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The existence of the bilinear forms on the quantum affine superalgebras
of type DM(2,1;z) (z € C\ {0,-1})
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Abstract. We will prove the existence of the bilinear forms on the quantum
affine superalgebras of type D) (2,1;z) (z € C\ {0, —1}).

1 Introduction

In the theory of infinite integrable analysis, the R-matrices play important rules of the integrability of the
infinite integrable systems. The R-matrices are generated by the universal R-matrices and the representations
of various quantum algebras. In [7], we describe the universal R-matrices of untwisted quantum affine algebras
in certain multiplicative formulas by using a new concrete method of constructing all convex orders on the
positive root systems. In the work, we use J. Beck’s papers [1] and [2] on the Drinfeld second realization of
the untwisted quantum affine algebras. On the other hand, in [4], they obtain the Drinfeld second realization
of the quantum affine superalgebras of type D) (2, 1;x), where z € C \ {0, —1}.

Our purpose is to extend the results of the paper [7] to quantum affine superalgebras of type D(l)(2, 1;2)
by using the paper [4]. This paper is the first step toward the aim. To achieve the purpose, it is important
to construct the bilinear forms on the quantum superalgebra of type D) (2,1; ). In this paper, we prove the
existence of the bilinear forms by using a manner similar to Tanisaki’s in [15]. We plan that the second step
is the construction of convex bases of the quantum superalgebra of type DY) (2,1; ) by using paper [4] and
the third step is the calculation of the values of the bilinear forms on the convex bases.

This paper is organized as follows. In section 2, we recall the notations for the simple root systems of Lie
superalgebra of type D(l)(2, 1;z). Especially, we give the definition of the inner products on the dual spaces
of the Cartan subalgebras. In section 3, we define the quantum affine superalgebras of type D(l)(2, 1;2) and
give the preliminary results. In section 4, we construct the bilinear forms on the quantum affine superalgebras
of type DM (2,1; ). Our main result of this paper is Theorem 4.10.

2 Notations for the simple root systems of type D! (2,1;x)

In this section, we give notations for the simple root systems of Lie superalgebra of type D) (2,1;z).

Lie superalgebra g is a Zo-graded algebra g = go @ g1 equipped with a super bracket satisfying the super
Jacobi identity. The Lie superalgebras, like the Lie algebras, can be studied with the help of Cartan matrices
and Dynkin diagrams, but an important difference between Lie algebras and Lie superalgebras is that, in
contrast to the Lie algebras, there are several unequivalent simple root systems for each Lie superalgebra with
respect to the inner product. Hence, in general, there are several unequivalent Dynkin diagrams for each Lie
superalgebra.

Let g be the Lie superalgebra of type D(2,1;z), and g the untwisted affine Lie superalgebra of type
DM(2,1;2), where z € C \ {0, —1}. Tt is known that there are five unequivalent simple root systems for § (cf.
[4]). Solet D = {0,1,2,3,4} be the set of index of Dynkin diagrams of §. For each d € D, let II; = {c; 4|7 € I}
be the set of simple roots with T = {0, 1,2,3}. We define Q4 to be the Z-lattice spanned by II;. Then we set
QI = Ziel Zzoai’d C Qd and Q; = —Q(—;

For each d € D, let V4 be a four dimensional C-vector space which spanned by II; = {a;q]7 € I}. A
symmetric bilinear form ( | ) = (| )q: Vg x V4 — C is explicitly given as follows:

(ao,0la0,0) =0, (ciolajo) =0 fori,j eI\ {0},i+# 7,
(aiolane) = —2z, (a1,0la0,0) =z,

(agplan) =2(z+1), (a20]|a0,0) =—2—1,

(as0lasg) = -2, (asz,0lao,0) =1,
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and for d =1,2, 3,

(aialaj,a) = (@g,0).00%f0),0)s

where f; are the elements of the following subgroup K4 of the permutation group of I:

Ka={fo:=1d, f1 = (01)(23), f2 := (02)(13), fs := (03)(12)},
and finally for d = 4,

(aialaig) =0 foriel, (a0alas,e) = (a14]az4) = -1,
(aoalars) = (aoulass) = —z, (ao4]ags) = (a14]aszs) =2+ 1.

For each d € D and «; g € I1g, let p(ay 4) be the parity of oy 4, which are defined as follows:

[0 if (aiglaia) # 0,
plaia) = { 1 if (edlas,q) = 0.

