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Shear Behavior of RC Circular Members
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Abstract The theory of shear behavior for RC circular members proposed in this
paper is based on the diagonal compression field theory. The aggregate interlock of
cracked section and the dowel action of longitudinal steel are ignored in the model.
The influence of non-uniform of stirrup strain is discussed and it is thought that
the influence is negligible. According the model, the shear stress-shear strain
relationship for circular members can be predicted. For ascending branch,
predicted curves show a good agreement with test curves. For specimens with light
stirrups, there is difference between theoretical curve and test curve in
descending branch. The theory predicts that the angle of diagonal compression will
vary with shear stress. Before the yield of stirrup, the inclined angle will increase
as stress increase; and will decrease after the stirrup have yielded. While concrete
strain has reached peak strain, the inclined angle will increase once again. The
shear strength equation proposed in this paper which includes the effect of axial
force is expressed in a simple form which is convenient to use, and is consistent
with one which does not include axial force.

Keyword shear stress; shear strength; axial forces; cracks; reinforced concrete;
stirrups

1. Introduction applied to predict shear behavior of RC
circular members. The diagonal com-
pression field theory is proposed by
Wagner® in 1929 to study the post-
bucking shear resistance of thin

webbed metal beams. Mitchell and

The shear behavior of RC mem-
bers is one of which researchers are
very interested in. Although compre-
hensive research”® on this field has

been made by many students, to date
very little work has been reported on
the shear behavior of RC circular
members. The circular members are
used as piles and column of building
and traffic engineering more and
more extensive. In this paper the
diagonal compression field  theory is
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Collins“?had developed the models for
structural concrete in pure torsion and
shear by this theory. They assumed
that after cracking the concrete can
resist no tension and concrete in web is
replaced by a 1idealized diagonal
compression field.

Fig.1 is a photograph of the test
section of a reinforced concrete circular
member tested in shear at Aichi
Institute of Technology. The mag-
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nitudes of the applied loads for this
member were arranged so that the
moment was zero at the midpoint of
the test region. :

'L60- 10588 Pk |

Fig. 1 Circular section specimen

We will only consider the section
where the effects of flexural moment
and disturbances of point loads are
negligible. However, the effects of axial
load will be discussed finally.

Due to the cracks considerable
variations will - arise in the local
strains(hence stresses) of a member.
Rather than trying to deal with
variable local strains and stresses, we
will consider only the average strains
and stresses. ‘

2. Equilibrium Conditions

Consider the equilibrium require-
ment in vertical direction for the free
body shown in Fig.2.

If we ignore the dowel force of the
longitudinal steel, all of the shear force
at the section must be carry by con-
crete, that is

Q=P sina (1)

where O =shear force; & =angle of
diagonal compression to longitudinal
axis of member; P, =R, cosao, is
resultant force of diagonal compres-
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sion in concrete; R, =effective radius
of circular section, is taken from
internal side of stirrups; O,=average

concrete stress in diagonal compres-
sion direction.

e

Flig. 2 Forces in free body

Defining 7=0/7R, as nominal
shear stress. Thus, Eq.(1) becomes

T
GC = . (1-3.)
sSmocosa

Consider the equilibrium
condition in vertical direction for the
inclined section shown in Fig.3.
Similarly, we ignore the dowel force of
the longitudinal steel. Further, if the
aggregate interlock of cracked section
is ignored, all of the shear force at the
section must be carry by stirrups.
Because the direction of force in
different location 1is variable, the
integral is needed. The stirrups are
equivalent to uniform  stresses,
a,0,/x(a,=area of stirrup; x=spacing
of stirrups; o,=stress of stirrups).
Thus

2 awas
0=2 fm—x—dz cosd (2

It is noted that the equation for
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intersecting line of cylinder and in-
clined plane, z=R, cotasind. Substi-
tuting dz=R, cotacos@déd into Eq.(2), by
integral, one obtains

_ 2rsina

p, cosa (2-2)

where p, =2a,/xR, is stirrup ratio.

