バナジルフタロシアニン誘導体LB膜の 作製と電気特性

Preparation and Electrical Properties of LB Films of Vanadyl Phthalocyanine Derivatives

福井昭圭*·古橋秀夫**·吉川俊夫***·前田昭徳****·落合鎮康****
内田悦行**·小嶋憲三****·大橋朝夫****。家田正之****

Akiyoshi.FUKUI , Hideo.FURUHASHI , Toshio.YOSHIKAWA , Akinori.MAEDA , Shizuyasu.OCHIAI ,Yoshiyuki.UCHIDA , Kenzo.KOJIMA , Asao.OHASHI , Masayuki.IEDA

Abstract Two kinds of vanadyl phthalocyanine LB films with different side chain were prepared on qualtz substrates to investigate film structures and electrical properties. One is tetra-carboxy vanadyl phthalocyanine (TC-VOPc) and the other is tetra-t-butyl vanadyl phthalocyanine (TTB-VOPc). It became known that both films were amorphous and these molecules stood oblique on the substrate. The Q band in UV-VIS absorption depended on the side chain compounds suggesting that it is affected by the molecular stacking considerably. The dark current of TC-VOPc film had sensitivity to humidity. However, that of TTB-VOPc film had no sensitivity. These results were discussed on the basis of ionic conduction mechanism concerning to the hydrophilic radical in the side chain.

1. はじめに

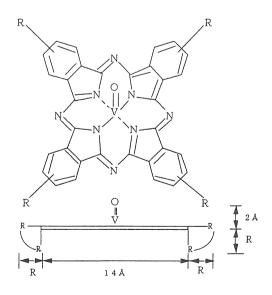
フタロシアニン化合物は合成が比較的容易で、耐熱性、耐光性、耐侯性、耐薬品性などの使用特性の面で優れており、主に青から緑色の顔料として用いられている。しかし最近、機能性有機材料としての利用が注目され、特に半導体性、光導電性に着目したエレクトロニクス、ガスセンサ、太陽電池などの実用ないし実用可能性が見込まれている。そのような分子電子デバイスへの応用を目的とする場合、その構造としては超薄膜、高品質、高配向性膜の形成

技術が必要となる。有機薄膜は種々の作製法により 形成されるが、有機系の特徴である分子設計の多種 多様性、熱に対する不安定さを考慮すると、現在の ところ、LB法が有利であると言われている。フタ ロシアニン類は一般的に不溶性であり、LB法で用 いる場合、有機溶媒に溶解させるためにフタロシア ニン環に側鎖を付加するという方法がとられている。 しかしその側鎖が各種特性に影響を及ぼすことが示 されており、主に銅フタロシアニン、メタルフリー フタロシアニンL B膜などで側鎖を変えた研究が盛 んに行なわれているが1)、バナジルフタロシアニン (VOPc) の前例は非晶質という報告以外、ほと んどなされていない。バナジルフタロシアニンは中 心金属のV=〇が飛びでているシャトルコック構造 を有することから、平面構造を有する銅フタロシア ニン、メタルフリーフタロシアニンなどより興味深 67

^{*} 愛知工業大学大学院 電気電子工学専攻(豊田市) (株) NTTファシリティーズ

^{**} 愛知工業大学情報通信工学科(豊田市)

^{***} 愛知工業大学 総合技術研究所(豊田市)


^{****} 愛知工業大学 電気工学科(豊田市)

本研究では、バナジルフタロシアニンの4つの側鎖にカルボキシル基のついたテトラカルボキシバナジルフタロシアニン(TC-VOPc)、ブチル基のついたテトラターシャリーブチルバナジルフタロシアニン(TTB-VOPc)LB膜の作製を行い、側鎖の違いによる影響を、構造解析(紫外・可視吸収スペクトル、X線回折スペクトル)および表面電気特性(光電流特性、電気伝導電圧特性、湿度感度特性)により検討を行った。

2. 試料および実験方法

2.1 試料と累積条件

テトラカルボキシバナジルフタロシアニン (TC-VOPc、分子量755.51、和光純薬工業 (株)) は市販のものを用い、特別な精製は行っていない。テトラターシャリーブチルバナジルフタロシアニン (TTB-VOPc、分子量804) は K.Lawの方法により合成を行った 2 。これらの構造を図1に示す。

