ring consisting of only finitely many elements. When R is a finite ring, the
number of elements of R is called the order of R. If is easy to see that a finite ring is a direct sum
of finite rings of prime-power order, So, if R is a finite, completely primary ring, the order of R is
a prime-power.

Note that, though a finite division ring is commutative, a finite, completely primary ring is not
necessarily commutative,

Let R be a commutative ring, and A be an algebra over R which is finitely generated as R-
module, Let A° be the opposite algebra of A, The algebra A® = A @y A° over R is called the
enveloping algebra of A, By the operation

(a ® b)z = axb,

A is aleft A°-module, The algebra A is called separable over Rif A is projective as left A®-module.
Let ¢ : A° —» A be the natural surjection given by ¢(a ® b) = ab. It is well-known that the
following (i)-(iii) are equivalent (see, for instance, [2, §68, §69]).
(i) A is separable over R.
(i) The exact sequence

0 —— Ker(d) — A° —2y 4 0

splits, that is, there exists a left Ae-homomorphisrh o1 A — A° such that poa =1idy.
(iii) There exists an idempotent e =y, a; ® b; in A® such that (Ker ¢)e =0 and ¢(e) = 1.
If this is the case, the element e of A® satisfying (iif) is called a separability idempotent for 4.
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§1‘

Let R be a ring. When we say that § is a subring of R, § must contain 1 of E. The prime
ring of R is the subring of R generated by 1. By what is stated above, if R is a finite, completely
primary ring, the prime ring of R must be Z,x = Z/(p"), where p is a prime,

Proposition. Let R be a finite, completely primary ring whose prime ring is Z,. If R is
separable over Zy, then J(R) =0, that is, R is a finite field.
Proof. We shall show that J(R) is projective as left R-module, Let
(B) P —— JR) — O

be an exact sequence of left R-modules. As J(R) is free over Zjp, as Z,-modules, the sequence (E)
splits. That is, there exists a left Z,-homomorphism o : J(R) —+ P such that 50 o = idyg).
Let e =, a; ® b; be a separability idempotent for R. Let us define o* : J(R) — P by

o*(e) = Za.ia(b,-:c) (2 € J(R)).

We shall show that a* is a left R-homomorphism satisfying 7 0 a* = idy(g).
For ¢ € J(R),

noa(a) = () asalba)
= Z ain(e(biz))
; Z a,-bia:.

As 37, a:b; = 1, we see 7 0 a*(z) = =,

Let d be a fixed element of J(R). Then 7 : R X R — P given by 7{z,y) = za{yd) is a Zy-
bilinear mapping from R x R to P. By the property of tensor product, there exists a Zp-bilinear
mapping o ; R ®7, R — R such that o(2 ® y) = (z,y) (=,y € R).

From (Ker¢)e = 0, for 7 € R, it holds that

Z(rai) Rb; = Z a; ® (bg’l‘).

]

Hence,
rat(d) =7 Z a;a(bid)
= Zmza(b;d)
= a(tz:(ra;) ® b)
= a(i a; ® (bir))

= Z aia(bird)
- a*(rd).
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So we see that a* is an R-homomorphism, and J(R) is projective as left R-module,
As every projective module over a completely primary ring is free ({1, p. 300, Corollary 26.7]),
J(R) is free as R-module. As J(R) is a proper subset of R, we see J(R) = 0.

§2.
The fact that a finite division ring is commutative is well-known as Wedderburn s theorem

({2, p. 458, Theorem 68.9]). The following is a generalization of this theorem.

Theorem. Let R be a finite, completely primary ring whose prime ring is Zyx. If R is separable

over Z,., then R is commutative.

Proof, Let Zy[X] denote the ring of all polynomials of variable X with coefficients in Ze.

In what follows, when S is a finite set, |5| denotes the number of elements of . Since K =
R/J(R) is a finite field, there exists @ € K such that K = Z,[a] (Z,[a] denotes the subfield of K
generated by @). Let [K| = p", and f(X) € Z,[X] be the monic, minimal polynomial of @. ILet
a € R be a pre-image of G. Then the subring Ry of R generated by a is a finite, commutative
completely primary ring (since Ry has no nontrivial idempotents) such that Ry/J(R) = K. By
making use of Hensel * s lemma, we can see that By contains a subring § such that |$| = p*" and
S/J(S) =K (see (3, Theorem 8§ (i)]).

Next, we shall show that B/pR is separable over Z,. To do this, we see that Homr/ppy- (R/pR, )
is cokernel preserving,

Let T be a left (R/pR)*-module. By the operation

{(e®b)z=(a+pR)®(b+pR)z (a,bER, zT),

T is a left R°-module. We shall show that, as additive groups, Hom(g/pr)(R/pR,T) is naturally
isomorphic to Hompge (R, T).
Let f: R — T be an R°-homomorphism. As f(1) is in T, we can define

¢ : Hompe (R, T) — Homg/pr) (R/pR,T)
by
¢(f/{a+pR) =(a-+pR)® (1 +pR)f(1) (a+pR € E/pR).

It is easy to see that () is in Homg/,p)- (B/pR,T).
Conversely, let g : R/pR — T be an (R/pR)*-homomorphism. We can define

¥ : Hom(gp/pr)e (R/pR,T) — Homp:(R,T)

¥(g)(r) = g(r + pR) (r € R).
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It is easy to see that 9(g) is in Homge (R, T'), ¥(9(f)) = f, and ¢(4(g)) = g.

So we see that R/pR is separable over Z«.

As (R/pR)@ZPk = (R/pR)®yz,_, R/pR is separable over Z,. By Proposition, J(R/pR) = 0,
which implies J(R) = pR.

Now, there exists the following natural sequence of surjective ring homomorphisms a; :

Tkt G2

R=R/p*R —2 BR/p*'R N » R/pR=K ,

where Ker(o;) = p* "' R/p*R.
We see

k
B[ = K| ] |Ker(oi)l

A F=2
= k|- ] I»"*R/p'R].
=2

As pRQg, (p"Zp;,) is embedded in R ®y (P'Zipx),
P P

PR/PRE (Rog , (7' Zp))/ (RO, (p'Zy))
& (Bog , (" '2,.))/(pE®g , (P'Zp) + ROy , (p'Z,1))
= (R/pR) @, (0 Zpr [0 Zyr)
2K ®Zpk (pi_lzph/pizpk).

o' R/ Rl = [ D [ B |” = ",
and

&
|\B| = || [ "~ R/pR

i=2
=p"{p
— pkr'

r)k—l

As § is a subring of R and |§| = |R|, we see § = R. So R is commutative.
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