Fig. 8 Forces in inclined section

3. Average  Stress-Average  Stain

Relationships

For the steel it will be assumed
that the relationship between the local
stain at a particular location, ¢, and
the local stress at this same location,
o, is given by o=Ee<f,. As some of
the steel strain are below the yield
strain(e,) while some are above(the

steel strain is often not uniform), the
relationship between the average
strain and the average stress will not
be given precisely by this equation.
Assume steel strain in some a
region, h, is linear distribution. This

assumption is shown in Fig.4.

Fig.4 Distribution of stirrup stress

Defining the ratio of average
strain to maximum strain in this
region as non-uniform factor K, that is
K=¢l¢ thus, in region j,
2K -1
1-K
below the yield straine,, and the steel
location

max ?

], the steel strain is

strain in any
o, = 2225 215 By the following
integral, the relationship between the
average strain and the average stress
can be obtained.

o= %[ [eEdc+ Jj ¢, E,dx]

- 1 Ey _ K i 2
LoD P
_(K-1)? JE, @)
4K(1-K)

The using region for Eq.(3) are ¢, 2¢,

. - K
and ¢,, <¢,,ie. K¢ <e< K16 Thus,

the relationship between the average
strain and the average stress can be
expressed by
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o, =¢&E

5 sHs

(e, <Ke,)

0, =l () -y

21-K) s, 41-K)'s,” (3-2)
_ g{’é ‘_11);)]5@, (Ke, <, < 5=—¢,)
o, =¢,E, (e, > %gy)
where Es = Young’s modulus of
stirrup.

For convenience, the average
strain and average stress are labeled
¢,,0,, respectively. This relationship is
shown in Fig. 5.

i‘T““Z"“““"
o

=
Ry
N
=
!

By

Fig. 5 Stress-strain relationship of
stirrup

The stress-strain relationship of
concrete in the direction of diagonal
compression is represented by the
following equations.

o, = Af,[2% ~ (Eey]
&y & (4)

Where f, =cylinder compression str-
ength of concrete; ¢ =average com-

pression strain of concrete in diagonal
compression direction; ¢, =concrete

compression strain corresponding to
peak stress; A= effective index of
concrete strength.

Taking value of & should accord
with stress—strain curve.

5 = do, _ 27,

D& =
c d&' . =0 0 E

4 c

The effective index of concrete take
care of the softening phenomenon of
concrete in biaxial stresses. Based on
the analysis of 153 shear tests of
simple T-beam, Nielsen and
Brasestrup® found this factor was
equal to 0.72. It is thought in
references '’ that this factor relates
relative shear stiffness of sections. The
relative shear stiffness of sections will
increase as longitudinal reinforcement
ratio rise and decrease as the ratio of
shear span to depth rise. Based on
regression analysis of 178 shear tests
of reinforced concrete T-beams (I-
beams), the following empirical

equation is proposed in references”.

015 B -05

A=0.6+ +
M/Q-d 10

®)
(05<M/Q-d<3, 05<p <2)

where g, =pf,/f. , is longitudinal

steel index.
4. Compatibility Condition

The relationship between concrete
strain, stirrup strain and shear strain
of section can be founded by virtual
work method. Acting a pair of unit
virtual force on member shown in
Fig.6.

It is noted that there are virtual
stresses only in dy region. The virtual
stresses o,,0, can be expressed by use

of Eq.(1-a) and Eq.(2-a), respectively.

B 1
O, =—5——
7R, sina cosa

_ 2tana (6)
R, p,

s
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Assume longitudinal steel is rigid,
i.e. the strain of longitudinal steel is
ignored. It is noted that the stresses
and strains of concrete and stirrup are
not related to location of sections. By
virtual work equation, one obtains

ydyxl:jg-g
14

= fy o R dx +(0,8,)x (27R a,) x (i)i)
x

mTm

g, 2¢ sina
 sinacosa cosa )
dy l F
¢
Y a4

b)  Virtual force and stress
Fig. 6 Acting a pair of unit virtual
force on member

The inclined angle of diagonal
compression would adjust itself so that
the strain energy in the system would
be minimized®. The internal energy
will be minimum if the external work
done, and hence for a given load, the
external displacement(i.e. shear stain)

. . . d
is a minimum. This means :il =0, and
(04

leads to

&

sin® @ = ——%——
2. +e) @

Eq. (8) is the compatibility condition of
concrete strain and stirrup strain.