Then we extend p to the Z-linear function p: Qg — Z.

3 The quantum affine superalgebras of type D1 (2,1; )

In this section, we define the quantum affine superalgebra of type DM (2, 1; ), where z € C\ {0, —1}. Fix an
element A € C\ Zmy/—1 such that exp(hka) # 1 for all k € N and all a € {1, z, z + 1}. We set ¢* := exp(hu)
and [uly :== (¢* — ¢ %)/(g — ¢ ') for any u € C, where q¢ := ¢'. Note that ¢*® # 1 for all k € N and all
ac{l, z, z+1}.

First, for each d € D, we define the associative C-algebra U, with the unit 1 by the generators

+1 .
0d, K‘,d2a Ei,da Fi,d (Z € 1)7

3

and the following relations

XY =YX for X,Y€{osKi}}, (3.1)

o3=1, KL,K, ?=K 2K}, =1, (3.2)

04FB; 404 = (~1)PDE; 4 04F, goq = (—1)Pd Fy 4, (3.3)
1 _1 1 1 2

Kl EjaK, ; = q(ai’dlaj’d)/zEjm KiZdijdKi,zf = q_(ai’dlaj’d)/ Fj.a, (3.4)

EiaFjq— (—1)Plewdrlesd) 4By g = 5@{(de)2 - (Ki_,d%)Q}/(q —q), (3.5)

)

for all ¢, j € I. In the following we use notations
.
Eaiyd = L d, Fai,d = I'i.d, Ky = HiEIKi’d P

where A\ = % D ier MiCid € %Qd with m; € Z. As we will see later, the quantum affine superalgebra is obtained
from the quotient of U/, divided by the Serre like relations. Still it will be convenient to work with the algebra
U;. The algebra U}, has a unique Qg4-grading

’ / / / /
Uy = @ Ug », Ug \Ug , CUgatp
AEQqg

such that {1, o4, K:Ed%} CUyy, Bia €Uy, ,»and FiaeUy .  foralli€l Note that there exists a unique
algebra automorphism W4 of I/} such that
+1 1 .
Ug(oa) = 04, Va(K,2)=K; 2, Uu(BEia)=(-1)PdFq Va(Fq) = Eia.
To state the Serre relation, we need to introduce the g-super-bracket [, | for the elements of U}. For a € C,
X\ €Uy y, and X, €U, with A, pu € Qq, we set
[Xx, Xula = X0 X, — (—1)PVPWg X, X, (3.6)
[[X)\,Xu]] = [X,\,Xﬂ]q—(xm). (3.7)

Then we extend the [, ], and [, ] to the bilinear mappings U; x U}, — U}, respectively.
Now we define the quantum affine superalgebras U/, of D()(2,1; z) for Dynkin diagrams labeled by d € D.
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Definition 3.1. The quantum affine superalgebra U} of type DW(2,1;z) over C is the quotient algebra of
U, divided by the two-sided ideal generated by the following elements:

E?,;, wherei€land p(aia) =1, (3.8)
[Eia, Eja], wherei,jel, i#j,and (oqd|ej,q4) =0, (3.9)
[Eiq, [Eia, Eja]l, whered,j €1, 4% j, and p(as,q) = 0, and (o q|aj,a) # 0, (3.10)
[(cvi,alor,0)]ql[Bia, Ejal, E,al — [(0,4]05,0)][[ B4, Er,a], Ejal, (3.11)

if d = 4, where i, j,k € I such that i < j <k,
(04,0 + ad,dlan,d + aaa)q[[Ead, Eidl, [Ead, Ejdll, [Ea,q, Ex,al]

— [(es,a + aaaleya + ag,a)loll[Baa, Eidl, [Eaa, Er,all, [Ea,a, Ej,d] (3.12)
if d # 4, where {1,7,k,d} =1, and i < j < k,
T4(X), for all X in the above. (3.13)

Because of history, we call the above relations the Serre relations.