(a) VOPc 骨格の分子構造

(b) 側鎖の分子構造

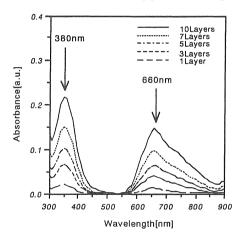
図1 VOP c 誘導体の分子構造

図2 表面圧面積 (π-A)曲線

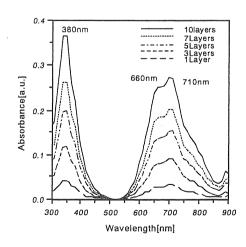
 10^{-4} mol/ ℓ の濃度の展開溶液とした。下層水には純水(pH=8.15、抵抗率 $\rho=5\times10^6\,\Omega$ cm)を用い、水温は $22\sim24$ $^{\circ}$ Cに保った。基板にはTC-VOPcは石英ガラス、TTB-VOPcはパイレックスガラスを用いた。累積表面圧は図2に示す表面圧面積曲線より、TC-VOPcは15mN/m、TTB-VOPcは18mN/mとした。圧縮速度15mm/min、累積速度5mm/min、累積法は垂直浸漬法でZ型、累積後は1Pa台の真空中で1層毎に3時間以上真空乾燥を行い、それぞれ10@ずつ累積を行った。

2.2 実験方法

成膜にはムービングウォール方式のLB膜製膜装 置(LB240P、日本レーザ電子(株))を使用し た。紫外可視吸収スペクトル測定には、島津自記分 光光度計 (UV-2200、島津製作所(株))を、X 線回折スペクトル測定には島津X線回折装置(XD-D1、島津製作所(株)) を使用した。電気特 性測定は電極として、櫛形Al表面電極を真空蒸着法 にて蒸着し、大気中および1Pa 台の真空中にて暗 電流と光電流 (660nm) の測定を行った。光電流 スペクトル測定は1Pa台の真空中で印加電圧 D.C.25V印加して、Xe ランプにより分光器を通し て試料に光を照射した。湿度感度測定は印加電圧 D.C.25V一定で、力の弱いポンプの排気を利用して、 容器中の湿度を10~90%と変化させたときの電流を 測定した。湿度の測定は容量形湿度センサ(クラベ (株)) を用いた。


3. 実験結果および考察

3.1 表面圧面積 (π-A)曲線


図 2 に示す表面圧面積曲線より、限界占有面積は T C – V O P c が約65 Å 2 、 T T B – V O P c が約60 Å 2 となっている。これより水面上の分子の挙動は、水面に対してT C – V O P c が約80°、 T T B – V O P c が約83°で斜立していることがうかがえる。 V O P c $(C_{18}H_3, NHSO_2-)$ の場合、140 Å 2 という

値が得られている $^{3)}$ 。また、P.Valerioらの指摘のように $^{4)}$ 、 CuC_nPc においてnが10以下の短い側鎖の場合、分子が重なって堆積する現象と類似の傾向が認められた。

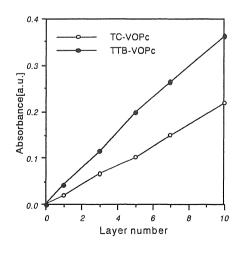
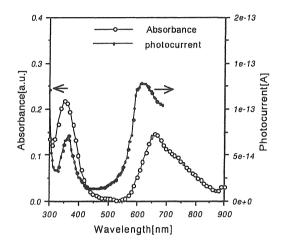
3.2 紫外・可視吸収スペクトル X線回折スペクトル

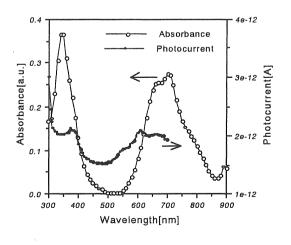
(a) TC-VOPc

(b) TTb-VOPc

図3 紫外・可視吸収スペクトル

フタロシアニン類では、この500~800nmの吸収帯 をQバンドと称し、隣接するフタロシアニン環の相 互作用の強さに大きく影響されることが知られてい る。本試料では側鎖の化学構造とそれによるパッキ ングの違いが可視光領域のピークの強弱に影響を及 ぼしていることが考えられる。また、両試料とも層 数の増加に対して、ピークのシフトは認められなかっ た。ここで350nmの吸収ピークは膜厚に比例するこ とを利用して⁵⁾、このピークの吸光度を層数別にプ ロットしたものを図4に示す。両試料とも層数に比 例して吸光度が増加していることから、良好な累積 が行われていることがわかる。さらにVOPc蒸着 膜にて350nmのビークと膜厚との関係を示した報告 より膜厚を算出すると⁵⁾、TC-VOPcは約13.5 Å/1層、TTB-VOPcは約22.3Å/1層となり、 V.I.Troitskiyら³⁾ のVOPcLB膜における20Å/ 1層と近い値を示した。分子の大きさから考慮する と、基板上でTC-VOPcが約48°、TTB-VO Pcが約90°で斜立した状態で、部分的にカラムを 形成しているものと考えられる。累積一週間後、再 び測定を行ったが、ピーク値の減少・シフト等は見 られず、良好な耐候性が維持されていると思われる。 また、X線回折測定からは明瞭な回折ピークが認め られないことから、両LB膜は非晶質膜であると考 えられる。