5. Prediction of Shear Behavior

The expression of ultimate shear
strength is related to the balanced
stirrup index that the stirrup starts to
yield and concrete reaches its ultimate
capacity at precisely the same load. By
substituting ¢, =¢&,.¢ =¢, into Eq. (8) ,
one obtains the inclined angle of
diagonal compression of balanced
section in ultimate state

1
2(1+¢,)

Sinzab = (8-a)

where ¢, =¢,/&

By substituting the value of
aobtained from Eq. ( 8-a) and
o,=A.,0,=f, into Eq. (l-a) and
Eq.(2-a) respectively, one obtains the
following equation for balanced stirrup

index:
A

:1+§b

ﬁw,b (9)

where p,,= balanced stirrup index.
If stirrup index g, <p,, , stirrups
will yield before the beam reaches its

ultimate state. By substituting
o,=4,.0,=f,, into Eq. (1-a) and
Eq.(2-a) respectively, the inclined
angle of diagonal compression in
ultimate state is given by the
expression

, By

Sing = £V (8-b)

By substituting the value of «
obtained from Eq. (8-b) into Eq. (1-a)
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and substituting ¢, =¢, the ultimate

strength can be obtained

./ f, =1f%(/1——€1) (10)

If stirrup index g,>p,,, stirrup

will not yield in ultimate state. It is
approximately thought the ultimate
shear strength of over-reinforced
section is equal to the ultimate shear
strength of the balanced section, that
is, taking B, = 5,, in Eq. (10).
Comparing Eq. (10) with ultimate
shear strength for T-beams”, it is
found that the g,/2 for circular

members is correspond to By for T-
beams.

The equilibrium conditions, the
compatibility condition, and the
stress-strain relationships have been
obtained, so we are now able to make a
prediction of circular member loaded
in shear.

By substituting Eq. (3-a), Eq. (4)
into Eq. (2-a), Eq. (1-a), respectively,
one obtains

T & & .
— =22 —(Z2)*]sinacosa (11)
f;: 80 0

T _ p,cosae,

£ 2e, sina (& <Ke,)
i_ﬂwcosae:[ 1 (S_y)_ K (S_y)z

f. 2e,sina 201-K)'&,  4(1-K) e, (12)

QK-
ixa-xg) K& saspTe)
T B, cosa K
z—— 2sina (8’>2K-18")

where g, =f,p,/f, 1s stirrup index.

The shear strain of sections in a
certain magnitude of shear can be
prediction by above model. Eq. (7), (8),
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(11) and (12) include five unknowns,
&, &, 7, v and a.When shear stress
ris given, the other four can be solved.

So shear strain can be obtained as

follows.

a) Select a value for 7;

b) Assume a value of «;

¢) Calculate ¢, by using Eq. (11);

d) Calculate ¢, by using Eq. (12);

e) Calculate a by using Eq. (8);

f) If the angle calculated does not
agree with the estimated angle,
then a new estimate of «could be
made and repeat the step c¢) to step
e).

g) Calculate 7 by using Eq. (7).

To apply the theory, it is necessary
to know the factor A. Because the
shear tests of RC circular members are
not enough to make regression
analysis, here Eq. (5) is used.

The prediction of shear behavior
for specimen L60-05 (whose section
parameters are given in Table 1) is
shown in Fig. 7. It provides four

Specimen L60-05

—&— Shear strain

Relative shear stress /7 u

’—o—"'"'iﬁgl@diéo‘)"‘

0

0.005 0.01 0.015 0.02
Strain, inclined angle

Flig. 7 Shear behavior for specimen
L60-05

curves: shear stress-shear strain
relationship, shear stress-concrete str-
ain relationship, shear stress-stirrup
strain relationship and shear stress-
inclined angle relationship. The term-
inal point of curves correspond a
concrete strain of 0.00331. The longi-
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tudinal coordinate is expressed in
dimensionless parameter z/z,.