Since each element displayed in (3.8)-(3.13) is an element of Uy , for some A € Qq, the Qu-grading of Uy
induces the Qq-grading U} = @xeq,Uj - We call a non-zero element z € Uy (resp. = € Uj) a weight vector
with weight A if z € U , (resp. = € Uy ,), and set wt(z) = A. To simplify notations, we will also write wtz
instead of wt(z). The linear mappings [, |, and [, | from U} x U} to U} can be defined by the same way as
above, and the ¥4 induces an automorphism of U}, which will also denoted by ¥.

l
Let U0, U0, and U/<° be the subalgebras of U, generated by the sets {E; 4|1 € I}, {oq, K, K 7 |i€l}, and
F; 4| € 1}, respectively, and set U2 := UFOU and USY = UPUSO. Let U, UP, USO, U’>0 and U’=°
, Y d Y4 d d Y4 d d
be the images of U0, U2, U0, Z/{’>O and M;SO, respectively, under the canonical prOJectlon L{’ — U}

Theorem 3.2 ([4]). (1) The associative C-algebras U}, and U}, can be regarded as Hopf algebras (U}, A, e, S)
and (U}, A, e, S) such that

AX)=X®X, AFid)=FEa®l+K 105 @E 4 AFg)=Fa®K }+o" @R, (3.14)
e(X)=1, e(Eiq) =0, e(Fiq) =0, (3.15)
S(X) =X, S§(Eiq) = K:;ag(al VEig,  S(Fig) = —(—1)Pa) Fy 4K, 40500, (3.16)

where 1 € I and X € {04, de% |7 eT}.
(2) The multiplication X Y ® Z +— XY Z defines the following isomorphisms of Qq-graded C-vector spaces:

ul>0® ul<0Nud’ UI>0 UQO®UQ<OﬁUQ

Moreover, the algebrall7° (resp. U5=°) is the free algebra generated by the set {E; q|i € I} (resp. {F;a|i €1}),
and the algebra U0 (resp U/=%) is isomorphic to the quotient algebra of Uy >0 (resp. U°) divided by the
two-sided ideal genemted by the elements displayed in (8.8)—(3.12) (resp (3.18)). The both U and UY are

isomorphic to the commutative algebra defined by the generators {oq4, K, d |z € I} and the relations (3.2).

Proposition 3.3 ([8]). (1) Let (A,¢,S) be the Hopf algebra structure on U} introduced in Theorem 3.2. Let
SR € U° be an arbitrary element displayed in (3.8)-(3.11), and set SR™ = Wa(SR). Then the following
equalities hold:

ASR) =SR®1+ 5" K sry @ SR, ASRT) =SR™ ® K sp) + 05T @ SR™, (3.17)

S(SR) = =0y K sy SR,  S(SRT) = —(~1)""CPISR 07 I Ky sr).- (3.18)

(2) Let L be the two-sided ideal on/{ generated by the elements displayed in (3.8) and (3.9). If SR €
U is an arbitrary element displayed in (3.12), then the left (resp. right) equality of (3.17) holds modulo
L ®L{’>O +Z/lé>0 ® L (resp. ¥y(L) ®Z/l'<0 + USSP ®Wy(L)), and the left (resp. right) equality of (3.18) holds
modulo L (resp. Yq(L)). :
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4 The bilinear forms

In this section, we construct the bilinear form on the quantum affine superalgebra of type D(l)(Z, 1; ).
Let I = (1, - ,Bn) be a finite sequences of elements of II (d € D) with n € N. Then we set |I| := n and
call |I| the length of 1. We define Er € U°, By € UP°, Fr € U/S°, and Fy € U< by setting

EI :ZEgl---Eﬁn, F] :ZFﬂl-“Flgn, (4.1)
and set wt(I) := wt(Er) = > ., B;- In the case where I = 0, we set Ey = Fj := 1 and wt(0) := 0. To
simplify notations, we will also write wtI instead of wt(I). Let J = (y1,---,7¥m) be a finite sequences of
elements of II; with n > m. If there exists a subset {i1, -+ ,im} of {1,---,n} such that iy < --- < i), and
J = (B, ,Bi,), then we call J a subsequence of I. Moreover, for a subsequence K of I, there exists a subset

{1,y Jn—m} of {1,--+ ,n} such that {41, - ,im} O {j1, - ,Jn—m} = {1, -+ ,n} with j1 < -+ < jp—m and
K =B, Bj._..), then we write I = J + K. Especially, if i,, < j1, we denote I = (J, K).