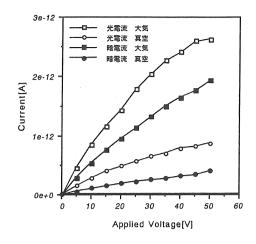

図4 層数と吸光度との関係

3.3 光電流波長依存性

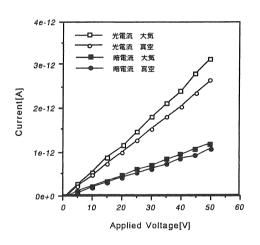
フタロシアニン類の可視光吸収はQ(π-π*)バンドのものとされており、分子のスタッキング状態に強く依存し、フタロシアニン環同士の相互作用が強く影響する。また670nm~780nmの吸収はダイマー(二量体)の吸収ということが一般的に示唆されている。本実験では側鎖の違いによるフタロシアニン環の相互作用を検討するために、その領域における光電流を測定した。その測定結果を図5に示す。

(a) TC-VOPc

(b) TTB-VOPc


図5 光吸収と光電流スペクトル

TC-VOPc, TTB-VOPc 2 5 18380, 610nmに光電流ピークが見られ、キャリア生成が認 められる。しかし、TTB-VOPcはTC-VOP c ほど光電流が現われていない。これは、側鎖のブ チル基がかさばった立体構造をとるため、隣接する フタロシアニン環の距離を広げキャリアの移動を妨 げているものと推測される。また、紫外・可視吸収 スペクトル測定で吸収スペクトルの小さい610nmに 光電流が現われており、紫外・可視吸収スペクトル とは一致していない。これはVOPc蒸着膜に関す る南らの報告と比べると⁶⁾、光吸収と光電流スペク トルが一致しないという点では同様な結果が得られ ているが、今回の膜では蒸着膜に比べ、光電流スペ クトルのピークがやや短波長側にシフトする結果と なった。同様の結果はKloftaらによっても示されて いる⁷⁾。この原因として、Charge Transfer吸収が 610nm付近に存在する可能性を指摘する報告がなさ れており、最近ではCooでも同様な指摘がなされて いるが、フタロシアニン類ではVOPcにおいて顕 著に観測される。しかしCT吸収帯の存在を直接検 出する適当な方法がないので、推測の域を出ない。


3.4 電気伝導測定

3.4.1 電圧特性

図 6 に電気伝導電圧特性を示す。 TTB-VOP c は真空中、大気中ともに印加電圧に対して暗電流、光電流(Xe ランプ、波長660nm照射時)ともにリニアに増加している。 TC-VOP c は大気中で光を照射した場合に、電流値がやや飽和傾向にある。また、 TTB-VOP c は真空、大気どちらの場合にもほぼ同様な値を示しているのに対し、 TC-VOP c では、大気中の暗電流が真空中の光電流より大きい値を示している。 この要因としては大気中の O_2 、 N_2 および湿気等が電流値の増加に関与しているためと考えられが、この点については次節で述べる。

(a) TC-VOPc

(b) TTB-VOPc

図 6 電気伝導電圧特性

3.4.2 湿度感度特性

電気伝導電圧特性より、大気中の何が電流値に影響を及ぼしているかを調べるために、容器内に O_2 、 N_2 を満たした時、および容器内の湿度を変化させた時の電流値変化を測定した。 O_2 、 N_2 で満たした場合は電流値に変化は見られなかった。しかし湿度を変化させた場合、電流値は大きく変化した。そこで

この結果をもとに、湿度センサへの応用を考え湿度感度特性を測定した。湿度30%、50%、70%、90%で定常状態作り、応答速度等を検討した。図7に電流一時間でプロットしたものを示す。湿度変化に対して、電流値が落ち着くまでには室温では約200~300secと遅いが、再現性は良く10層程度のLB薄膜では水の吸着・離脱が効率的に行われ、残留水分はほとんど存在しないと思われる。図8に、湿度を連続して変化させた時の電流値の変化の一例を示す。TC-VOPcLB膜では1%RH当たり11%の電流変化が認められた。これに対しTTB-VOPcLB膜ではほとんど変化は認められなかった。このようにTC-VOPcが湿度に対して敏感な反応を示す原因として2つ考えられる。