Prior to stirrup yield, the
relationships between shear stress
and shear strain are approximately
linear. After the stirrups have yielded,
there is a marked drop in the stiff of
specimen. As shear stress has reached
its peak stress, there is a undulate in
curves. The same phenomenon ‘is
found in tests. As ultimate load is
reached, the needle of test machine
rocks. It is thought that the peak is
unstable.

It can be seen from Fig.7 that the
angle of diagonal compression varies
with shear stress. The angle of
diagonal compression will depend on
the ratio of stirrup strain to concrete
strain(see Eq. (8)). Before the yield of
stirrups, because of nonlinear of
concrete, the increase in concrete
strain is greater than stirrup, so the
inclined angle will increase as shear
stress increase. After the stirrups have
yielded, the stirrup stress will remain
at a constant value. From Eq. (2-a), it
can be known that in order to increase
the applied shear the angle of diagonal
compression must decrease.

a2 05 | = pw=1.2%k=0.8
= 0.4 —a—pw=1.2% k=1
o V. —%—pw=02%k=0.8
L

—o— pw=0.2%k=1

0 0005 001 0.015 002 0.025
Shear strain, v

Fig. 8 Influence of non-uniform
of stirrups

Fig. 8 shows the theoretical curve of
members which have different stirrup

ratio and non-uniform coefficient. It
can be seen that influence of non-
uniform of stirrups on shear behavior
is inconsiderable. Above Fig. 7 does
not consider the mnon-uniform of
stirrups.

6. The Effect of Axial Force on Shear
Strength

Fig. 9 shows that if there is a
compression stress o, in diagonal
direction, it is necessary to have com-
pression stress and shear stress on
vertical plane, i.e. longitudinal direc-
tion. For Mohr's stress circle, the
magnitude of longitudinal compres-
sion stress, o), is

T
O, =
' na (13)
Eq. (13) can be expressed as
T=0,tana (13-2)
4 o
N4
——1 /,»"‘,a q;l L : o
T T\ <
Fig. 9 Unite element and Mohr's
circle

While axial compression force N is
acted on the member, stress o, will

increase, and results in the variation
of shear stress. For simplicity, It is
assumed that while axial force is acted,
the angle of diagonal compression will
not vary. Taking differentiation to Eq.
(11-a), one obtains
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At =tanaAo, (13-b)
It is noted that because of axial force,
the increase in longitudinal compres-
sion stress is Ao, = N/(zR* +na,), thus

At =tan@—s—— -
‘ ana(”Rz +na,) (13-c)

Substituting Eq. (8-b) into Eq. (13-c)
and using Eq. (10), the ultimate shear
strength which includes the effect of
axial force is given

B, B,
Tu &(;{_&)4_2—(1_2_)}%
I 2 2 -8B, [

Because pg,is much smaller than 24,

above equation can be approximately
expressed as

T o B B,
S (142, [ (-
SR F-0) ay
N . —
where oy, SR a,=area  of

longitudinal steel; n=the ratio of
Young’s modulus of steel to concrete.
While o, =0, Eq. (14) is same as Eq.
(10).

7. Comparison with Tests

Eight circular specimens are
tested. Except two specimens without
stirrup, a total of 6 test specimens
which are used to compare with the
proposed theory are listed in Table 1.
The two specimens of them are acted
axial compression force.

Fig. 10 and Fig. 11 show the
relationships between shear stress
and shear strain for specimen L60-05
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and specimen L90-10, respectively. A
test shear strain is calculated by
dividing the measured relative shear
dis-placement by the gage distance. In
this test, the gage distances are
600mm and 900mm, respectively.

Specimen L60-05

0.2

0 018 T,
<016 oy ettty e,
Ro4 |
g 012 | &
¢ 01} &
] s
@ 0.0g ‘.‘.v +Ca|cu|ated
E 884 5 —Test
® 002 §

0 K

0

0.005 0.01 0.015 0.02 0.025
Shear strain, ¥

Fig. 10 Shear stress-shear strain
curves for specimen L60-05

Specimen L9010
£012
L 01}
3 008 |
© 0.06 D
> 0.04 —a— Calculated
S 002 —o-Test
c_}“:; 0k . . . .

