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An Analysis of Optimum Pulse Shaping Filter in Time-Discrete
Multipath Rayleigh Fading Channels *
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Abstract: This paper concerns with an optimal pulse shaping filter in time-discrete multipath
Rayleigh fading environment. The shift orthogonal pulse shaping filter is proposed and proved to be
the optimal envelope in the sense of least average bit error probability. It is suited to the Rayleigh
fading channel with an arbitrary strength/delay profile of multiple time-discrete paths for BPSK and
QPSK signaling etc. Numerical results show that shift orthogonal waveform based pulse shaping filter
has lower bit error rate than general shaping waveforms such as square root raised cosine (SRRC)
waveform.
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as diversity, coded modulation, pilot, and
equalization, which have been widely studied
and employed. Different methods are adopted to
compensate the fading effects in distinct
channels, while now, we deal with the issues
from another viewpoint, in which the pulse
shaping filter design® is concerned once more.
Indeed, signal design has an increasing
important role to play in  wireless
communication systems for a host of
applications. In this paper, the time shift
orthogonal pulse shaping filter is deduced and
proved to be an optimal waveform in the sense

1. Introduction

In many data communication systems such
as digital mobile radio and terrestrial broadcast
systems, data signals are always affected by
multipath fading and require some form of
channel compensation for the resulting signal
distortion. The severe performance degradation
effects associated with multipath fading in radio
channels are well known. However, the effects
of fading can be substantially mitigated through
similarly as many well known techniques such
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of least average bit error rate in the time-discrete
Rayleigh fading channels. The optimal baseband
waveform is independent of the path parameters
except that the orthogonal shift distance is
decided by the path spacing. Therefore, the
optimum is a universal principle in time-discrete
Rayleigh fading channels.

The organization of the paper is as follows.
In section 2, we describe time-discrete multipath
Rayleigh fading channels and the lower matched
filter bound of the average bit error rate. Section
3 develops the optimal shaping filter and points
out that shift orthogonal waveform is an optimal
one. In Section 4, the numerical results of the
optimum envelope conducted over Pan-
European Digital Cellular (GSM) channels such
as the typical urban (TU) and hilly terrain (HT)
models are presented, in comparison with
general square root raised cosine (SRRC)
waveforms which is employed in the North
America Digital Cellular standard IS-54. Finally,
we present the concluding remarks in section 5.

2. Channel model and the lower matched
filter bound

We begin with a time-discrete Rayleigh
fading channel at baseband which consists of p
equally spaced paths. With a baseband model, it
can be expressed by an impulse response as 1),2)

Ht) = ffl a: (N, ()8t - 7,) 1)

where z(f) is a slow time-varying, zero mean,
unit variance, complex Gaussian random
process, 7; and o;(r) are the delay and the root
mean square (r.m.s.) value of i-th path
attenuation coefficient at time ¢. The delays 7,
are assumed to be constants and equally spaced
by ar for a particular channel, ie.
7,41 — 7; = AT, i=1,..., p-1. Supposing that BPSK
is preferred and the transmitted information is
denoted as s, =+1, the baseband signaling
waveform is s, g(t), g(f) is a shaping pulse. In

view of the above description, if the transmitted
pulse passed through the channel (1) corrupted
by additive white Gaussian noise, the received
signal at baseband is

r(r)= i aizig(f— T,»)sk +n(f) 2
i=1

where n(r) is the zero mean, complex white
Gaussian random process with power spectral
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density N,. We also assume that the slowly
varying random process z(f) does not change
within the duration of the pulse. As we know,
the matched filter bound (MFB) is a bound on
the optimal performance over a communication
channel that assumes that the transmitted pulses
are sufficiently separated so that no intersymbol
interference occurs”. Thus, the MFB is a lower
bound, which may not be achievable for specific
implementations. However, it has theoretical and
practical importance for measuring the limiting
performance of receivers under considerations.
It is shown in 1) that the lower MFB of average
bit error rate can be obtained as follows:

Pave(p)=%§ki|:l_-‘,’1_ip/(l+l_ip):l 3)

where, another variable M has been introduced,
M is non-negative definite psp Hermitian

matrix with elements
nz,j=aia;R(Ti—fj), i,j=1,",p,
R(e)= F'1[|G(*)|2] is the autocorrelation

function of g(t), G(w) is the Fourier transform
of g(f). We implicitly used the fact that the

envelope g(f) is real valued , hence

R(-7)=R(r) and naturally M is a symmetric
Hermitian matrix with all elements not less than
zero, ie. my; 20. A; (4; 20) are the eigenvalues

of M and they are assumed to contain only

singular ones (no multiple). p= L ﬁ A; can
2Np j=1

be proved to be just the averaged received signal

to noise ratio, it is assumed to be constant for a

given model for the convenience of evaluation.