1つは、親水性であるカルボン酸の水素が水分の 吸着により電離し、以下のように反応し、

$$COOH + H_2O \stackrel{\longrightarrow}{\longrightarrow} COO^- + H_3O^+$$

 $H_2O \stackrel{\longrightarrow}{\longrightarrow} H^+ + H_2O$

水素イオンH⁺となり、キャリアとして電流の増加に 寄与するものと推測される。一方、TTB-VOP cが湿度依存性を示さないのは、C-Hからなるブ チル基が疎水性を有するためと推測される。

2つめは、水分の吸着により表面に水酸基が化学 吸着し、その後水分が物理吸着し水の層を形成する というのが、セラミック湿度センサにおける電流増 加の起因であるが、このことを考慮すると、TC -VOPc はカルボキシル基に水酸基を有している ため、湿度感度が良好になるものと推測される。 T TB-VOPcは分子全てが疎水性を示すことから、 水分が吸着しにくいため、感度が悪いものと推測さ れる。また、TC-VOPcの電流-湿度特性におけ る直線性は、市販のセラミック湿度センサでも同様 な傾向を示していることから、湿度センサへの応用 の可能性が示唆される。実験に用いたLB膜は20 0 オングストローム以下の超薄膜であり、表面型の センシングデバイスとしては高い感度を有するもの と期待されたが、コンダクタンスが低いため実用に はこの点の改善が不可欠である。

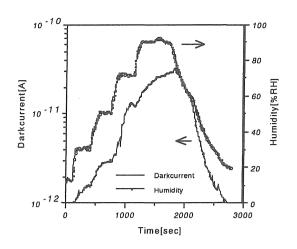


図7 電流-時間特性

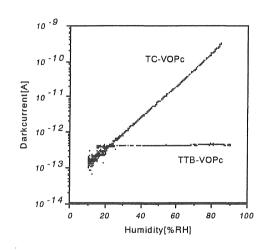


図8 電流-湿度特性

4. まとめ

L B法により成膜されたフタロシアニンL B膜を分子電子デバイスに用いる場合、フタロシアニンを溶解させるために付加した側鎖の影響が重要視されている。側鎖としてよく用いられる長鎖アルキル基は絶縁性を示すことから、電子デバイスへの応用を意図とする場合、不都合である。そこで本報告書では、バナジルフタロシアニンに付加した2種類の側鎖(カルボキシル基、ブチル基)が及ぼす影響を、

構造解析および電気特性により検討を行った。

紫外・可視吸収スペクトルより、側鎖の違うVOPcLB膜は600~800nmの可視光領域で変化が見られた。側鎖がフタロシアニン環の相互作用に強く影響することが示唆された。また、累積一週間後、再び測定を行ったが、ピーク減少・シフト等は見られず、良好な耐候性はLB膜でも維持されている。

光電流スペクトル測定より、光照射によるキャリア生成が確認された。その電流値に差が見られたことから、側鎖は生成されたキャリアの移動度に影響を及ぼしていることが示唆された。さらに、蒸着膜VOPc同様、吸収スペクトルと光電流スペクトルは一致しない結果となったが、明確な原因は現時点では不明である。

TC-VOPc は湿度に対して、敏感な反応を示した。これはカルボン酸の水素が水分の吸着により電離してできた、水素イオン H^+ によるものと推測される。湿度-電流特性よりセラミック湿度センサでも見られる直線関係が、TC-VOPcLB 膜から得られたことから、湿度センサへの応用の可能性が示唆された。

5. 参考文献

- 1) 例えば、S.Baker, G.G. Roberts, M.C.Petty , IEE PROCEEDINGS, Vol.130, Pt. I, No.5, PP. 260-263 OCTOBER (1983)
- 2) Kock-yee Law, lnorg. Chem. 24, PP. 1778-1781 (1985)
- 3) V . I . Troitskiy ,V . S . Bannikov and T . S. Berzina ., J Mol Electron , Vol . 5 , No . 3 , PP. 147-154 (1989)
- 4) P. Valerio, P. A. Albouy ., Thin Solid Films, Vol. 287, No. 1/2, PP. 237-242 (1996)
- 5) H. Hoshi, K. Hamamoto, T. Yamada, K. Ishikawa, H. Takezoe, A. Fukuda, Shaoli Fang, K. Kohama and Y. Maruyama., Jpn. J. Appl. Phys. Vol. 2, No. 11A, PP. 1555-1558
 1 NOVEMBER (1994)
- 6) 南 信次,浅井 道彦 ,繊維高分子材料研究所
- 研究報告 第165号(特集号)PP. 73-79(1991)
- 7) T. Klofta, C. Linkous, N. R. Armstrong , J. Electroanal. Chem., 185, PP. 73 (1985)

(受理 平成10年3月20日)