Lemma 4.1. Let I be a finite sequence of elements of Ilq. Then there exist elements !y p(q) € Z[g*!, q*?]

such that in U and U}:
A(E)) = Zeﬁ, 2(Q)Bact" P K ® Ep, (4.2)
ZCA 407 O KdaFs =3 b al NIl @ PGl (49)

where the sum is over all subsequences A, B of Il with I = A+ B. Moreover, one has c§ 0= cé =1

Proof. We use the induction on the length of I. In the case where I = (), we have Ef = F; = 1 and
A(Er) = A(Fr) = 1®1, so the claim holds with cg p = 1. Suppose that the formulas hold for some I, let

a € I1; and consider I’ := (o, I). Then we have

A(Er) = (Ba ® 1+ 05V Ko ® Eo) (Y ¢y 5(0) Each ™ Koup ® Ep)

A,B
= Z(CQ,B(Q)E((X, )05( )Kth ® Ep + CA B(Q) A )K E Up(WtB)Kth ® E(a B))
A,B
= (CA B(9) E(a, A)Up( B Kwip ® Ep + (—1)p(a)p(WtA)C£1,B(Q)q(a|WtA)EAU§(a+WtB)Ka+th ® E(4,B))
AB
and
A(Fp) = (Fa @ K3* + 05 @ F,) ZCA 5 wo? ) @ KL Fi)

= Z(CQ,B(Q_I)F(OL,A)UZ(MB) ® K;+thFB + CA,B(q D) p(a)F p(WtB) ® FoK 'y Fuip)
A

= > (ch 5@ ) oh ™ @ K1 Fp + (—1)7 @70 el (g7 )~ M Faoh T @ KL Fla ).
A

Let us define cﬁ,’B/(q) as follows. If both A’ and B’ begin with a, then write A’ = (a, A) and B’ = (o, B)
and set cﬂ,)B,(q) = chy () + (-1)P ple)p(wtAl) el B(q)q(a‘|w“‘/). If A’ begins with o and B’ does not, then
set cﬂ,ﬁ,(q) = ¢y pi(q), where A’ = (a,A). If B’ begins with o and A does not, then set cﬂ,,B,(q) =
(—I)P(O‘)p(WtAl)ci,7B(q)q(""“’t“‘l), where B’ = (a,B). If both A’ and B’ do not begin with «, then set
cﬂ,, g5/(¢) := 0. Then it is easy to check the c£,7 p(q)’s satisfy the claims. O

Let t be an indeterminate, and define [n¢, [n];!, and [7], to be elements of Z[t,t!] by setting

-t n [n]4!
= —— ' = — 1 IR 1 D S
[’I’L]t t—t1 [n]t [n]t[n ]t [ ]t7 |:77’L:| . [n — m]t'[m]t'
for each n,m € Zx>o with n > m, where [0]¢! := 1. For each a € IlIg, we set

o = (V=1)P(@)glel)/2 Ta = (V—1)P@g=(ala)/2 — (_1)p(a)g—1, (4.4)
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By using the substitutions ¢ = g, and ¢t = g, we define [n],., [nlgz, [Ple. !, [Pl [1] o and 2] - Then we
note that

[nlge = (~1) 0P, m = (e

m m

| ool
do da do
for all n,m € Zxo with n > m. Moreover, note that ¢ = (—1)P(@)gl@l) "hence

04K oEo = 2FBq04Ky,  0iKoFo = ¢ FaoaK,. (4.6)

Lemma 4.2. Let a € Iy, and n € N. Then the following equalities hold in U}, and U}:

n
AED) =3 gl m Erig PO i @ B (4.7)
=0 Qo
n
AEp) = Y (1 |7 FLo e g R @8)
=0 do

Proof. We use the induction on n. In the case where n = 1, the claims are clear. Suppose that the formulas
hold for some n. Then, by the center equality in (3.14), we see that

n
AE) = (Ea1+ oV Ka 0 B a0 |7| Bl IR0 B
=0 9o

n n
— qux(n—i) n EZH_iaflp(a)Kg ® Ej! + Zqi(n—i) [ﬂ Kaafi’(a)EZ_iK;a;p(a) ® EQH
da

=0 - - da =0
n oA n
>8] Ererrie B+ Y a7 @Bk o B
=0 Lo Qo =0 qo

n roA n+1
— qu(n—z‘) n E2+1_i02p(a)Ké ® E'; + ch(j+1)(n+1—i) [ n 1] EZ—H_iinp(a)Ké ® Efx
i=0 L%l qa i=1 = g
n+1