P 7.
k=TI A

=1, j#i A _ﬂ'j

>

A; are normalized eigenvalues, i.e.

’17‘
T M)

— P
A=) SA;=
J=1

In the following, we will minimize the lower
MFB (3) versus eigenvalues of matrix M. Since
a; depends on the channel, and we want to
derive an optimum waveform for the Rayleigh
fading channel which consists of multiple time-
discrete paths with an arbitrary strength/delay
profile for BPSK signaling, we have to optimize
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the objective function with respect to nothing
but g(r). By some manipulations, we know that

P
>k =1( by integrating equ (11) in 1) ) and
i=1

P
> 2; =1.Hence B, in (3) can be simplified as

i=1
=118 ] [l T

3. Optimum signaling envelope in multipath
Rayleigh fading channels

Minimizing F,,(o) in (4) is equivalent to
maximizing the second item

éki[ Zp/(l+7,~p)]-

Since it can be deduced that

(where k= J] = ) are of the same
J=Lji A=A

gradient variation trend to individual Z; in our

situations ( i.e., they increase or decrease at the

same time to each point 4, ). The goal now can

be changed into maximizing the function
Pive(M)= fl ki [Zpf(1+7:0)|.
while
P c;ve =§ [ lp/ ( )]
p P 2.
R 2L
=A ®)
p
II

W
A

1

(5 +07)-p7" .
=[1+ ]

IEI(Tﬁp’I)

i=1

where
o(M)
[1(7+#")
= A+p)-
i=1
=122\ 2,
+p-l(ZZZA Zp—l + )ul—lsIAA Ip +A + A2 AsA I,,)
-!-p—2 (/1_1-/—1-2/\ zp-g + /1_124 zsA IP+A +-/-1—314A Zp)
+A +p'("")(/1—, + Az +A +I,)

Note that 0<4; <1, Vi, which implies that
—_— —— J
I=1

we can obtain that

o(M)

(l+p1C1+p2C2+A+p CH) ©)
T+ o)

H +p

So (6) can be expressed in term of matrix
determinant. That is

I“dl (p—l)
oM)zg—1"1 7
(M) g[Tr( ] —+ )
where,

g= l+p_lC}, +p’2C;‘;+A +p-(‘9_2)Cg_2 >0,

As a result we can obtain that Q(M) increases

with the increment of ]M ] 3

From the matrix theory 3), we know that
the determinant of a non-negative definite
matrix with order p arrives maximum when the

. . . . P 3 3
matrix is diagonal ( | <]m; , with equality
i=1

L . P
iff M is diagonal, ie. |A]=]]m; em; =0, V
i=1

i#f ), in other word, R(r -7 ) 0 whenever i/,

It means that signals from different paths are
uncorrelative, and the epoch difference to
distinct path equals integer multiple of the path
spacing Ar. This is why we call them shift
orthogonality.

It is obvious that, without loss of generality,
the diagonal matrix

)4 )4
( IA/'[|=HI"ﬁ =114:)

i=1 i=1
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satisfies inequality (7) as well. Furthermore, the
diagonal matrix corresponds to the maximized
lower bound. Thus, the maximization of lower
bound of (6) and (5) has been obtained. Under
these conditions, the maximizing bound
maximizes the objective itself. The following is
to prove that the maximized value of Q(M) in

(7) is be of uniqueness .

[Gershgorin Theorem] Let 7 =3 7w M s

then its eigenvalue lies within a circle of radius
r; centered at my; . If some circles overlap, then
the overlapping circles contain just as many
eigenvalues, counted according to their
multiplicity.

The circles condense to points if M is
diagonal. So the maximum lower bound
corresponds only one set of eigenvalues (There
does not exit any other. eigenvalues which can
make (7) maximum). The solution brings about
maximized P, (M), and minimization of

Pre(p) as well. It is evident that the evaluation

of optimal baseband waveform corresponding to
least BER does not depend on the channel
coefficients «;(r) but determined only by

shaping pulse g(r). It is suitable for any equally

spaced time-discrete Rayleigh fading channel
with arbitrary strength /delay profile. As a result,
the THEOREM on shift orthogonality can be
stated as,

[ THEOREM ] In the sense of Ileast
average bit error probability, the shift orthogonal
shaping filter is an optimal baseband waveform
over any time-discrete equally spaced multipath
Rayleigh fading channel with arbitrary
strength/delay profile. Viz, the baseband
waveform is required to be orthogonal to its own
shifts by integer multiple of the path spacing
AT . B

4. Numerical results over GSM channels

We consider the GSM TU and HT channel
models for both IS-54 signaling and GSM
signaling. Although TU and HT models have
several variations in the practice, we choose at
will a simpler 6-path form model as our
examples *®. The amplitude and delay profiles
of the channel models are shown in table 1. We
assume that the transmitter shaping filter has a
square root raised cosine (SRRC) frequency
response with excess bandwidth & = 0.35 in the
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calculation of the average bit error probability in
GSM signaling and IS-54 signaling. This kind of
SRRC waveform is specified by IS-54. The
performance of the shift orthogonal envelope
transmitted at the same rate as IS-54 and GSM
are also computed over the two GSM channels,
in comparison with the aforementioned SRRC
shaped IS-54 and GSM signaling.