0 0005 001 0015 002 0025
Shear strain, 7

Fig. 11 Shear stress-shear strain
curves for specimen L90-10

From Fig. 10 and Fig. 11, it can be
seen that the predicted shear behavior
for ascending branch shows a good
agreement with test. It should be
mentioned that the diagonal compre-
ssion field theory is not intended for
the prediction of behavior before
cracking. Tests in Fig. 10 and Fig. 11
show that the specimens before
cracking are stiffer than those
predicted. Contrarily, after cracking
the stiff of theoretical curve is greater
than test curve’s one. This can be expl-
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Table 1 Comparison of theoretical and experimental results for shear strength

No. |Specimen |Diameter | M/QD | Oy Je b Sy |Pw | Jw @ 1) @ L) |7l 7,
(mm) (MPa) | (MPa) |(%) | (MPa) |(%) |(MPa)

1 |L60-10 300 1.0 0 26.85| 4.92 | 426 02 | 493 0.091 0.115 1.121
2 |L60-05 300 1.0 0 26.85| 4.92 | 426 04 | 493 0.186 0.162 0.871
3 |L60-05F | 300 1.0 | 5467 | 26.85| 4.92 | 426 0.4 | 493 0.173 0.206 1.191
4 |L90-10 300 1.5 0 26.85| 4.92 | 426 02 | 493 0.102 0.112 1.098
5 |L90-05 300 1.5 0 26.85| 4.92 | 426 04 | 493 0.120 0.156 1.30
6 |L90-05F | 300 1.5 | 5467 | 26.85| 4.92 | 426 0.4 | 493 0.166 0.201 1.213

Note: Superscript t denotes test results; superscript ¢ denotes calculated values.

ained by the fact that the strain of

longitudinal steel is ignored in the
model.
There is difference between

theoretical curve and test curve in
descending branch, especially for
specimen L90-10. The descending
branch of RC members is probably
subject to influence of test conditions
and the peak is wunstable. This
phenomenon is much clear for the
specimens with light steel.

Table 1 shows that the calculated
shear strengths are mostly greater
than the test values. The mean value
of the ratio of the calculated shear
strength to measured shear strength is
1.132 and the deviation coefficient is
0.129. A probable cause is that the Eq.
(5) which is based on regression
analysis of shear tests of T-beams and
I-beams, and is used for determining

factoridoes not very suit to circular -

members.
8. Discussion and Conclusions

This paper has first used the
diagonal compression field theory for
the behavior of reinforced concrete
circular ~ members  monotonically
loaded in shear. By proposed model,
the  shear  stress-shear  strain
relationship for circular members can
be predicted. For ascending branch,
predicted curves show a good agree-

ment with test curves. For descending
branch, there is difference between
theoretical curve and test curve,
especially for specimen which is lightly
reinforced in stirrup. It thought that
the descending branch of RC members
is subject to influence of test
conditions. On the other hand, the
diagonal compression field theory has
showed better accuracy for specimens
with heavy stirrups than the
specimens with light stirrups. All six
specimens in this test have light
stirrups.

According to the theory, it is
showed that the influence of non-
uniform of stirrup stress on shear
behavior is inconsiderable. The
general elastic-plastic stress-strain
curve for steel can be used as the
relationship between the average
stress and average strain for stirrup.

The equation for shear strength of
circular members is similar to the one
of T-beams. The wultimate shear
strength of circular members with
stirrup index g, is correspond to the
ultimate shear strength of T-beams
with stirrup index fS,/2. The shear
strength equation proposed in this
paper which includes the effect of axial
force is consistent with one which does
not include axial force. While axial
force is equal to zero, both are same.

The calculated shear strength are
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mostly greater than the test values.
The factor 4 for circular members is
probably different to one for T-beams.
The paper contains only six test
specimens to compare with theory.
More tests of circular specimens are
required for determining factorA.
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