_ Z gin+1=9 <q;i [n} gt [ :L 1] )EZH_iGZp(a)Ki ® Ei
i=0 v ga t da
n+1
. . 1 N )
= gt [n J; } Erti-igP @ gl @ Bl
=0 o0

By (4.7) and the second equality in (4.3), we see that

n - ——i(n—i) [T i(n—i)(a|a) i (n—1)p(c n—i gr—1i
AFD) = (@) >H Gin=9(ale) i o (n— (%) g i g~
i=0 =
— Z(_l)i(n—i)p(a)q;i(n—i)(_1)i(n—i)p(a) |:’I’7,:| (_1)’i(n—i)p(o¢)qii(n—i)Fcio_((in—i)p(a) ® Fg—iK;i
da

7
=0
n

_ (_1)i(n—i)P(a)q(i1(n—i) |:’;L:| Féa.l(in—i)l’(a) ® Fg_iKgi. O

=0 do

We recall the following fact. Let A be a bialgebra over a field K with A the coproduct and € the counit,
i.e., A is an associative algebra over K with algebra homomorphisms A: A — AQk A and €: A — K such that

(A@idA)OAZ(idA®A)OA, (€®idA)OA=(idA®8)OA=idA.

Then the dual space A* = Homg (A, K) is naturally regarded as an associative algebra with the unit over K
as follows. Let f,g € A*. Then the product fg € A* is defined by

f9(a) = (f ® 9)(A(a),

where a € A. The counit € is the unit of A*.
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Definition 4.3. For each « € 114, we define a linear form f, on Ufo by setting

For each sequence I = (81,02, ...,0p) of elements of II;, we set
fr="fp.fs. " I, (4.10)
If I =0, we set
fo(Ejog Ky) =670 (4.11)
For each m € {0,1} and A € %Qd, we define a linear form k,, » on U;ZO by setting
Fm\(Broi Ky) = {é_l)mnq_o‘l#) i)ftflejvitse. (4.12)
Lemma 4.4. Let I,J be arbitrary sequences of elements of Ilg, m,n € {0,1}, and A\, u € $Qq. Then
frkma(BroiKy) = (=1)™"q~ M f1(Ey). (4.13)

Moreover, if wt(I) # wt(J), then fr(Es) =0.

Proof. Firstly, we consider the case where m = 0 and A = 0. Then it is clear that frkm, x = fr. We use the
induction on the length |I|. In the case where |I| = 0, i.e., I = (), both claims follow from (4.11). In the case
where |I| =1, i.e., I = () for some a € I , both claims follow from (4.9). Suppose that the claims hold for
some I and consider I’ = (o, I). By the definition of the product on (U'<%)®? and Lemma 4.1, we see that

fr(Byo3K,) = fo ® f1(AE105K,)) = fa ® f1( D ch 5@ Each ™ P " Koy(py1, ® EpoliK,)
A,B

=3¢l 5(Q) fa(Badh ™ PV K umy40) f1(BBOTE,) = Y ¢k p(a) falBa) f1(EB).
A,B A,B

By the previous equality, we see that fr(E;o7K,) = fr(Es). Here we suppose that fr/(Es) # 0. Then
there exist A, B such that ¢} 5(q) # 0 and fo(Ea4)f1(Eg) # 0. The condition fo(Ea4)f1(Ep) # 0 implies that
A = (o) and wt(B) = wt(I). Thus we get that wt(J) = wt(A) + wt(B) = a + wt(I) = wt(I').

Secondly, we prove (4.13) in the general case. By the previous result and (4.12), we see that

FrmA(Bso3KL) = fr @ kmA(A(Es02KL)) = f1 @ kmn (D ¢k 5(@) Each ™ P " Koy 1 ® Epoli K,)
A,B R

=" A (@ Fr(Bact ™ P K5y 40)kma (Bpot K,)
A,B

= f1(Bs05 " D M K gy a) - (1) AW = (—1)mmg= AW £ (B O
Lemma 4.5. Let I be an arbitrary sequence of elements of Iz, m,n € {0,1}, and A\, u € %Qd. Then
km,kkn,u = km+n,/\+p,; \ (414)
kmafr = (1) g= O D) g (4.15)