For IS-54 signaling, although z/4 QPSK is
adopted, we assume that the symbol is
transmitted by BPSK for the sake of comparison
with other situations. So the bit duration of IS-54
is about 41.152ps. By Jacobi methods, we can
get that the normalized eigenvalues for the TU
channel and the HT channel shown as Table2.

Table 1. Delay and Amplitude Profile of GSM
Channels (profile sampling duration is 0.813us).

TU model HT model
Path # | Delay (us) | Power || Delay (us) | Power
1 0.000 1.000 0.000 1.000
2 0.813 0.669 0.813 0.251
3 1.626 | 0.448 1.626 0.060
4 2.439 | 0.300 | 15.447 | 0.258
5 3.252 10.200 | 16.260 | 0.177
6 4056 |0.134 | 17.073 | 0.122

Table 2. The normalized eigenvalues in the TU
channel and the HT channel for 1S-54 signaling

TU channel for IS-54 | HT channel for IS-54
0.99839544 0.96204072
0.00000076 - 0.00000807
0.00000020 0.00000164
0.00160289 0.03794055
0.00000029 0.00000317
0.00000039 0.00000581

The symbol interval for GSM signaling is
3.692ps. The normalized eigenvalues for GSM
TU channel and for the HT shown as Table 3.

We can also attain the results for shift
orthogonal waveform. are eigenvalues for TU
channel and the HT channel shown as Table 4.

Table 3. The normalized eigenvalues in the TU
channel and the HT channel for GSM signaling
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TU channel for GSM | HT channel for GSM
0.86080128 0.894089228
0.00094519 0.01018010
0.12472734 0.00010650
0.00028550 0.08765873
0.01306165 0.00019492
0.00017903 0.00777048

Table 4. The shift
eigenvalues for TU channel and For the HT

channel

orthogonal waveform

TU channel for shift
orthogonal waveform

HT channel for shift
orthogonal waveform

0.55672437 0.84790456
0.24916813 0.05341883
0.11173681 0.00305246
0.05010520 0.02656400
0.02226898 0.02656400
0.02226898 0.01262021

Average Bit Error Rate

)

By substituting above eigenvalues into  (3)
respectively, two curves of average bit error
probability versus signal to noise ratio (SNR)
over different channels are given in Figure 1 and
Figure 2.

Figure 1 shows the performance of
waveform shaped by Shift orthogonal and SRRC
envelopes over GSM TU channels without any
forward correction coding. The comparison of
the three curves clearly depicts that the average
bit error rate of shift orthogonal waveform is
less than the general SRRC ones. The SNR gain
is evident especially when SNR is greater than
5dB. The performance comparisons in GSM HT
channel also illustrate the advantages of the
proposed shift orthogonal waveform, just similar
to Figure 1.

Figure 1. Bit error probability curves for
shift orthogonal envelope, in comparison with
two SRRC waveforms, corresponding to symbol
duration of IS-54 and GSM over GSM TU
channel.

'("Numerical Results (TU):

: Shift Orthogonal
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Figure 1. Bit error probability curves for shift orthogonal envelope, in comparison with two SRRC
waveforms, corresponding to symbol duration of IS-54 and GSM over GSM TU channel.

B ( Numerical Results (HT):
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Figure 2. Bit error probability curves for shift orthogonal envelope, in comparison with two SRRC
waveforms, corresponding to symbol duration of IS-54 and GSM over GSM HT channel.

5. Concluding Remarks

The optimal baseband signaling envelope
based on shift orthogonal envelope for multipath
Rayleigh fading channels has been presented in
the paper. The numerical results show that the
performance is better than general shaping
waveforms such as SRRC waveforms, especially
in the circumstance when the SNR is larger than
5dB. Since we have the liberty to select a
-channel, and this avoids the restricting the
generality. The results can also be generalized to
the cases when the matrix M has multiple roots.
Wavelet packet functions  are a kind of shift
orthogonal functions. It does meet the optimal
demands. Furthermore, they are also a special
type of Nyquist pulses, so they comply with
Nyquist first criterion. However, the major
disadvantages of the wavelet functions are their
non-constant envelope which would impact the
power consumption.
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