Proof. We see that
km,/\kn,#(EIUfiKV) =kma @knp ( Z C{4,B(Q)EAUS(WtB)HKwt(BHu by EBUilKu)
A,B
=" e 5@k (Bach ™ P K gy Vo, (BpoLK,)
A,B

= kmtnA+u (EIUQKV)-

B (_1)mlq—()\|l/) . (_1)nlq—(ulv) ifI =0,
"o otherwise
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Thus we get (4.14). By Lemma 4.4, we see that

kmaf1(EjogK,) = km ® f1(A(Eyo3K,))

=k ® f1( Y ch 5(@)Bact ™ P " Koy 5y 4, ® BpoK,)
AB

= Z ¢, 5(Qkm A (Bach ™ P Koy p) 1) fr(Epol Ky)
= km, (o (WtJ)Jrant(J)w)fI(EJ) = (—1)mpeI) ) =W+ £ (B ).
= Bwi(n)wi(y (1) P g OD g1k (BrohKL).
Thus we get (4.15). O
Definition 4.6. Let us define a linear map ¢: Z/[C/FO — (U, ;ZO)* by setting
o(Frog" Kx) = frkm,x- (4.16)
Here we define a bilinear form ( | ) = (| )a: Uy 20« U/Z° — C by setting
(@|y) = ¢(y)(z), (4.17)

120 We use the notation ( | ) = (| )q also for the bilinear form ( | ): (U/Z%)®2 x

where z € U/~ and y € Z/l’<0

UE%®2 — C induced by
(1 ®@x2 |41 ® y2) = (w1 | 11) (22 | y2)- (4.18)
Lemma 4.7. Let I,J be arbitrary sequences of elements of Ilg, m,n € {0,1}, and A\, p € $Qq. Then
(Erof K| Fso3Ky) = Swi(n,we(n (—1)™"q¢ M (Er | Fy). (4.19)
Moreover, for each © € U ;ZO andy € L{fo, the following equality holds:

(@ |y1y2) = (A(2) [ 11 © y2). (4.20)

Proof. The equality (4.19) follows from Lemma 4.4 and (4.16)(4.17).
We claim that the map ¢ is an algebra homomorphism. Indeed, by Lemma 4.5 we see that

@(FIO'(TK,\FJO'ZZKM) — (—1)mp(WtJ)q_(>\|WtJ)(P(F(I,J)O'Zin+nK/\+u) — (_1)mp(th)q——(>\|th) f(I,J)km+n,>\+u
= (1) DG AD £ £k Nn = frkmafrkny = @(Frog Kx)p(Fro7K,).

By the claim and (4.17)(4.18), we see that

(@ y192) = ¢(y192) (@) = ((y1)e(2)) () = (y1) ® P(y2)(A(2)) = (Y1) ® (y2) (D _ z: @ })

%

= Zcp(yl (@) Z(%lyl Hye) =D (@@ |y @) = (A@) |11 ®2). O

Lemma 4.8. Let o € Il4, and n € N. Then the following equality holds:
(B | F2) = q*™ D 2nle, /(2" — ga)™ (4.21)

Proof. We use the induction on n. In the case where n = 1, the claim is clear. Suppose that the formula holds
for some n — 1 € N with n > 2. Then, Lemma 4.2 and Lemma 4.7, we see that

(Bn | F2) = (A(ER) | F37' @ Fa) = q2 " n]q, (B2 205 Ko ® Ea | F2 7' @ Fu)

= @ lan (B ) (B | Fa) = 0 o022l = 1g, /(g5 — 0a)™ +1/(05" ~ 42)

= q0" I n]g, /(a2 — ga)”. O
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Proposition 4.9. For all weight vectors x1,xo € UZFO and all y € U&SO, we have the following equality:

(z129|y) = (_1)7"(5’71)P(Wt$2)+m(z2)P(thl)+P(th1)P(Wtz2)(Iz ®z1 | Ay)), (4.22)
where T, = mj‘a;n(m’)Km with 77 € UPC, m(z,) € {0,1}, and p, € 1Qq for each v = 1,2.

Proof. Tt suffices to show the equality for weight vectors y € Z/{fO. We use the induction on wt(y). In the
case where wt(y) = 0, i.e., y € U/?, thanks to Lemma 4.7, it suffices to consider the case where z1,z2 € UZ.
Hence, the equality (4.22) is clear in this case. Suppose that wt(y) = o with a € II3. Then we may write
y = F,o4K) with 1 € {0,1} and A € Q4. We see that

1)mp(a)q(ﬂla) (Ea0?+nKﬂ+u|FaniK,\)

(07K, - BEqo} K, | Faoh Ky) = (—

- (_1)mp(a)q(#la)(_1)(m+n)lq—(u+r/|>\)/(q;1 —4a),
(
(

(Ba0 K, ® 07K | A(Fach K))) = (Bao K, ® 07K, | FachKy © 04K + 05 Ky @ FuolK))

= (—1)mFmlg= WD) g=wA=a) /(=1 _ g )

Thus, in the case where z1 = 0'K,, and z2 = Eo0} K,, the equality (4.22) is valid. We see that

(Baog Ky - oq Ky | FaafiKA) = (Eaagn+nKu+V|Fa0(liK>\) = (_1)(m+n)lq—(u+yl>\)/(qgl — Ga);
(07K, ® Eool K, | A(FaohK))) = (07K, ® Eaot K, | FactKy ® 04Ky _o + 02T Ky @ FuohK))
= (—1)mEEFD (—1)rtgm btV /(g7 — ga).

Thus, in the case where 21 = E,07 K, and z2 = 0]'K,, the equality (4.22) is valid.

We suppose that the equality (4.22) holds for weight vectors y1,y2 € L{EO. Firstly, we consider in the
case where z1,72 € U7°. Then m(z1) = m(z2) = 0. For each r = 1,2, we write A(z,) = Y, zr; ® zl,;
with z,; € UC/FO and z/, € Ué>0 and A(y,) = >, Yri ® Yoy With yri, 4L, € Z/{fo. By Lemma 4.1, we have
m(zr;) = p(wt(z];)) and m(x,,) = 0. Hence, we see that

(z122 | 9172) = (A(2122) [ 11 © Y2)

= (wrma; @ 24, |11 @ y2) = Y (w1ia; | y1)(@,2h; | y2)
43 i,J

= Z(___1)?(Wtw/1i)p(WtI2j)+p(th12j)p(thli)+p(th1i)p(th2j)+p(Wtzlli)p(Wtz,2j)(mzj ® z1: | Alyr))(@h; @ zh; | Aye))
7]

_ Z(_1)p(wtm1)P(thzj)-‘rp(wtml)P(wtm'zj)(Izj ® 715 | A(yl))(x/zj ®zh; | Ay2))

,L’]
=Y (=1)POrtmIrteten) (gy) @ @1y | A(yr))(zh; @ ;| A(ya))
'7j

= (—1)p(wm1)p(wm2) Z (w25 ® z1i | Y1k ® Y1) (29 ® ;| Y21 ® Yay)

i?j7k7l

= (—L)POEIPOTR) N (o5 [ yan) (1 | 91e) (2 | y20) (2 | )
irjokol

= (—1)PimIpCvea) N (205 @ @ | y1e ® yar) (T1: © @i | Yis, © )
irjokol

= (~L)PORCTm) N P (A(xs) | yak © yau) (A1) | Y1 ® Yay)
ol

= (—1)POvimIpCve2) N M | yanyar) (21 | Yiky)
ol

— (_1)p(wtm1)P(Wta:2) Z(m ® 21 | yrryar ® Viryn) = (_1)p(wtz1)17(wtmz)(x2 ® z1 | Alyry2)).
kol

Thus the equality (4.22) is valid in the case where z1, 22 € U0 for all y € U=°.
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Secondly, we prove the equality (4.22) in the general case, i.e., in the case where z1, x5 € U =% and Yy € Z/[/<0

For each r = 1,2 we write z, = x;"a;'ln(xr)KM with z}F € Uc'l>0, m(z,) € {0,1}, and p, € 1Qq, and write
Y= y‘a?(y)KV with y~ € U°% m(y) € {0,1}, and v € $Qq. Then we see that

(CE1£B2 |y) (xil'U;n(wl)K $+ m(wz)K | y_CT(T(y)K,,)

 (Caymeplie olwan) POy,
( )m(m)p(wtacz)q(ullwtzg)( T4 .’L‘;_ |y )(— )m(mlmQ)m(y)q—(#1+H2lu)
= (-1 )m(wl)P(th)-FP(wtm)P(wtacz)q(#l|wtmz)(l. ® 331 | Ay ))(_1)m(m1m2)m(y)q—(#l_ﬂuly)
=(-

1)m(acl)p(wtmg)—i-p(wt:cl)p(wtzg)q(pl|wtz2) Z 932 ® xi&— | (y—); ® (y—);c—)(_1)m(z1m2)m(y)q—(p1+u2lu)’
k
where
_ Zyk Q. = A(y_cr;n(y)KV) = Z(y Ve oy, PO o W), O-Zn(y)Kwtyk-i-V
k k

with (y7);,, (y7), € U;~°. On the other hand, we see that

(w2 @ 21| AW)) = (2 07 Kpiy @ 0 0 VK | D07 )oK, © () o7 Y Kayn)
k

—Zmz e2) M|<y—>;as<wm>+m<y>m>(mfa?‘wl>Ku1|<y—>;-o?<y>f<_m2+y>

- Z(—l yrisre gl (o | (7)) | (y7 )i ) (-1 tteel)
k

= (~pymEmne) i) S (ot g af | () @ (7)) (DBl
k

where we use wtyr = —wt(z2) and wt(y,) = —wt(z1). Therefore, the equality (4.22) is valid for all cases. [

Theorem 4.10. For each d € D, there exists a unique bilinear form ( | ) = (| )a: UZFO X Ufo — C such
that

(z|y1y2) = (Al2) [ 11 @ 32), (4.23)
(B1oT Ky - Bjot K, |y) = (—1)mptDFnp(wtDtp(wiDew)(Bon K, @ EroT Ky | Aly)), (4.24)
(0F Kx|0gK,) = (=1)™mg~ O, (4.25)
(EBa|of K)) = (04" Kx | Fa) =0, (4.26)

(Ba | Fp) = 0ap/(aa" — da); (4.27)

where © € Ufo, Y, Y1,Y2 € U(;SO, I,J are sequences of elements of g, \,u € 2Qa, m,n € {0,1}, and
a, B elly.

Proof. By Lemma 4.7, Lemma 4.8, and Proposition 4.9, we see that there exists a bilinear form ( | ) =
(] )a: UZFO x US? — C satisfying (4.23)—(4.27) with y,y1,v2 € Llfo. Let 7 be the two-sided ideal of Llézo
generated by the elements displayed in (3.8)—(3.12). Since U’SO = U'<O /W4(Z), to prove the existence of the
form (| )=(] )aon U’>O X U'<0 it suffices to show that for all z € U/>0

(z|¥a(Z)) = {0} (4.28)

Let SR be an arbitrary element displayed in (3.8)—(3.11), and set SR™ = ¥43(SR). Then we will show
that for all sequences I of elements of Iy,

(E;|SR™) =0. (4.29)

Here, by Lemma 4.7, we may assume that wt(I) = wt(SR). Let us write I = (o, J) with o € II; and J a
sequence of elements of IT;. Then, by Proposition 4.9 and Proposition 3.3(1), we see that

(Br | SR™) = ()PP () @ By | ASRT)) = (~1P@PO)(E; @ By | SR™ @ Kk + 0™ @ SR7)
= ()PP (B | SR7) (B | Kl ) + (By | o5 (Ba | SRT)}.
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Since wt(J) # wt(SR) and o # wit(SR), we have (Ey|SR™) = (Eo |SR™) =0, and hence (Er|SR™)

=0.
Let J be the two-sided ideal of Z/{;ZO generated by the elements displayed in (3.8)—(3.11). Then, by (4.2),

(4.29), and the property (4.23) of the bilinear form ( | ) = (| )a on U x U=, we see that

(Br|¥a(T)) = {0} (4.30)

for all sequences I of elements of I .

Let SR(3.12) be an arbitrary element displayed in (3.12), and set SR™(3.12) := ¥4(SR(3.12)). As the
argument in the previous paragraph, by Proposition 4.9 and Proposition 3.3(2) with (4.30), we see that
(Br | SR™(3.12)) = 0 for all sequences I of elements of I14, and hence (Ey |U=" - SR™(3.12) - US°) = {0}.

By combining the above results, we have shown (4.28). Therefore, there exists a required bilinear form
C(1)=(1])a: U’ x U = C. By (4.23) and (4.24), we see that the values displayed in (4.25), (4.26), and
(4.27) determine the values on the whole algebras, which implies the uniqueness. O
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